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Abstract

Negative values for estimated variances can arise in a panel data context.

Empirical and theoretical literature dismisses the problem as not serious and

a practical solution is to replace negative variances by its boundary value,

i.e. zero. While this is not a concern when the individual variance compo-

nents is “small” with respect to idiosyncratic variance component (making it

indistinguishable from zero in practice), we claim that a negative estimated

variance can also arise with a “large” individual variance component, when

the orthogonality condition between the individual effects and regressors fails.

Estimation problems are considered in the (feasible) generalized least squares

and maximum likelihood frameworks.
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1 Background

The possibility of estimating a negative variance in the random effect (RE) model

for panel data is an established problem in the empirical and theoretical litera-

ture. Econometrics textbooks acknowledge this possibility and refer to the work of

Maddala (1971), who considers maximum likelihood (ML) estimation in the case

of normally distributed error components and sets forth the condition under which

the estimated variance of the individual component is negative.1 If non-negativity

constraints are imposed for estimation, a boundary solution at zero can therefore

arise. Analogously, when estimation is performed by two-step feasible generalized

least squares (FGLS), the estimated variance of the individual component is not

guaranteed to be non-negative.2

Maddala and Mount (1973) explores the performance of the ML and alternative

FGLS estimators of the variance components by means of Monte Carlo simulations,

showing that the problem of negative variances exists within a range of methods

proposed in the literature. However, in their setting, an estimated negative variance

arises when the individual effect variance is “small” relative to the variance of the

idiosyncratic component (of the order of 1/400). In this case, OLS estimation (that

sets to zero the variance of the individual component) provides results that are “just

as reliable” (Maddala and Mount, 1973).3 Accordingly, negative variance estimates

are deemed as “not serious” in the literature, and the problem is solved by replacing

1Maddala (1971) also shows that the estimate of the variance of the idiosyncratic component
cannot be lower than zero.

2Note that, under normality, (F)GLS and ML estimators are asymptotically equivalent. See
e.g. Hsiao (2003, §3.3); Greene (2003, §13.4); Cameron and Trivedi (2005, §21.7); Baltagi (2008,
§2.3).

3 Under the assumptions of the RE model, the choice between FGLS and OLS estimation is
only a matter of efficiency, where the FGLS estimator allows to fully exploit the information about
the covariance structure of the error terms.
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non-positive estimates with the boundary value, i.e. zero.4

Interest in the issue has waned over time, even though the explanation provided

by the literature is incomplete (and sometimes potentially misleading).

In this paper, we show that a negative value for the estimated variance of the

individual component (both within the FGLS and ML framework) can arise if the

orthogonality condition between the individual effects and the regressors is not sat-

isfied. The assumption is required for the consistency of the FGLS (and ML) es-

timators, and the problem is related to the well-known property of the estimated

variance of a model with endogenous regressors: if endogeneity is not accounted for,

the estimated variance of the error term is downward biased. Indeed, the estimated

variance of the individual component is obtained as the difference between (i) the

average of the squared OLS residuals (or the residuals from the between regression,

both affected by the endogeneity problem in case the orthogonality condition is not

satisfied), and (ii) the average squared residuals from the within regression (robust

to any pattern of correlation between the regressors and the individual effect). As

a result, if the orthogonality condition is not satisfied, the estimated value of the

individual variance will be smaller than the true value, possibly also lower than zero.

2 Why a negative estimated variance?

The RE panel data model estimated on N units (firms, individuals, households,...)

over T time periods (i = 1, ..., N ; t = 1, ..., T ) can be written as:

y = Xβ + u (1)

4Maddala and Mount (1973); Cameron and Trivedi (2005, §21.7); Hsiao (2003, §3.3); Baltagi
(2008, §2.3).
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where y is a NT ×1 vector, X is a NT ×k matrix on k observable strictly exogenous

variables, β is a k × 1 vector that contains the parameters of interest, and u is an

NT × 1 vector of disturbances.

We decompose the disturbance terms into two independent components:5

uit = µi + νit (2)

where µi represents the individual effects assumed to be IN(0, σ2

µ), and vit are

assumed IN(0, σ2

ν).

Note that σ2

µ is not uniquely interpreted as the variance of the individual effect

(bounded to be greater than 0), but it can also be interpreted as the covariance

between uit and uis (t 6= s).

2.1 Maddala (1971)’s condition

Maddala (1971) considers the following reparametrization: σ2 = σ2

µ + σ2

ν , and ρ =

σ2

µ/σ
2.

In his seminal paper, the likelihood equations are solved by a two-step procedure

and a necessary and sufficient condition is identified for the occurrence of a boundary

solution at ρ = 0.6 This is:

Tyy − α′Txxα > T [Byy − 2α′Bxy + α′Bxxα] (3)

5More generally time effects can be also considered, leading to uit = µi + τt + νit with the
additional assumption that τt, the time effects, are distributed as IN(0, σ2

τ ). As standard panel
dimensions allow the inclusion of time dummies, time effect are omitted from the error term (i.e.
σ2

τ = 0).
6Note that the reformulation of the model is only valid if the covariance between the two error

components is equal to zero, as it is customarily assumed in panel data applications. Berzeg
(1979) relaxes this assumption letting cov(µi, νit) = σµν . Accordingly the sum of the two variance
components is σ2 = σ2

µ + σ2

ν + 2σµν , and ρ = (σ2

µ + 2σµν)/σ
2, which admits negative values if

σ2

µ < −2σµν .
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where α = T−1

xx Txy, Tyy =
∑N

i=1
y′iyi, Txx =

∑N
i=1

X ′
iXi, Bxx = 1

T

∑N
i=1

(X ′
iee

′Xi),

Byy = 1

T

∑N
i=1

(y′iee
′yi), and Bxy = 1

T

∑N
i=1

(X ′
iee

′yi), with Xi is a T × k matrix

containing observations on unit i, yi is the T × 1 vector of observations for the

dependent variable (unit i), and e is a T × 1 vector of ones.

In its original form (3), Maddala’s condition is simply an algebraic inequality

involving OLS estimated coefficients and transformation of the data. With some

algebra, condition (3) reduces to:7

N∑

i=1

T∑

t=1

∑

s 6=t

ûisûit < 0 (4)

where ûit denotes OLS residuals.

The formulation that uses OLS residuals (4) shows us that Maddala (1971)’s con-

dition in equation (3) does not provide any hints on the reasons behind a (meaning-

less) negative estimated variance. Equation (3) and (4) simply state “tautologically”

that the ML estimate of the individual variance is negative if it can be estimated

as a negative value. Indeed, the within group correlation of estimated residuals is

exploited in order to build FGLS/ML estimates of the individual variance compo-

nent.8

7Computations exploit the orthogonality between OLS estimated residuals and the explanatory
variables included in the model. Detailed algebra is available from the authors upon request.

8When discussing the FGLS estimation of the random components model, Wooldridge (2002,
§10.4) exploits the (degree of freedom adjusted average) within-group correlation of pooled OLS
residuals (4) in order to get an estimate of σ2

µ. Indeed, under the assumption of uncorrelated

random components, E[
∑T

t=1

∑
s 6=t uituis] = σ2

µT (T − 1). Based on this expression, Wooldridge

(2002, §10.4) claims that a negative σ̂2

µ can be explained in the case of negative serial correlation in

uit. If this is the case, E
[∑T

t=1

∑
s 6=t uituis

]
= σ2

µT (T − 1) + σ2

ν

∑T

t=1

∑
s 6=t ρts, with ρts denoting

the correlation between νit and νis. For the expected value to be negative, we therefore need:
σ2

µ/σ
2

ν < −
∑

s 6=t ρts/T (T −1) (coherently a negative variance can only arise in the case of negative
serial correlation). As an example, let us consider T = 5 and let νit follow an autoregressive process
of order 1 with ρ = −0.9, i.e. ρts = −.9|t−s|. In order to have an expected negative value, we
would need σ2

µ/σ
2

ν < 0.2, i.e. also in this case σ2

µ needs to be “small” with respect to σ2

ν .
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2.2 Failure of the orthogonality condition

Starting from model (1) with uit = µi + νit, alternative ways of estimating the

variance components have been proposed in the literature, exploiting different sums

of squared residuals (Wallace and Hussain, 1969; Amemiya, 1971; Maddala, 1971;

Swamy and Arora, 1972; Fuller and Battese, 1974). As an example, the estimate

of σ2

µ can be recovered by taking the difference between (a) the residuals from OLS

regression whose average sum of squares is exploited to estimate σ2

µ + σ2

ν , and (b)

the residuals from the within transformed regression (LSDV model) whose average

sum of squares is exploited to estimate σ2

ν (Greene, 2003, §13.4). The estimate of

σ2

µ is therefore expected to be non-negative as “the sum of squares in the LSDV

model cannot be larger than that in the simple regression with only one constant

term” (Greene, 2003, §13.4). Despite that, negative estimated variances can arise

in applications.9

Odd at a first glance, the fact can be reconciled as OLS needs an additional

restriction with respect to LSDV for consistency, i.e. the orthogonality condition.

If this is not satisfied, the OLS (restricted) model suffers of the standard omitted

variable bias (due to the omission of the unit specific components), and the estimate

of the sum of the variance components is downward biased.10 On the contrary, the

estimated variance of the idiosyncratic component will rely on the residuals from

the within regression, that is not affected by the presence of correlated individual

effects. As a result, the estimate of the individual variance component σ̂2

µ will be

downward biased, possibly also lower than zero.11

9When non-negativity is imposed, a boundary solution at zero arises.
10Bounded to lie above zero as computed as the sum of squared OLS residuals.
11As uit = µi+νit, also the presence of correlation between ν and x would cause a downward bias

in the estimate of the sum of the two variance components that rely on OLS residuals. However,
this effect would also bias the estimated variance of the within regression (b), making a negative
value less likely to appear.
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Within a ML framework, computations analogous to the FGLS formulas are

employed, without the degree of freedom correction for the estimated variance com-

ponents (Greene, 2003, §13.4). By relying on standard textbook treatment, the ML

estimate of σ2

µ is obtained by considering the difference between the variance of be-

tween residuals ̂σ2
ν/T + σ2

µ and the variance of within residuals σ̂2

ν/T . It is possible

to show that the difference is negative if and only if

N∑

i=1

T∑

t=1

∑

s 6=t

ˆ̂uit
ˆ̂uis < 0 (5)

with ˆ̂uit denoting the ML (FGLS) residuals.12 Still, the between-regression provides

a consistent estimate of β if the orthogonality condition is satisfied, otherwise the

model suffers of an omitted variable bias and the estimated sum of squared resid-

uals is downward biased. Again, the estimate of the variance of within residuals

σ̂2

ν/T is not affected by the presence of correlation between x and µi, and therefore

the difference between the two, that is the estimated value of the variance of the

individual component, will be downward biased, maybe also lower than zero.

3 A Simulation Experiment

In this section we focus on the correlation structure between x and the individual

effect µ, and explore how this can affect the estimated value of σ2

µ.

The model is simulated as follows (i = 1, ..., N ; t = 1, ..., T ):

yit = xit + µi + νit

12See e.g. Arellano (2003, §3.2) and Greene (2003, §13.4). Note the analogy with equation (4)
obtained by developing Maddala’s condition (3). Recall that OLS and FGLS only differ in terms
of efficiency.
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Value of γ
0 0.1 0.25 0.5 0.75 0.95 0.99

Static DGP for x
Mean of σ̂2

bet 1.199 1.151 .9483 .5733 .3333 .2203 .2034
Mean of σ̂2

ν .9996 .9996 .9996 .9996 .9996 .9996 .9996
% of negative σ̂2

µ 0% 0% 0% 0% 0% 2.6% 37.8%

Dynamic DGP for x
Mean of σ̂2

bet 1.198 1.134 .8886 .5076 .3034 .2159 .2031
Mean of σ̂2

ν 1.001 1.001 1.001 1.001 1.001 1.001 1.001
% of negative σ̂2

µ 0% 0% 0% 0% 0% 7.1% 39.5%

Table 1: Results of Monte Carlo experiments

with µi ∼ N(0, σ2

µ), νit ∼ N(0, σ2

ν), and, in order to allow for correlation between x

and µ, we let xit = γµi +
√
1− γ2ξit with ξit ∼ N(0, 1) independent of µi. As the

variables in a panel dataset may exhibit strong patterns of autocorrelation over time,

we also consider a dynamic specification for x where we let xit = γµi+
√
1− γ2ξit+

0.5xit−1.
13 We let σ2

µ = σ2

ν = 1.

The data generating process is simulated for different values of γ, selected in the

interval [0, 1).14 We considered N = 1, 000 and T = 5.

Standard formulas (Baltagi, 2008, pag. 19) are applied to compute σ̂2

µ and

σ̂2

ν . The sum of squared residuals of the between regression is used to estimate

σ2

bet = σ2

ν/T + σ2

µ, and the sum of squared residuals from LSDV estimation provides

an estimate of σ2

ν . The estimated value of σ2

µ is therefore obtained by considering

σ̂2

bet − σ̂2

ν/T .

Results of the Monte Carlo experiments are reported in Table 1 as a function of

the value of γ employed during the simulations.

For γ > 0, the estimated value of the variance from the between regression is

13In the dynamic specification, we let xi0 = γµi/(1− 0.5) + ξi0. We simulate 10 + T values for
xit and then disregard the first 10.

1410,000 Monte Carlo replications are considered. The seed is reset after each simulation set, so
that the differences among the distributions of the estimates are only driven by differences in γ.
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increasingly biased toward zero (bias is increasing with γ), whereas the estimated

variance of the idiosyncratic component (based on the FE estimator of β) is not

affected by the increased correlation. As a result, the variance of the individual

component, estimated as the difference between estimated variance of the between

regression and the estimated variance of the idiosyncratic component is biased to-

ward zero, and can also assume negative values. When γ = 0.95, in 263 cases out of

10,000 Monte Carlo replications with static x the variance of the individual compo-

nents is estimated to be lower than zero (717 cases in the case of autocorrelated x)

and the number increases to 3782 when γ = 0.99 (3956 in the dynamic specification

for x).

3.1 Further extensions

This problem has also implications for the computation of the Hausman statistics

that is used to discriminate between the RE and FE approaches (Hausman, 1978).

In applications, the estimated variance covariance matrix involved in the computa-

tion of the Hausman statistic can be not positive definite, and in more extreme cases

the value of the statistic is negative! Textbook explanation for the negative result

relies on a small sample problem, as the distribution of the Hausman statistic is

chi-squared asymptotically. We claim that it is possible to observe a (meaningless)

negative value for the Hausman statistics (or an estimated variance covariance ma-

trix that is not positive definite) when the orthogonality condition is not satisfied.

As shown, the correlation between the individual effect and the regressors causes

a downward biased estimate of the sum of the two individual error components,

that can, in turn, lead to a non-positive definite estimate of the variance covariance

matrix of the difference of the FE and RE estimate of β. Recent research shows
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that the Hausman test can be negative even asymptotically if the alternative hy-

pothesis is correct, i.e., in our context, if the orthogonality conditions is not satisfied

(Schreiber, 2008). Schreiber (2008) also shows that in some cases, the pitfall can

lead to misleading positive test statistics.
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