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Abstract

This paper advocates a theory of expectation formation that incorporates
many of the central motivations of behavioral finance theory while retaining
much of the discipline of the rational expectations approach. We provide a
framework in which agents, in an asset pricing model, underparameterize their
forecasting model in a spirit similar to Hong, Stein, and Yu (2007) and Bar-
beris, Shleifer, and Vishny (1998), except that the parameters of the forecasting
model, and the choice of predictor, are determined jointly in equilibrium. We
show that multiple equilibria can exist even if agents choose only models that
maximize (risk-adjusted) expected profits. A real-time learning formulation
yields endogenous switching between equilibria. We demonstrate that a real-
time learning version of the model, calibrated to U.S. stock data, is capable of
reproducing regime-switching returns and volatilities, as recently identified by
Guidolin and Timmermann (2007).
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1 Introduction

There is, by now, an established literature that studies financial market anomalies
such as excess volatility, Markov switching returns and volatilities, and predictability
of excess returns. (See Lettau and Ludvigson (2005) for a recent discussion.) One
important finding in this literature is evidence of multiple regimes each with distinct
return and volatility characteristics. See, for example, Guidolin and Timmermann
(2005, 2007, 2008), Ang and Bekaert (2002), Turner, Startz, and Nelson (1989),
Bollerslev, Chou, and Kroner (1992), Garcia and Perron (1996), and Perez-Quiros
and Timmermann (2000). This paper develops a model of bounded rationality that
is able to capture many of the salient features of Markov switching returns.

One popular viewpoint is that empirically observed excess returns cannot be ex-
plained by a standard Rational Expectations (RE) model. An explosion of research
proposes alternative theoretical foundations for the empirical findings.1 An offshoot of
this literature looks beyond RE and formulates behavioral or boundedly rational chan-
nels through which these anomalies might arise (e.g., Barberis, Shleifer, and Vishny
(1998), Hong and Stein (1999), Hong, Stein, and Yu (2007), and Lansing (2006)).
Bounded rationality, of course, is not only of interest to financial economists. In
macroeconomics there is a broad literature that replaces full rationality with agents
who behave as econometricians; that is, by agents who estimate and select their mod-
els in real-time. (See, for example, Marcet and Sargent (1989), Evans and Honkapohja
(2001), and Sargent (1999).)

While similar in spirit, these two approaches differ in the degree to which agents’
expectations differ from rational expectations. For example, in Marcet and Sargent
(1989) and Evans and Honkapohja (2001) agents typically have correctly specified
reduced-form models but update their parameter estimates in real-time. In many
models, these expectations converge to rational expectations. In Sargent (1999) and
Williams (2004), agents may have misspecified econometric models but within the
context of their subjective model they are unable to detect their misspecification.
In Branch and Evans (2006a) and Evans and Ramey (2006), degrees of freedom
or cognitive limitations force agents to underparameterize their forecasting models.
These self-referential models restrict beliefs and the nature of misspecification to be
determined in equilibrium.

In this paper, we apply the econometric misspecification approach to asset pricing
questions. We develop our results in the context of an asset pricing model in which
the stock price depends on expected future returns and on an exogenous process for
share supply. Our modeling of share supply is meant to proxy for asset float, as
discussed in Ofek and Richardson (2003), Cochrane (2005) and Hong, Scheinkman,
and Xiong (2006). We are motivated, in part, by Hong, et al. who demonstrate strong

1An important counter viewpoint is provided by Fama and French (1996).
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empirical implications from a model of heterogeneous expectations, increasing supply
of shares, and short-sales constraints. Following the approach of Branch and Evans
(2006a), we assume that agents underparameterize their forecasting model for price:
agents perceive price as depending on dividends or share supply, but not both.2 This
simple framework is meant to stand in for a more complex environment in which
traders face uncertainty about their model specification and choose parsimonious
trading strategies.3 We assume that agents choose only between models, or trading
strategies, that yield the highest (or nearly the highest) risk-adjusted trading profits.
Within this class of underparameterized models, the key condition restricting beliefs is
that model parameters must satisfy a least-squares orthogonality condition. Agents’
forecasting models are statistically optimal in the sense that their forecast errors are
orthogonal to their predictor.

It is worth expanding on the motivation for our assumption that agents employ
well-chosen but underparameterized forecasting models. In the econometric learning
approach, economic agents are modeled as econometricians. It follows that one should
take seriously the applied econometric problem of choosing a satisfactory specification
of the regressors. Although various types of misspecification could be considered, we
here, as in our earlier work, focus on the implications of agents choosing between
alternative underparameterized models. In doing so we are investigating the implica-
tions of agents following the advice of many econometricians to choose “parsimonious”
forecasting models, i.e. to omit variables or lags that are not clearly essential for im-
proving the statistical fit. At least as early as Nelson (1972) it has been known that
simple, parsimonious models often empirically outperform more complex models in
out-of-sample forecasting.

The central reason to expect the use of underparameterized models is that the
economic environment is complex relative to the amount of data typically available
for estimation of alternative forecasting models. Forecasting models face a degrees of
freedom limitation, dictated by the available sample size, which typically force the
use of simplified models. Long before the available degrees of freedom are actually
exhausted, the quality of estimated forecast models deteriorates because of parame-
ter uncertainty: the mean square error of parameter estimates and of forecasts can
be reduced by omitting relevant variables if the sample size is not sufficiently large.
Furthermore, if there is actual or perceived ongoing structural change in the economy,
the degrees of freedom problem cannot be expected to diminish in severity asymp-

2One could generalize the model further by assuming dividends and asset float follow multivariate
stochastic processes with high order lags, and agents are restricted to underparameterize in at least
one dimension. The main qualitative findings of this paper would extend to this more general
formulation.

3Although we motivate our underparameterization restriction by noting that agents may face
degree of freedom or cognitive limitations, we could also appeal to psychological explanations such
as investor inattention. The implications of investor inattention are considered by Peng and Xiong
(2006) and Hirshleifer and Teoh (2004), in distinct settings.
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totically, since the effective sample size, which discounts past data, remains constant
over time. These considerations motivate our focus on underparameterized models.4

Many financial economists embrace bounded rationality as a way of explaining the
existence of multiple trading strategies, heterogeneity in expectations and preferences,
volatility and under/over reaction to economic news. A gap exists in the literature
that we seek to fill by studying the existence of these multiple trading strategies,
and evolution over time, as an equilibrium phenomenon. To these ends, this paper
makes a number of contributions. We demonstrate that underparameterization and
misspecification equilibria can arise in a simple asset pricing model. Depending on
the deep parameters of the model, there may exist multiple misspecification equilibria
in asset prices. As we show, agents’ misspecification regarding the price process
affects their perceptions about the return and riskiness of stocks. When there are
multiple equilibria, traders will hold different perceptions of return and risk at each
equilibrium. This implies that the mean and variance of excess returns will differ in
each equilibrium.

In a related approach, Hong, Stein, and Yu (2007) assume that dividends are
driven by two exogenous processes and agents can only condition their expectations
on one part of the process.5 Their model, however, does not fully exploit the self-
referential nature of asset pricing models. Instead, they appeal to behavioral and
psychological explanations. While behavioral approaches are interesting and impor-
tant there is still an open question of whether one can address these financial market
anomalies and still assert the kind of discipline imposed by rational expectations. In
a rational expectations model, the self-referential feature of the model requires that
both the forecasts generated from the model and the market outcomes be jointly de-
termined. In the approach presented in this paper, the parameters of the forecasting
model, the perceived riskiness of stocks, and the distribution of agents across models
are jointly determined. The additional equilibrium feedback effect in our approach
makes multiple equilibria possible, which as discussed below, has important empirical
implications.

This paper is most closely related to Timmermann (1994,1996), who demonstrates
that an asset pricing model, where rational expectations are replaced with adaptive
learning, is capable of generating excess volatility. Similarly, Barsky and DeLong
(1993) show that a model with adaptive learning can generate autocorrelation pat-
terns consistent with the data. We, like Timmermann, assume agents are boundedly

4In Section 4.3 we look at the robustness of our results to expanding the list of forecast models to
include a bivariate model as well as the univariate models. In future research it would be of interest
to allow for an even larger set of possible specifications.

5In Barberis, Shleifer, and Vishny (1998) dividends follow a multi-layered Markov chain that
proxies for a simple model in which there are two different Markov processes governing dividends,
one with high persistence and one with low persistence. Agents, though, only believe in one of the
two models; hence the underparameterization.
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rational, but unlike Timmermann we confront investors with a list of misspecified
models. The theoretical novelty of our approach is that we pin down the beliefs and
distribution of agents across models as an equilibrium outcome jointly determined
with stock price. The multiple equilibria, distinct to our theoretical models, has im-
portant empirical implications since it provides a potential explanation for Markov
switching returns.

The equilibrium in the model described so far implies that trading strategies and
expectations are time-invariant. We also consider a real-time learning and dynamic
predictor selection version in order to study the model’s ability to capture empirical
regularities in excess return dynamics. In this extension of the basic model, agents
update in real-time their parameter estimates and a geometric average of past trading
profits. They then decide on their predictor and holdings of the risky asset conditional
on these real-time estimates. We demonstrate that, with the model calibrated to U.S.
stock data, the model regime-switching dynamics, as the model switches in real time
between equilibria, matches the Markov-switching in returns found in Guidolin and
Timmermann (2007).

In addition to the least squares learning approach, pioneered in finance by Timmer-
mann (1994,1996) and further developed here, there is also a literature on Bayesian,
or rational, learning. For example, Brennan and Xia (2001), Lewellen and Shanken
(2002), and Pastor and Veronesi (2003) show that introducing uncertainty about the
process driving stock prices, such as parameter uncertainty, allowing agents to form
priors and update them with real-time data, can generate returns that capture many
features of the data. Guidolin and Timmermann (2007,2008) demonstrate the optimal
portfolio implications of Bayesian learning. The novelty of our theoretical model is
its ability to generate multiple equilibria which, as we demonstrate, is able to explain
the regime switching return dynamics observed in data.

This paper proceeds as follows. Section 2 presents the model. Section 3 presents
theoretical results. Section 4 discusses the empirical implications and presents the
calibrated version of the model. Section 5 concludes.

2 Asset Pricing Model with Restricted Perceptions

We employ a mean-variance linear asset pricing model, similar to DeLong, Shleifer,
Summers, and Waldmann (1990).6 We make this assumption for two analytical rea-
sons: first, so that demands remain bounded; second, so that demand is linear. One
can justify the assumption based on a log approximation to exponential utility with

6A similar modeling strategy is pursued in Grossman and Stiglitz (1980), Brock and Hommes
(1998), Hong, Scheinkman, and Xiong (2005), among many others, in assuming that agents optimize
with respect to the mean-variance efficient frontier.
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(perceived) Gaussian returns in an overlapping generations framework.7

There is a single risky asset that yields a dividend stream {yt}, and trades at price
pt, net of dividends. There is a risk-free asset that pays a rate of return R = β−1 > 1.
Households, at time t, solve

max
zt

E∗

t Wt+1 −
a

2
E∗

t V artWt+1

subject to
Wt+1 = RWt + (pt+1 + yt+1 − Rpt)zt

where E∗ denotes (possibly) non-rational expectations, zt is the holdings of the risky
asset, p is its price, y are dividends, and R > 1 is the risk-free rate of return. We
assume that dividends follow a stationary AR(1) process,

ŷt = (1 − ρ)y0 + ρŷt−1 + εt

where εt is mean-zero with variance σ2
ε . In equilibrium, the demand for shares must

equal supply. The usual assumption is that the supply of shares is constant and
normalized to one. We, however, assume a stationary AR(1) process representing the
supply of shares:

ẑst = (1 − φ)s0 + φẑst−1 + νt

The stochastic disturbance νt is mean-zero, with variance σ2
ν , and is possibly corre-

lated with εt, i.e. we allow for σνε 6= 0.

As previously mentioned, we interpret the share process ẑst as a proxy for asset
float. Asset float is the change in the supply of shares usually after a lock-up period
following an initial public offering. Recent papers by Cochrane (2005), Lamont and
Thaler (2003), Hong, Scheinkman, and Xiong (2006) show that float can have an
effect on price. We view asset float and the supply of shares more generally so that it
also includes stock repurchases. Assuming that the supply of shares follows an AR(1)
is an obvious analytic device. This paper is a first step at incorporating equilibrium
underparameterization and learning into an asset pricing model and leaves a more
comprehensive theory of asset share supply to future research. In the calibrated
version of the model, below, we estimate an AR(1) for share supply using U.S. data.

There are two types of agents, each omitting some relevant information from their
forecasting model when they solve the above problem. One type omits the role of
supply in affecting price while the other omits the dividends process. We make this
assumption to bring some realism to the asset pricing model. Because of a preference
for parsimony agents are assumed to underparameterize their model. This is the same
motivation of Hong, Stein, and Yu (2007) in the case where agents omit a portion of

7See Branch and Evans (2008) for details of an overlapping generations model that leads to an
exogenous share supply process.
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the dividend process from their forecasting model. Heterogeneous expectations also
arise in Hong, Scheinkman, and Xiong (2006). A novelty to our approach is that we
endogenize the parameters and distribution of agents across these underparameterized
models. In contrast to Hong, Stein, and Yu (2007), we emphasize parameter and
trading strategy uncertainty in self-referential models. Although we assume that
dividends are a univariate stochastic process, one could easily extend dividends and
share supply to bivariate VAR processes along the lines of Branch and Evans (2006a).
The main innovation to our approach is that we pin down both the forecasting model
parameters and the distribution of agents across models as an equilibrium object.
We then can use real-time learning to study the dynamics and to speculate on the
model’s ability to address financial market puzzles.

Each agent type j solves

max
zjt

RWt + Ej
t (pt+1 + ŷt+1 − Rpt) zjt −

a

2
σ2

jtz
2
jt

where σ2
jt = V arjt(pt+1 + ŷt+1 − Rpt) is the subjective conditional variance of the

excess rate of return. An important feature of our analysis is that the value of σ2
j

will be pinned down in equilibrium. The first-order condition leads to the demand
for type j of,

zjt =
1

aσ2
jt

Ej
t (pt+1 + ŷt+1 − Rpt)

The responsiveness of demands zjt to expected rates of return depends on aσ2
jt, which

it will be convenient for us to call “perceived risk.” Note that perceived risk is a
product of the subjective conditional variance, an equilibrium object, and the degree
of risk aversion, a.

Financial market equilibrium requires that price adjusts to ensure market clearing.
Let n denote the fraction of agents with expectations E1

t . In equilibrium,

nz1t + (1 − n)z2t = ẑst

which leads to the equilibrium process for stock prices,

pt = β (y0 + ρyt) + β

(

n

aσ2
1t

+
1 − n

aσ2
2t

)

−1 [

n

aσ2
1t

E1
t pt+1 +

1 − n

aσ2
2t

E2
t pt+1 − ẑst

]

(1)

where for convenience we write β = R−1. To derive (1) we have assumed that
E1

t ŷt+1 = E2
t ŷt+1 = y0 + ρyt, and yt = ŷt − y0 are dividends written in deviations

from mean form.

We envision underparameterization in part because degrees of freedom constraints
prevent agents from regressing price on all available information. Agents know the
univariate processes for dividends and supply, but we assume that agents do not
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incorporate both elements into their forecasting model for price. It might appear
contradictory that agents know the processes for dividends and supply, yet do not
use all known information when forecasting stock price. In this simple setting this is,
perhaps, unrealistic. But, if one thinks of all of the factors that might be influenc-
ing dividends, share supply, and price, the total number of factors with non-trivial
predictive power would exceed degrees of freedom constraints. If dividends and share
supply were actually high order vector autoregressive processes, possibly correlated,
then forecasting future dividends and supplies are curtailed by the number of pa-
rameters of the model. For example, an n-variable VAR(p) has n2 × p coefficients
to estimate, plus the parameters of the autocovariance matrix. At the monthly fre-
quency, the degrees of freedom would quickly evaporate.

Hong, Stein, and Yu (2007) and Barberis, Shleifer, and Vishny (1998) also as-
sume underparameterized forecast models, though they impose particular misspecified
models exogenously. These authors instead motivate the assumption by appealing to
psychology research that suggests people forecast using simple paradigms or reference
models. One could also extend their motivations to our approach. Our theoretical
interest, though, is to impose some modeling discipline on these deviations from full
information: in our framework, within the context of their forecasting models, agents
are unable to detect their misspecification. Remarkably, the theoretical and empirical
implications of this approach are rich.

Agents forecast by projecting a perceived law of motion (PLM) for price. The set
of PLMs, given the underparameterization restriction, are:

PLM1 : pt = b1
0 + b1

1yt + ηt

PLM2 : pt = b2
0 + b2

1zst + ηt

where ηt is a perceived exogenous white noise shock, and zst = ẑst − s0. This implies
expectations of the form,

E1
t pt+1 = b1

0 + b1
1ρyt

E2
t pt+1 = b2

0 + b2
1φzst

Plugging these expectations into (1) leads to the following actual law of motion (ALM)
for price,

pt = β

[

y0 +

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1 (

n

aσ2
1t

b1
0 +

1 − n

aσ2
2t

b2
0 − s0

)

]

+ β

[

1 +

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1
n

aσ2
1t

b1
1

]

ρyt

+ β

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1 [

1 − n

aσ2
2t

b2
2φ − 1

]

zst,
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or,
pt = ξ0(n) + ξ1(n)yt + ξ2(n)zst (2)

where

ξ0(n) = β

[

y0 +

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1 (

n

aσ2
1t

b1
0 +

1 − n

aσ2
2t

b2
0 − s0

)

]

ξ1(n) = β

[

1 +

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1
n

aσ2
1t

b1
1

]

ρ

ξ2(n) = β

{

n

aσ2
1t

+
1 − n

aσ2
2t

}

−1 [

1 − n

aσ2
2t

b2
2φ − 1

]

In the sequel, we will suppress the dependence of ξj on n. In a rational expectations
equilibrium (REE),

ξ0 =
β

1 − β

(

y0 − aσ2s0

)

ξ1 =
βρ

1 − βρ

ξ2 = −
βaσ2

1 − βφ

and σ2 = (1 + ξ1)
2σ2

ε + ξ2
2σ

2
ν , is the rational expectations equilibrium value for the

perceived riskiness of the risky asset.

Although agents in the model are assumed to have underparameterized forecasting
models (restricted perceptions), we require that they forecast in a statistically optimal
manner. We require that the forecast model parameters are optimal linear projec-
tions. That is, the belief parameters bj, j = 1, 2 satisfy the following least-squares
orthogonality conditions,

E (1, yt)
′
(

ξ0 + ξ1yt + ξ2zst − b1
0 − b1

1yt

)

= 0 (3)

E (1, zst)
′
(

ξ0 + ξ1yt + ξ2zst − b2
0 − b2

1zst

)

= 0 (4)

or,

bj
0 = ξ0, j = 1, 2

b1
1 = ξ1 + ξ2r

b2
1 = ξ2 + ξ1r̃

where r = Eytzst/Ey2
t , r̃ = Eytzst/Ez2

st. Orthogonality conditions like (3) or (4)
appear frequently in the macroeconomics literature. For example, Sargent (1999),
Cho, Williams, and Sargent (2003) define a self-confirming equilibrium with respect
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to a very similar condition. Evans and Honkapohja (2001) show that under adaptive
learning an underparameterized forecasting model may converge to a set of param-
eters that satisfy an orthogonality condition like (3). Many other applications that
employ (3) are discussed in Branch (2006) and Sargent (2008). The key feature of
orthogonality conditions like (3),(4), are that within the context of their forecasting
model, agents are unable to detect their misspecification.8

Underparameterized expectations affect not only agents’ subjective expected re-
turn of stocks but also their subjective conditional variance of stock returns. Thus,

bj
0, b

j
1 implies perceived σ2

jt = Et

(

pt+1 + ŷt+1 − Ej
t (pt+1 + ŷt+1)

)2
. Given the solutions

for bj
0, b

j
1 the restricted perceptions values for perceived conditional variances are,

σ2
1 =

(

(1 + ξ1)
2 +

ξ2
2r

2ρ2

1 − ρ2

)

σ2
ε − 2ξ2

2ρφrEyz +
ξ2
2

1 − φ2
σ2

ν (5)

σ2
2 =

(

(1 + ξ1)
2 +

ξ2
1ρ

2

1 − ρ2

)

σ2
ε − 2ξ2

1ρφr̃Eyz +

(

ξ2
1 r̃

2φ2

1 − φ2
+ ξ2

2

)

σ2
ν (6)

Clearly, the RPE values for bj
0, b

j
1 depend jointly on σ2

j for j = 1, 2. The existence of
an RPE is non-trivial.

Given exogenous processes yt, zst, and ξj, σ
2
j j = 1, 2, and given the proportion n

of agents using forecast model j = 1, a Restricted Perceptions Equilibrium (RPE) is
then defined as a stochastic process {pt} of the form (2), where the coefficients satisfy

ξ0 =
β

1 − β

[

y0 −

{

n

aσ2
1

+
1 − n

aσ2
2

}

−1

s0

]

,

[

ξ1

ξ2

]

=









1 − βρn

σ2

1

{

n

σ2
1

+ 1−n

σ2
2

} − βρnr

σ2

1

{

n

σ2
1

+ 1−n

σ2
2

}

− βφ(1−n)r̃

σ2

2

{

n

σ2
1

+ 1−n

σ2
2

} 1 − β(1−n)φ

σ2

2

{

n

σ2
1

+ 1−n

σ2
2

}









−1




βρ

− β
{

n

aσ2
1

+ 1−n

aσ2
2

}





A general existence result is not available; ξ1, ξ2 depend non-linearly on σ2
1, σ

2
2, whose

solutions also depend non-linearly on ξ1, ξ2. However, the following result holds in the
most empirically relevant case of very weakly correlated dividends and share supply
and values of n ∈ {0, 1}.9

Proposition 1 Let r, r̃ → 0. For sufficiently small values of a and n ∈ {0, 1}, there
exists an RPE.

8Of course, if they step out of their model and run specification tests they could detect the
misspecification. Below, we will see in real time simulations that they may still choose, for finite
time, underparameterized models

9All proofs are in the Appendix.
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Proposition 1 establishes an existence, and not a uniqueness, result. Under the
conditions of the proposition, for both n = 0 and n = 1 there exist two RPE,
corresponding to two distinct values each for σ2

1, σ
2
2. Of the two RPE values for

σ2
j , one goes to +∞ as a → 0. The solutions in the numerical examples, and the

calibrated model below, correspond to the choice of the smaller root for σ2
j . Selecting

the smaller RPE values for σ2
j are natural because it is the RPE that would be stable

under real time learning.

Although agents in the model are underparameterizing their forecasting models,
each agent’s forecast does reflect the influence of that part of the omitted variable that
is correlated with the variables used in their forecast. This property arises because
of the orthogonality condition, which is satisfied in equilibrium: bj depends on the
two reduced-form parameters ξ1, ξ2 and also on the regression coefficient (r, r̃). In
addition, asset prices aggregate and reflect all available information – in this sense
asset prices are partially revealing.

It is important to note that the model is self-referential: bj and σ2
j , hence ξj are not

free parameters but are equilibrium objects. For similar reasons, we do not want to
treat n as a free parameter and now proceed to make it endogenous. In consequence,
although agents use misspecified forecast models, there are still important cross-
equation restrictions imposed on the dynamics that are analogous to the restrictions
obtained under fully rational expectations.

In order to pin down n, we need a metric for evaluating forecast success. In order
to stay in line with the assumption that agents are mean-variance maximizers, we
also assume that agents adjust their trading profits for variance when deciding on
forecast success. Thus, we assume that each agent ranks the two forecasting models
according to,

U j = Eπj
t −

a

2
σ2

j Ez2
jt

where πj
t = (pt+1 + ŷt+1 − Rpt) zjt and E is the (unconditional) expectations operator.

Note U j measures the profits in certainty equivalence units of the good.

The Appendix computes πj
t and Ez2

jt for j = 1, 2. Predictor selection depends on
the difference in fitness measures. Define F (n) : [0, 1] → R as F (n) = U1 − U2 =
(Eπ1

t − Eπ2
t ) − (a/2) (σ2

1Ez2
1t − σ2

2Ez2
2t). Then we can write this expression as

F (n) =
1

2aβ2σ2
1σ

2
2

(

B0 + ByEy2
t + ByzEytzst + BzEz2

st

)
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where B0, By, Bz and Byz are given by

B0 =
−aβ2s2

0 (σ2
1 − σ2

2)

nσ2
2 + (1 − n)σ2

1

By = −(σ2
1 − σ2

2)(ξ1 − βρ) [ξ1(1 − 2βρ) − βρ] + β2ρ2σ2
2(ξ

2
1 − r2ξ2

2)

Bz = −(σ2
1 − σ2

2)ξ
2
2(1 − 2βφ) + β2φ2σ2

1

(

r̃2ξ2
1 − ξ2

2

)

Byz = 2(1 − βφ)(σ2
1 − σ2

2)ξ2 [βρ − ξ1(1 − βρ)] − 2β2φρ
(

r̃ξ2
1σ

2
1 − rξ2

2σ
2
2

)

.

Note that B0, By, Bz and Byz are functions of n because ξ1, ξ2, σ
2
1, and σ2

2 depend on
n.

As in our earlier papers, we follow Brock and Hommes (1997) in assuming a
multinomial logit (MNL) approach to predictor selection. The MNL approach has
a venerable history in discrete decision making and is a natural way of introducing
randomness in forecasting into the present environment. Young (2004) argues that
randomness in forecasting, much like mixed strategies in actions, provides robustness
against model uncertainty and flexibility in environments with feedback. In this
setting, agents are selecting their forecasting models from a discrete choice set, they
are uncertain about the best forecast model specification, and so the MNL map is
natural in this setting:

n =
exp(αU1)

exp(αU1) + exp(αU2)

which can be written,

n =
1

2
[tanh {αF (n)} + 1] ≡ Tα(n) (7)

In particular, T : [0, 1] → [0, 1] is a continuous and well-defined function provided
that an RPE exists.

Definition. A Misspecification Equilibrium n∗ is a fixed point of the map T : n∗ =
T (n∗).

By Brouwer’s theorem, a Misspecification Equilibrium (ME) exists in this model
provided an RPE exists. The T-mapping is indexed by the parameter α which is
typically called the ‘intensity of choice’ parameter. Since the MNL map derives from
a random utility setting, finite values of α parameterize deviations from full utility
maximization. The ‘neoclassical’ case is α → ∞. Our interest is mainly in equilibria
where all agents choose only the best performing statistical model and so we will
focus on the α → ∞ case.
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3 Analytic Results

It is useful to re-write the function F (n) as,

F (n)

Ey2
t

=
1

2aβ2σ2
1σ

2
2

(

B0
1

Ey2
t

+ By + Byzr + BzQ

)

where Q = Ez2
st/Ey2

t . The number and nature of Misspecification Equilibria depend
on the properties of F (n).

These are complicated expressions and general results are not available. However,
using the argument in Branch and Evans (2007), the following result can be used to
characterize possible equilibria:

Proposition 2 Let N∗

α = {n∗|n∗ = Tα(n∗)} denote the set of Misspecification Equi-
libria. In the case of large α, N∗ has one of the following properties:

1. If F (0) < 0 and F (1) < 0 (Condition P0) then n∗ = 0 ∈ N∗.

2. If F (0) > 0 and F (1) > 0 (Condition P1) then n∗ = 1 ∈ N∗.

3. If F (0) < 0 and F (1) > 0 (Condition PM) then n∗ ∈ {0, n̂, 1} ⊆ N∗, where
n̂ ∈ (0, 1) is such that F (n̂) = 0.

4. If F (0) > 0 and F (1) < 0 (Condition P) then n∗ = n̂ ∈ N∗, where n̂ ∈ (0, 1) is
such that F (n̂) = 0.

Because we do not know, in general, whether F is monotonic, we cannot rule
out the existence of additional equilibria besides those listed. When Condition P0 or
Condition P1 holds then either n∗ = 0 or n∗ = 1 is a Misspecification Equilibrium.
If Condition PM holds then both n∗ = 0 and n∗ = 1 are Misspecification Equilib-
ria. Thus, Condition PM is a sufficient condition for multiple equilibria and is the
case that will receive further attention below. Condition P implies that there exists
an interior Misspecification Equilibrium with heterogeneous expectations. In Branch
and Evans (2006a) we said that when Condition P holds the model exhibits Intrinsic
Heterogeneity. We explore the existence of Intrinsic Heterogeneity in a companion
paper. Notice that under Condition PM there must also be an interior equilibrium n̂
for large α. However, because F (n) is a continuous function, Condition PM implies
that, whenever F (n) is monotonic, this equilibrium satisfies T ′(F (n̂)) > 1 and hence
is unstable. Conversely, under Condition P, for large α there is an n̂ at which F (n)
crosses through zero from above and, as we showed in our earlier paper, this equilib-
rium is locally stable. Similarly, when F (n) is non-monotonic it is possible for there
to exist interior stable equilibria.
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Proposition 2 does not state under which circumstances these conditions will arise.
In fact, it does not even state whether all of the cases are possible. The signs of
F (0), F (1) depend in a complicated way on φ, ρ, a, σ2

ε , σ
2
ν , Eεν.

Corollary 3 Conditions P0, P1, PM and P can each be satisfied for appropriate
choices of structural parameters.

Numerical examples are given below.

Additional analytical results are available for certain limiting cases of interest. In
particular, we have:

Corollary 4 Assume ρ, φ > 0 and s0 = 0. For |r|, |r̃| sufficiently small we have:

(i) Condition P0 holds if Q > −β2ρ4

a2σ2

1(−(σ2

1
−σ2

2
)(1−2βφ)−σ2

1
β2φ2)(1−βρ)2

;

(ii) Condition P1 holds if Q < −β2ρ4(1−βφ)2

a2σ2

2((2βφ−1)(σ2

1
−σ2

2)−β2φ2σ2

1)
;

(iii) Condition PM holds if −β2ρ4(1−βφ)2

a2σ2

2((2βφ−1)(σ2

1
−σ2

2)−β2φ2σ2

1)
< Q < −β2ρ4

a2σ2

1(−(σ2

1
−σ2

2
)(1−2βφ)−σ2

1
β2φ2)(1−βρ)2

This corollary shows the importance of risk aversion and the relative variance of supply
shocks. For a given Q, values of perceived risk aσ2

j that are neither too high nor too
low lead to multiple equilibria even in the case of low contemporaneous correlation
between the exogenous shocks.

3.1 Some intuition

There are two exogenous processes driving asset prices: dividends and the supply of
shares. Both stochastic processes though have two effects in (1): the direct effect and
an indirect effect acting through expectations.10 The number and nature of equilibria
depend on the balancing of these two effects. Notice that pt depends positively on
expectations. Thus, whether these direct effects are positively or negatively projected
onto the asset price depends on the equilibrium belief parameters, which in turn
depend on the equilibrium proportion of agents adopting the dividend forecasting
model.

10Strictly speaking, the timing of the model is that dividends are paid at time t + 1, so that it
is expected dividends that matter for price. Since agents have common beliefs on dividends, these
have a common effect on stock prices, as specified in (1).
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The feedback effects are:

E1
t pt+1 = ξ0 + (ξ1 + ξ2r)ρyt

E2
t pt+1 = ξ0 + (ξ2 + ξ1r̃)φzst

and σ2
jt = V arj

t (pt+1 + ŷt+1). Notice in the expressions for ξ1, ξ2 in the special case
above of r, r̃ → 0 that aσ2 directly influences the size of ξ2 and that ξ2 is negative
(because zst has a negative direct effect):

ξ1 =
βρ

1 − βρn

ξ2 = −
aσ2

j β

1 − β(1 − n)φ
, j = 1, 2 if n = 1, 0

In this case where the shocks are uncorrelated, r = r̃ = 0, beliefs reinforce the direct
effect of dividends and supply of shares. Multiple equilibria arise naturally in this
case for a range of perceived risk. The condition on a required for multiple equilibria
puts bounds on the importance of the direct effect of zst relative to dividends. If aσ2

2

is large then the share supply forecast model always dominates, while when aσ2
1 is

sufficiently low the dividend model is necessarily superior. For intermediate values of
perceived risk, either model can emerge as an equilibrium.

3.2 Numerical Examples

In this subsection we turn to numerical examples to illustrate our theoretical results.
In each case we plot the T -map, F (n), σ2

1(n), and σ2
2(n). We are interested in large

α, so we set α = 10000. Above we presented analytic results, for the special case of
weakly correlated exogenous processes, and provided some more general intuition. We
here choose particular parameter values to illustrate the rich theoretical properties of
the model.

3.2.1 Multiple Equilibria

We adopt the parameter values ρ = 0.4, φ = 0.6, β = .95, σν = 1.25, σε = 1, σνε =
.25, a = 0.1, y0 = s0 = 0. For these parameter values, r = .2763, r̃ = .16842. Figure
1 plots (clockwise starting from the northwest frontier): the T-map, the RPE values
for σ2

1 and σ2
2 respectively and the risk-adjusted profit difference function F (n). Each

frontier plots these values against n. A Misspecification Equilibrium occurs when the
T -map crosses the 45-degree line.

Notice first that F (n) is monotonically increasing with F (0) < 0, F (1) > 0. As a
result, the northwest panel demonstrates that there are multiple equilibria, in partic-
ular at n = 0, n = 1. This result is in line with our earlier intuition of the effect of
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positive feedback in self-referential models. In this case, there exist three equilibria.
Notice, though, that the interior equilibrium occurs at n̂ where F (n̂) = 0. This equi-
librium is unstable in the sense that T ′(n̂) > 1 and so under a real-time learning and
predictor selection dynamic, as considered below, we would not observe the interior
equilibrium as an outcome.

Figure 1: Multiple Misspecification Equilibria.
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In the right-most panels of the figures σ2
1(n), σ2

2(n) are plotted. These panels
illustrate the manner in which perceived risk depends on the distribution of agents
across misspecified forecasting models.

The propositions and these numerical examples suggest that a, the degree of risk
aversion, plays a significant role in the nature of the equilibria. To study this further
Figure 2 plots the comparative static effects of changes in a, on the value of n∗, for the
parameterization used to generate Figure 1. In particular, Figure 2 is a bifurcation
diagram with a as the bifurcating parameter. To generate the figure we consider all
values of a in the interval [0, 0.15] and plot all corresponding fixed points to T .11

11In Brock and Hommes (1997) the ‘intensity of choice’ parameter α was treated as a bifurcation
parameter. In this paper, we are primarily interested in α → ∞ to concentrate on equilibria where
all agents only choose the best performing models. Thus, in this stochastic setting the degree of
risk-aversion is a more interesting and relevant bifurcation parameter.
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Figure 2: Bifurcation Diagram.

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2 plots the bifurcation diagram. For low values of a there is a unique
equilibrium at n = 1, for medium a there are multiple equilibria, and for large enough
a there is a unique equilibrium at n = 0 thereafter. These results are in line with
Corollary 4. A similar diagram, of course, exists for Q, the relative variance of
dividends.

4 Empirical Implications: Markov Switching Re-

turns and Variances

As a means of highlighting the model’s empirical implications we focus on two dy-
namic properties of asset markets that have received significant attention in the
finance literature: regime switching means and volatilities in excess returns (c.f.
Guidolin and Timmermann (2007)). In the next Section, we calibrate the model
and demonstrate its ability to match these empirical features. The current Section
aims to illustrate the channels through which the model is capable of matching the
empirical regularities.
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4.1 Calibration

In this Section we assess to what degree the simple model presented here can account
for some empirical regularities in excess return dynamics. In order to make a mean-
ingful comparison we need to choose parameter values for the model. This subsection
discusses our choice of parameter values.

For the purposes of the model at hand, the most crucial parameters for calibration
are the autoregressive parameters and covariances for the dividend and share supply
processes. Data on U.S. dividends are widely available. Data on share supply are
more limited. For share supply we adopt the series constructed by Baker and Wurgler
(2000).12 Baker and Wurgler (2000) calculate total new annual (nominal) equity
issues in the U.S. Ideally, one would have a data series on all new issues, repurchases,
bankruptcies, etc. Such data is not readily available and so the Baker-Wurgler data
is the most comprehensive accounting of the U.S. time series of share supply. Figure
3 plots the Baker-Wurgler data against simulated data drawn from the calibrated
process for share supply. We calibrate the dividend process from data on corporate
profits (after tax) and net dividends from the Economic Report of the President.13

The data are reported in nominal terms and we adjust them to 1995 dollars using the
consumer price index obtained from the Economic Report of the President.

Both dividends (or corporate profits) and share supply exhibit a trend. We de-
trend the data and estimate an AR(1) for the resulting series. We then calculate
the associated AR(1) parameter and standard deviation implied by this regression’s
residuals. These are then used as the calibrated values for ρ, φ, σε, σν , σνε. Table 1
reports the results.

The remaining parameters are β, α, λ, γ, κ, a. Following a large literature, we set
β = .9975, based on the one-month risk free rate. The parameters λ, γ govern the rate
at which agents adjust their econometric estimates in a real-time learning algorithm,
to be introduced below in Section 4.2. Similarly, κ governs the rate at which agents
adjust their estimates of the mean risk-adjusted profits for the alternative predictors.
Essentially, λ, κ, γ are discount rates yielding geometrically declining weights on recent
forecast errors. λ = γ is calibrated at .01, the value reported in a VAR forecasting
exercise in Branch and Evans (2006b). We choose a value of κ = .5. Smaller values
of κ imply more smoothing in estimating risk-adjusted profit differences and implies
fewer switching between equilibria. We found that the excess returns results reported
below were robust to a range of values of κ, though different values had small effects
on the estimated transition probabilities. Picking the value for a is difficult. We
choose a value that is empirically not implausible and that leads to the kind of

12Data obtained from Wurgler’s website: http://pages.stern.nyu.edu/˜ jwurgler.
13Specifically, we look at corporate profits with inventory evaluation and capital adjustments. The

data are obtained from Table B90.
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Figure 3: Simulated and Actual (de-trended) Share Supply Series. The simulated
series is a representative sequence from the calibrated AR(1) process. The U.S. share
supply series is from Baker and Wurgler (2000), detrended using a linear time trend.
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dynamics described above. The parameter a can be thought of as the coefficient of
absolute risk aversion. Most experimental studies tend to favor CRRA over CARA,
though Holt and Laury report values in the range of 0.1-0.2 In our model, given all
of the other parameters, a controls the basin of attraction between equilibria and
so will have implications for the frequency of switching and the size of shocks that
will induce switching. We set a = .145. Smaller values of a tend to increase the
proportion of time spent near the n = 1 equilibrium and larger values of a to increase
the proportion of time spent near the n = 0 equilibrium. Finally, we fix α = 2, in
line with the value considered large but finite in Brock and Hommes (1997), though
our results are robust to other values of α. Finally, we treat the constants y0, s0 as
free parameters by setting y0 = 0.5, s0 = .70. We take this to be an approximation
to a time trend in dividends and share supply, a consideration we abstract from for
analytic convenience. For these parameter values there exist multiple Misspecification
Equilibria.

19



Parameter Calibration
φ 0.6771
ρ 0.8837
σε 0.2235
σν 1.7
σνε 0
β .9975
a .145
λ .01
γ .01
κ .50
α 2

Table 1: Calibrated parameter values. Share data comes from Baker and Wurgler
(2000). Dividend and C.P.I. data are from the 2005 Economic Report of the President,
Table B90.

4.2 Regime-Switching Excess Returns

In the real-time learning and dynamic predictor selection version of the model agents
do not have fixed beliefs. Beliefs are generated using least-squares in real-time. Time
varying parameter estimates make it possible that a sequence of shocks could move
the economy from one equilibrium to another (in the case of multiple ME). For this
reason, agents will want to remain guarded against the possibility of a regime change
and choose their forecasting strategy in real time as well.

Price is now given by the law of motion,

pt = ξ0(b
1
0, b

2
0, σ

2
1,t−1, σ

2
2,t−1, nt−1) + ξ1(b

1
t−1, σ

2
1,t−1, σ

2
2,t−1, nt−1)yt

+ ξ2(b
2
t−1, σ

2
1,t−1, σ

2
2,t−1, nt−1)zst

The timing of the model is that at the end of each period agents update their beliefs of
b1, b2, σ2

1, σ
2
2, their risk-adjusted expected profits, and their model choice n. At time t

then price depends on the real-time learning and dynamic predictor selection from the
end of period t−1. We make this timing assumption to avoid the simultaneity between
prices and beliefs.14 Using recursive least-squares (RLS), the belief parameters are
calculated as

θj
t = θj

t−1 + λtR
−1
j,t xj,t−1

(

pt − θj′

t−1xj,t−1

)

, j = 1, 2.

where
Rj,t = Rj,t−1 + λt

(

x2
j,t−1 − Rj,t−1

)

, j = 1, 2,

14See Evans and Honkapohja (2001) and Brock and Hommes (1997) for further discussion of these
issues.
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is the estimated state covariance matrix, θ = (bj
0, b

j
1)

′, and x1t = (1, yt)
′, x2t = (1, zst)

′.
Using a similar recursive algorithm for the conditional variances of excess returns
produces estimates

σ2
jt = σ2

jt−1 + γt

(

(

pt + ŷt − Ej
t−1 (pt + ŷt)

)2
− σ2

jt−1

)

The terms λt, γt are typically referred to as gain sequences. Two cases are assumed
in the literature: a decreasing gain, λt = γt = t−1 so that λt, γt → 0; and a constant
gain, λt = λ ∈ (0, 1), γt = γ ∈ (0, 1). With a decreasing gain, convergence to the
restricted perceptions values of b1, b2, σ1, σ2 is possible. Our interest, though, is in
demonstrating the model’s implications for its asymptotic dynamics, which will be
the central interest in the calibrated version of the model. Thus, we focus on the
constant gain case where agents respond to past forecast errors with time-invariant
weights λ, γ.

In order to choose their predictors, agents also estimate in real-time the (risk
adjusted) expected profits:

ÊU j
t = Êπj

t −
a

2
σ2

jtÊz2
jt

where

Êπj
t = Êπj

t−1 + κ
(

(1/aσ2
jt) (pt + ŷt − (1/β)pt−1)

(

Ej
t−1pt + y0 + ρyt−1 − (1/β)pt−1

)

− Êπj
t−1

)

Êz2
jt = Êz2

jt−1 + κ
(

(

(1/aσ2
jt)

2(Ej
t−1pt + y0 + ρyt−1 − (1/β)pt−1

)2
− Êz2

jt−1

)

We will also assume a constant value for κ. Using this recursive estimate of expected
trading profits, the law of motion for predictor proportions now follows,

nt =
1

2

(

tanh
[α

2

(

ÊU1
t − ÊU2

t

)]

+ 1
)

We turn to simulations of the real-time version of the model to illustrate the sense
in which the model generates regime switching excess rates of return. We assume
the calibrated parameter values from Table 1. Larger values for κ than λ implies
that agents are more concerned with the possibility of regime change in equilibrium
trading strategies than belief parameters. We draw initial values for n, bj, σ2

j , R
j, j =

1, 2 randomly and then simulate the model for a transient period of length 10,000
assuming a decreasing gain for λ, κ. The assumption of a decreasing gain during the
transient period ensures that at the beginning of the simulation period the model will
be near their equilibrium values. We then simulate the model using the calibrated
constant gains for λ, κ. Figure 4 plots the results from a typical simulation.

In Figure 4 the solid line represents the simulated values for the excess rate of
return at monthly rates. Two interesting features arise. First, the rates of return
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Figure 4: Regime-switching Excess Returns.
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switch between periods of higher average rates and lower average rates. Second, the
periods of high rates of return coincide with periods of high volatility, and low average
rates of return coincide with lower volatility. This leads to, in real-time, the economy
switching between high return/high volatility periods and low return/low volatility
periods. The switches between these two regimes occur frequently and persistently.
By way of comparison, Figure 5 plots actual S& P 500 monthly excess rates of return
over the period 1950:1986. Kim, Nelson, and Startz (1998) find that the returns in
Figure 5 are consistent with a Markov-switching model in means and variances. The
data exhibit patterns very similar to the simulation in Figure 4.

The intuition for why the economy may switch from one equilibrium to another
revolves around the interaction between the exogenous shocks and the gain parameters
λ, γ, κ. A particularly large shock, mediated through beliefs via λ, γ, κ, may induce
agents to switch forecasting models – thus, jumping the economy from one basin
of attraction to another. Because λ, γ, κ are positive constants, there are repeated
realizations of shocks sufficiently large to switch the economy between equilibria. The
persistence in a particular shock, and the frequency with which these regime switches
occur, are governed by a complicated interaction between the gain parameters λ, γ, κ,
the intensity of choice parameter α, and the stochastic shocks yt, zst.
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Figure 5: Regime-switching Excess Returns in S&P 500 1926-1986.
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This insight of real-time learning and dynamic predictor selection leading to in-
teresting and complicated long-run dynamics in excess returns is the motivation for
the next Section which turns to a calibrated version of the real-time model.

One might wonder whether the switching between equilibria evident in Figure 5
might present an exploitable trading opportunity for agents who incorporate into their
forecasting model both dividends and share supply. In the next Section, which gives
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further analysis of our calibrated version ,we consider several extensions in which an
agent, given more information, will still select parsimonious trading strategies.

4.3 Matching the Data

There is a large literature on excess volatility and volatility clustering in returns.
For example, Turner, Startz, and Nelson (1989) find evidence for regime switching
conditional heteroskedasticity in stock market returns. Bollerslev, Chou, and Kroner
(1992) find ARCH effects in stock returns. The discussion of under/overreaction
above is a subset of a much broader literature on long-run predictability of stock
returns. Recently, one way this predictability has arisen is through Markov-switching
in mean returns for financial variables (Ang and Bekaert (2002)). There is also a
literature that makes the link, at the individual stock level, between idiosyncratic
volatility and average returns (Merton (1987)). Guidolin and Timmermann (2005,
2007, 2008) provide evidence for aggregate U.S. stock data that suggests that average
returns and volatility follow a finite-state Markov switching process.

Section 4.2 showed that an empirical implication of the present model is that excess
returns may follow a regime switching process, thereby exhibiting both persistence
and volatility clustering. We now study this issue more systematically by generating
time-series data on excess returns from the calibrated version of the model. Our
methodology is to take the real-time learning and dynamic predictor selection version
of the model, as developed above, parameterize the model according to Table 1, and
generate estimates of the means, variances, and regime durations. We then compare
our simulated results with the estimates reported by Guidolin and Timmermann
(2007). To generate these estimates we simulate the model for a transient period of
length 10000, we then store as data the next 5000 periods. We identify the data in
each simulation according to its “regime,” i.e. whether n = 0 or n = 1 and within
each regime we calculate the average excess rate of return R̄j, j = 0, 1 and variance
σ2

j , j = 0, 1. We repeat this 5000 times and report the mean estimates.15 Table
2 reports the mean value of these calculations across all simulations, and compares
them to Guidolin and Timmermann.

Table 2 shows that the model yields volatility clustering and persistence in returns.
The n = 0 state has higher average excess returns than the n = 1 state and higher
volatility. Because the model switches between states these patterns are persistent
across time. However, unlike in Guidolin and Timmermann, the switches are not
governed by a Markov chain but occur as unanticipated shocks push the stock price
from one basin of attraction to another. Estimates are monthly at annualized rates.

15Numerical explorations suggest that 5000 simulations of 15000 periods each produced stable
results, suggesting that the model has converged to a unique invariant distribution.
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Regime-Switching Returns and Volatility

R̄0 R̄1 σ̄2
0 σ̄2

1 π0 π1 R̄

Simulated Data .352 .144 .1728 .048 .3998 .6002 .18

Guidolin-Timmermann Data .358 .0156 .1291 .1167 .5327 .4673 .0792

Table 2: Summary statistics for simulated model and Guidolin and Timmermann
(2007).

Table 2 also shows that the calibrated model delivers estimates that are similar to
the data of Guidolin and Timmermann (2007). The table reports the relative average
returns and variances across the high and low states, calculated from the data in
Guidolin and Timmermann (2007).16 The high state has a return of the same mag-
nitude as the simulated data, however, the variance is slightly lower in the data. For
the low state, the simulated data have a higher mean excess return and lower variance
than reported in Guidolin and Timmermann, though the magnitudes are reasonably
close. The simple model presented here delivers simulated data surprisingly close to
U.S. stock market data. A larger scale model, with more realistic shock processes,
would be likely to fit the data even better. Furthermore, an alternative approach to
calibration would be to estimate the model using indirect inference. We note that for
other parameter choices, such as a smaller value for a would lower the within regime
average excess return but deliver an overall average return in line with the data.

The results presented illustrate that in economic environments where traders learn
and fine-tune their models in real-time, excess returns will exhibit regime-switching
means and variances. It is reasonable to wonder whether this conclusion follows
from the underparameterization restrictions we impose on agents, or whether regime-
switching dynamics may persist even when agents may select from a fully specified
model. In particular, would agents continue to adhere to switching between underpa-
rameterized models if they observed data like in Figure 4? To address this question
we report on the following experiment. We augment the baseline model to include
a third predictor: a bivariate regime-switching model. Agents may choose from the
two parsimonious models or may choose a bivariate model able to capture well the
regime-switching behavior exhibited above. We assume that the regime-switching

16Guidolin and Timmermann estimate a regime-switching model where the means and variances
depend on a 4-state Markov chain. We use their estimates to construct a corresponding two state
Markov chain.
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model is a threshold, or self-exciting, model as in Potter (1995), where agents who
adopt the bivariate model are assumed to believe the regime is triggered by the av-
erage excess rate of return over the previous three months rather than an exogenous
Markov chain. We assume that whenever the excess rate of return is greater than
R̄, then the bivariate model identifies the market as being in the high return period.
In the results presented below we set R̄ = 0.15. The question we ask is whether the
underparameterized models would persist when a bivariate regime-switching model
may also be adopted by agents. Table 3 reports on the results from this experiment,
where the model is simulated for 40,000 periods, the final values for n0, n1, n2 are
recorded, and then averaged across 1000 simulations.

Results with a bivariate model as a choice

κ n0 n1 n2

0.001 0.0247 0.1065 0.8687
0.50 0.222 0.2678 0.5122

Table 3: Average predictor proportions in simulations with a bivariate regime-
switching model choice.

When the gain on predictor fitness is small (κ = .001), then, on average, 86%
of the time agents will adopt the bivariate model. In this case we also find that the
parameters of the bivariate model become close to those of the REE.17 However, when
the gain is set at a higher level (κ = 0.5), agents will use one of the two univariate
models almost half the time. Furthermore, the bivariate model itself exhibits regime-
switching behavior, with substantially different coefficients in its two states.18 Thus
with higher gains for predictor fitness our model continues to exhibit regime-switching
behavior even when a bivariate model is available that could in principle converge to
the REE. Adding a small cost to using the more complex model, either to reflect the
costs of using more sophisticated models, as argued in Brock and Hommes (1997), or
to incorporate a psychological preference for simple models, would lead agents to rely
on simple models in most periods.

Thus the findings of Table 3, for the case κ = 0.5, strengthens our findings of
endogenous regime-switching returns and volatilities. When agents place a sufficiently
high weight on recent performance, they will frequently choose one of the parsimonious
forecasting strategies, even when a bivariate model is available, and the bivariate
model will itself have two distinct states. The combination of high-weighting on

17In our experiments, we also confirmed an anologous result for decreasing gain sequences for κ,
except that during the learning transistion the stochastic nature of the market leads to non-trivial
fractions of agents to adopt one of the more parsimonious model.

18In essense we then obtain a model with regime-switching between four states.
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recursive estimates of the models and model fitness with the self-referentiality of the
model, implies that, by luck, one of the underparameterized models will appear to fit
better. Traders will then coordinate on that model whose success will be reinforced
by the self-referentiality. One might expect that the bivariate regime-switching model
will still do better but, as the results in Table 3 illustrate, the combination of high
weighting and self-referentiality will lead agents to occasionally select a parsimonious
model. Thus endogenous regime-switching can arise in a real time setting even when
traders are not restricted to underparameterized models.

5 Conclusion

This paper has developed a theory of underparameterization and learning in a simple
asset pricing model. Asset price is driven by expectations of future price and exoge-
nous processes for dividends and the supply of asset shares, where the latter is viewed
as a proxy for asset float. Agents forecast price by projecting it onto either dividends
or share supply. Although agents are forced to underparameterize, we assume that
they attempt to do so in an optimal way, through our twin assumptions that the fore-
cast models impose the relevant orthogonality conditions and that agents choose only
models that maximize, or almost maximize, risk-adjusted expected trading profits.
In our framework, model parameters and the distribution of agents across forecasting
models are jointly determined in equilibrium. The approach advocated in this paper
can be seen as a generalization of Hong, Stein, and Yu (2007) and Barberis, Shleifer,
and Vishny (1998) to a framework in which parameters and models are determined
endogenously in equilibrium.

We demonstrate that underparameterization and misspecification equilibria can
arise in this simple asset pricing model. Depending on the complicated interaction
between the exogenous processes and the degree of risk-aversion of agents, multiple
Misspecification Equilibria can arise as an equilibrium outcome. Adding real-time
learning and dynamic predictor selection generates regime-switching dynamics in ex-
cess returns.

When the model is calibrated to U.S. stock data we find that the model is capa-
ble of capturing the regime-switching empirical features that have been extensively
documented in U.S. stock data. Because of the richness of the theoretical results,
and the broad empirical implications for excess returns, the approach in this paper
seems to provide a suitable balance between rational expectations and fully behavioral
approaches.
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A Appendix

Detailed Computations for Section 1: It is straightforward to compute that

Eπ1
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Proof of Proposition 1. A RPE exists provided
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exists and real-valued solutions exist for σ2
j , j = 1, 2 in (5)-(6). Let n take values in

{0, 1} and assume r, r̃ are sufficiently small. Then when n = 0

σ2
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β2a2(σ2
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2
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ν

The RPE solution for σ2
2 is the solution to the above quadratic equation. It is straight-

forward to see that as a → 0 one root tends to +∞ and the other to 0. Similarly,
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when n = 1

σ2
1 =

1
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σ2

ε + β2a2(σ2
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The larger root for the RPE solution of σ2
1 tends to +∞ as a → 0. It follows that

for a sufficiently small, σ2
j has a real solution. It is straightforward to verify that the

inverse exists under these conditions.

Proof of Corollary 4. Let s0 = 0. As r, r̃ → 0 we have
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)

Then straightforward algebra leads to the conditions in Corollary 4.
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