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Reputation, Social Identity and Social Con�ict�

John Smithy
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June 8, 2010

Abstract

We interpret the social identity literature and examine its economic implications. We
model a population of agents from two exogenous and well de�ned social groups. Agents
are randomly matched to play a reduced form bargaining game. We show that this struggle
for resources drives a con�ict through the rational destruction of surplus. We assume that
the population contains both unbiased and biased players. Biased players aggressively
discriminate against members of the other social group. The existence and speci�cation
of the biased player is motivated by the social identity literature. For unbiased players,
group membership has no payo¤ relevant consequences. We show that the unbiased
players can contribute to the con�ict by aggressively discriminating and that this behavior
is consistent with existing empirical evidence.

�The author would like to acknowledge helpful comments from Roland Benabou, Armin Falk, Faruk Gul,
Jo Hertel, Wolfgang Pesendorfer, Jack Worrall and the participants of the Social Identity Theory Seminar in
the Princeton Psychology Department organized by Debbie Prentice.

yRutgers University-Camden, Department of Economics, 311 N. 5th Street, Camden NJ, 08102 USA
(smithj@camden.rutgers.edu).
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1 Introduction

Experimental research has found that placing people into social groups can cause some to
have a preference for discrimination: favoring members of their own group at the expense
of members of other groups.1 Indeed, this is the primary insight of the vast literature on
social identity, which we describe in more detail below. In this paper, we model a population,
partially composed of agents who behave as described by this literature. The interesting
questions are then, what can we say about agents with no such preference for discrimination
and what can we say about outcomes in such a society.

We present a model in which each player lives for two periods and in each is matched to
play a reduced form bargaining stage game. In each stage game, both players have a better
material outcome by agreeing to a distribution than by not agreeing. Also, in the stage
game, each player has a better material outcome by securing the larger share of the surplus.
We assume that every agent is a member of one of two social groups and that this status is
observable.

Players are assumed to be either unbiased or biased. Unbiased players are motivated
entirely by material payo¤s. In other words, group membership contains no payo¤ relevant
consequences for unbiased players. By contrast, a biased player has payo¤s which are a¤ected
by group membership. Consistent with the social identity literature, we make the following
assumptions regarding biased players. When matched with a member of their own group (an
ingroup match), biased players are cooperative. When matched with a member of the other
group (an outgroup match) biased players intransigently destroy surplus rather than accept a
payo¤ lower than the outgroup opponent.

We �nd that when preferences are unobservable, a social con�ict can emerge. In particular,
we show that the con�ict does not require an entire population of biased agents. Rather,
unbiased players can contribute to the con�ict through the destruction of surplus in outgroup
matches by mimicking biased agents. Unbiased agents might �nd it bene�cial to behave as
such in order to obtain a reputation for being biased and hence secure more favorable outcomes
in the future.2

Our �rst main result (Proposition 4) shows that the e¢ ciency loss in a society tends to be
increasing in the heterogeneity of that society. Our second main result (Proposition 5) shows
that e¢ ciency loss is increasing in the inequitability of the environment. These results relate
to the following two strands of literature.

1See Tajfel et. al. (1971) for a classic reference and see Miller et. al. (1998) for a particularly interesting
application.

2Modeling reputation is standard in game theory and was pioneered by Kreps and Wilson (1982). The
novelty in our approach lies in merging this technique with our interpretation of the social identity literature.
Like Silverman (2004), this paper models matching in a two-sided reputation setting in order to explore outcomes
not generated a perfect information model.
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Researchers have examined the relationship between social heterogeneity and economic
conditions. For instance, Easterly and Levine (1997), Mauro (1995), Posner (2004) and Mon-
talvo and Reynal-Querol (2005) show that measures of heterogenous populations are negatively
related to economic development. We contend that our model contributes to the understand-
ing of this stylized fact. As individuals of di¤erent social groups compete for material bene�ts,
disagreement and ine¢ ciency can result. We demonstrate the positive relationship between
our measure of social heterogeneity and social con�ict as measured by such e¢ ciency loss.3

Additionally, researchers have noted the relationship between the level of social con�ict
and the inequitability of the environment. Falk and Zweimuller (2005) show a relationship
between local economic conditions and aggressive behavior. Speci�cally, the authors show that
higher local unemployment rates (and hence, larger probabilities of inequitable outcomes) lead
to higher incidences of right-wing extremist crimes. It is important to note that the authors
�nd that it is the threat of a worse economic position, and not the economic position per se,
which induces this con�ict. Therefore, we interpret these �ndings as evidence of a positive
relationship between the inequitability of the environment and social con�ict. There is also
a large sociological literature relating various forms of social con�ict to the inequitability
of the environment.4 For instance, Olzak (1992) �nds a positive relationship between the
inequitability of the environment and ethnic con�ict, as measured by violent events.5 Our
model also provides an explanation for these �ndings. Speci�cally we show that the amount
of social con�ict is increasing in the inequitability of the environment.

Our speci�cation of the biased player is motivated by the social identity literature. A
very large literature has found that placing people into groups is a su¢ cient condition for
discriminating behavior.6 Of particular interest is the �nding that people tend to prefer
better material outcomes for ingroup members than outgroup members and that they are also
prepared to create ine¢ ciencies (destroy surplus) to secure this outcome. For instance, the
discriminating person would prefer to allocate $6 to an ingroup member and $2 to an outgroup
member rather than $5 to each. Tajfel et. al. (1971) �nd that these preferences imply the
maximization of the payo¤ di¤erence between the groups.7 In other words, the discriminating
person will accept some ine¢ ciency in allocating resources in order to secure a better material
outcome for the ingroup.

3Also see Vigdor (2002) for a paper with a similar goal.
4What we refer to as "inequitability of the environment" sociologists refer to as "competition." Sociologists

de�ne competition to be the threat of a worse economic position. Here, we believe this term to be inappropriate
as "competition" has a di¤erent meaning to economists.

5Lubbers and Scheepers (2001), Scheepers et. al. (2002), Quillian (1995, 1996) also �nd a positive rela-
tionship between the inequitability of the environment and social con�ict, as measured by prejudiced beliefs.
Olzak, Shanahan, and West (1994) �nd the relationship in the context of school busing in U.S. cities.

6A very small sample of this enormous literature would include Sumner 1906, Murdock (1949), Sherif et.
al. (1961), Tajfel (1970), Tajfel et. al. (1971), Tajfel (1978), Tajfel and Turner (1979), Kramer and Brewer
(1984), Tajfel and Turner (1986), Dawes, Van De Kragt, and Orbell (1988).

7There is, however, no consensus on this statement. Messick and Mackie (1984 pg. 64) point out that some
authors �nd that discrimination can come in the form that the joint allocation is maximized "as long as the
ingroup gets more than the outgroup." This perspective also su¢ ces to justify our speci�cation of behavioral
players.
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We view the social identity literature as providing speci�c justi�cation for our model.
First we assume the formation of social groups based on some shared characteristic and that
membership in these groups might a¤ect the preferences of some, but not all. Secondly,
we assume that all players are nice in an ingroup match and in an outgroup match, some
players are not nice in that they pick the action which maximizes the di¤erence between the
groups. The condition that some people prefer ingroup members to have better outcomes
than outgroup members does not have bite in our ingroup matches. Therefore, we assume
that biased players are nice in ingroup matches.

1.1 Related Literature

Recently economists have devoted attention to modeling identity.8 For instance, Akerlof and
Kranton (2000) present a general model of identity and economics. The authors assume
that an agent�s identity related preferences are a¤ected by the actions of others, therefore
their notion of a social group is �uid. By contrast, we model a social con�ict between well
de�ned social groups which are not �uid and not de�ned by behavior. Similar to Akerlof and
Kranton, the behavior in our model is optimal from the perspective of the agent. However,
the behavior in both models can be suboptimal in other ways: in our model discrimination
leads to ine¢ ciencies and in Akerlof and Kranton agents can engage in destructive activities.9

Insights on identity have been recently appearing in the experimental economics litera-
ture.10 For instance, Ferraro and Cummings (2007) describe the results of an experiment
where subjects play an anonymous version of the ultimatum game, although subjects know
the distribution of the ethnicity of potential opponents. The authors �nd that the lowest
o¤er which a subject would accept as a responder is decreasing in the fraction of players of
the same ethnicity. We the work on identity within the experimental economics literature as
supporting our assumptions of the model.

There exists a literature which formally models social con�ict, however each strand focuses
on di¤erent issues than we do here.11 For instance, Fearon and Laitin (1996) and Nakao
(2009) focus on the role in which ingroup policing helps to maintain social order by avoiding
social con�ict between groups. Speci�cally, it is assumed that information is di¤erentially
better for the histories of ingroup members than outgroup members and that no agents have
a preference for discrimination. By contrast, we examine the implications of the preference
for discrimination. Benhabib and Rustichini (1996), Bridgman (2008) and Strulik (2008) also
model the relationship between social heterogeneity and con�ict. These papers are able to
make nuanced statements regarding outcomes in such a society, however groups are modeled as
cohesive units. By contrast we assume a rather general stage game and model each unbiased

8See Phelps (1972) and Arrow (1973) for early theoretical work on identity and discrimination.
9For more on identity in economics, see Sobel (2004), Kirman and Teschl (2004) and Davis (2006) See

Lindqvist and Ostling (2009) and Shayo (2009) for the application of identity to redistribution.
10See Ahmed (2007), Charness et. al. (2007), Goette et. al. (2006) and Guth et. al. (2008). Also see, Chen

and Li (2008) who use econometric techniques to estimate the form of social preferences involving identity.
11Also see Caselli and Coleman (2006), Dion (1997), Esteban and Ray (2008, 2009) and Robinson (2001).
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player as maximizing individual material payo¤s. Finally, Orbell, Zeng and Mulford (1996)
use computer simulation techniques to model social con�ict as driven by individual incentives.

Like Basu (2005), we model social con�ict in a heterogenous society12 containing some
members with a preference for discrimination. Additionally, we both show how the presence
of these types can induce those without such a preference to discriminate. Basu models a
one-shot game with multiple equilibria in material payo¤s which can be Pareto ranked. The
presence of types with a preference for discrimination can cause those without such a preference
to select the action associated with the Pareto dominated equilibrium. By contrast our stage
game has a single equilibrium in material payo¤s. Actions other than the equilibrium actions
are played only for the purpose of improving future outcomes. Therefore, in Basu the presence
of special types of agents induces a more defensive posture in other agents, in our paper the
resulting behavior is a more aggressive posture. In other words, the ine¢ ciencies in Basu are
driven by fear of aggressive behavior of the opponent and in our model the ine¢ ciencies are
driven by the aggressive behavior of unbiased agents induced by material gains.

Rohner (2008) also introduces a game theoretic model which seeks to link the social com-
position of a heterogenous population with economic outcomes in that population. Like we
do here, Rohner presents a reputation model where types are unobservable. However, in
Rohner�s model no agent has a preference for discrimination but rather di¤erential access to
information. While agents in our model wish to obtain a reputation for biased preferences,
agents in Rohner�s model wish to avoid obtaining a reputation for toughness. The di¤erences
also include that Rohner uses contest functions, we use a reduced bargaining game; Rohner�s
stage game is in�nitely repeated whereas ours is only repeated twice; and in our paper in-
formation regarding histories is very precise and it is very coarse in Rohner. Despite these
di¤erences, our main results are relatively congruent. Our Proposition 4 shows that the loss
in e¢ ciency tends to be increasing in the heterogeneity of that society. Similarly, Proposition
4 of Rohner shows that social tension is increasing in (what we refer to as) the heterogeneity of
the population. Given the large di¤erences between Rohner and the present paper, it is some-
what surprising that, roughly, we come to the same conclusion regarding social heterogeneity
and economic outcomes.

2 The Model

We study a sequential chicken stage game repeated for T = 2 periods. The stage game payo¤s
are described by the following game tree T :

12Esteban and Ray (1994, 1999) provide an axiomatization relating the amount of polarization (and hence
potential for con�ict) in a society to the distribution of characteristics of individuals in that society. Although
the authors accommodate a more rich pro�le of characteristics than considered here, we focus on the individual
behavior which might yield such a con�ict.
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where b is strictly larger than one.13 In each repetition of the stage game, the �rst mover
chooses an action of either Hawk (H) or Dove (D). In the event that the �rst mover selects
H, the second mover chooses between H and D. We do not allow transfers between agents.

There is a continuum of players i 2 [0; 1]. Each player is a member of exactly one of two
social groups. This group identity is described by the social identity parameter � 2 (0:5; 1).
All agents such that i 2 [0; �] = M are in the majority group and all agents such that
j 2 (�; 1] = m are in the minority group. In each period, agents are matched to play the
stage game where the matching probability is uniform on the population. In each match, the
probability of being a �rst mover is identical to that of being a second mover. If two players
i; j such that i 2M and j 2 m are matched, we refer to this as an outgroup match, otherwise
it is an ingroup match.

In each group, there are two types of players: unbiased and biased. The unbiased players
have their payo¤s described by T . Biased players always play H in an outgroup match
and have payo¤s as described by T in an ingroup match. Group membership is observable.
However, players cannot observe whether their opponent is biased or unbiased. The ex-ante
fraction of biased players, in each group, is . The entire game � is therefore described by
� = (T , b; �; ):

To simplify the subsequent analysis, note that in every ingroup match the subgame perfect
equilibrium of the stage game is played: the �rst mover plays H and the second mover plays
D. No player has an incentive to deviate. The second mover gains no future bene�t by
playing H. Knowing this, the �rst mover plays H. Therefore, we take the ingroup matches
as given and focus exclusively on the behavior in outgroup matches.

Player i�s action is denoted a 2 fH;Dg = A. We de�ne the condition of the match as
c 2 f1;Hg = C. Here c = 1 indicates that i is the �rst mover. Likewise, c = H indicates

13All of the following would hold if we exchanged b and 1 with x and 1� x respectively where x = b
b+1

> 1
2
.
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that i is the second mover whose opponent played H. The history of the matched opponent
is perfectly observed. We can write the relevant set of histories for player i in the �rst period
as hi 2 Hi = fI;H1; D1;HH;DH;Eg. The �rst element refers to an ingroup match. The
following two elements refer to playing H and D as a �rst mover. Likewise the next two refer
to playing H and D as a second mover against an opponent who played H. The last element
refers to a second mover matched against a �rst mover who played D. We de�ne the set of
player histories HD in which the action of D has been observed in an outgroup match:

HD = fD1; DHg

A �rst period strategy for player i is a mapping �i1 : C ! �A. The second period strategy
for a �rst mover i who is matched with opponent j is a mapping �i2 : C � Hj ! �A. We
de�ne �i = �i1 � �i2. We also de�ne � = �i2[0;1]�i. After a history of hi the posterior belief
that player i is biased is denoted pi(hi). Players maximize the sum of expected payo¤s. We
assume no discounting. In period 2, for a given history hj1 and condition c, player i�s expected
payo¤ from the pro�le of strategies is denoted by U i2(�jc; hj). In period 1, for a given c player
i�s expected payo¤ from the pro�le of strategies in periods 1 and 2 is denoted by U i1(�jc).
Note that we will sometimes say that �it(�) assumes a numerical value. Therefore, in a slight
abuse of notation, we denote �it(�) as the probability that H is played.

Recall that our goal is to model a general con�ict situation with as few asymmetries as
possible. Speci�cally, we designed the model in such a way that the groups are as meaningless
as possible. As such, we have assumed that each group has an identical fraction of biased
players (). We have also assumed that the probability that an agent is designated as a �rst
and second mover is equal for agents in both groups. Despite these symmetry assumptions,
we still observe the ine¢ ciencies associated with a social con�ict. Indeed our assumptions
regarding  are weaker than warranted by the experimental evidence. For instance, Cho and
Connelley (2002) �nd that the competitiveness of an outgroup setting is associated with a
higher degree of identi�cation of subjects. We interpret this �nding as evidence of a positive
relationship between  and b. Although we do not assume such a relationship, our results
would be stronger if we did.

In our solution concept, we use the following de�nition.

De�nition 1 Beliefs pj(hj) satisfy condition (�) if hj 2 HD then pj(hj) = 0.

Condition (�) requires beliefs to be updated in an intuitive manner. On or o¤-the-
equilibrium path, it requires that if player j ever played D in an outgroup match, opponents
ascribe probability 0 to j being biased.

Now we de�ne the notion of equilibrium which we will use throughout the paper.
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De�nition 2 A strategy pro�le � is a Symmetric Perfect Bayesian Equilibrium (SPBE) if:

(i) U i1(�jc) � U i1(e�i; ��ijc) for every i, e�i 6= �i and c 2 f1;Hg
(ii) U i2(�jc; hj) � U i2(e�i; ��ijc; hj) for every i, e�i 6= �i, c 2 f1;Hg and hj 2 Hj
(iii) for any i; k 2M and any j; l 2 m; �i = �k and �j = �l

Furthermore, beliefs pj(hj) must satisfy condition (�) and are updated using Bayes Rule wher-
ever possible, for all j and h 2 H.

De�nition 2 is a slightly more restrictive version of a Perfect Bayesian Equilibrium. Con-
dition (i) requires that period 1 actions are optimal, as both a �rst and second mover, given
any set of initial beliefs. Condition (ii) is the analogous requirement for period 2. Condition
(iii) requires that every member of a group use the same strategy. Note that in equilibrium,
this requirement only bites when players are indi¤erent between actions. In such a case, con-
dition (iii) allows us to break ties in a manner consistent with a social identity interpretation.
Condition (iii) also allows us to refer to strategies for the group rather than for the individual.
For instance, �M1 (1) refers to the strategy of the majority group as a �rst mover in the �rst
period. Finally, we require that beliefs are updated using Bayes Rule wherever possible and
that a player who selected D in the �rst period is known with certainty to be unbiased.

Finally, note that we speak of aggressive discrimination whenever the actions (H;H) are
observed. This terminology is appropriate as the outcome (H;H) never occurs in equilibrium
in an ingroup match. More generally we refer to a play of H (in any period) as aggressive play.
Note that all unbiased players always play D as a second mover in period 2 (�i2(H;h

j) = 0 for
all hj 2 H and i 2 fm;Mg). As there is no confusion, we write �i2(1; h

j) as �i2(h
j) in order

to conserve notation.

Again, note that in a game without biased players ( = 0) the unique subgame perfect
equilibrium is to play H as a �rst mover and play D against H as a second mover. When
 > 0, there are conditions under which an unbiased player will optimally destroy surplus in
order to secure a reputation for being a biased player. This destruction of surplus can take
one of the following two forms.

De�nition 3 Agent i exhibits Reputation as a second mover (R2) if the SPBE is such that:

�i1(H) > 0

If player i exhibits R2; he will play H with positive probability in response to a �rst mover
selecting H, even though playing H means forgoing a certain payo¤ of 1 in order to have more
favorable future matches. However, another type of reputation can be observed when the
agent is a �rst mover.
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De�nition 4 Agent i exhibits Reputation as a �rst mover (R1) if the SPBE is such that:

�i1(1) > 0

(1� )(1� �j1(H))b < 1

If player i exhibits R1; he will playH with positive probability as a �rst mover, even though
playing D would yield a larger expected payo¤ in the �rst period. In order to compare the
two de�nitions, note that if an agent displays R2 then the player exchanges a �rst period stage
game payo¤ of 1 for a payo¤ of 0. However, a �rst mover selecting H could be myopically
optimal if the matched opponent is su¢ ciently likely to play D. In this case, we could not
claim that the player is motivated by reputation concerns. Therefore, we require the second
condition so that the �rst period action does not maximize �rst period payo¤s.

The following lemma states that R1 and R2 will never both occur in any SPBE.

Lemma 1 There are no parameter values such that if one player exhibits R1 (R2) then any
player exhibits R2 (R1).

Proof: See Appendix.

To see that parameter values cannot be such that R1 and R2 are both present, note that
if a player exhibits R1 then the fraction of biased players is su¢ ciently high,  � 0, otherwise
the de�nition of R1 cannot be satis�ed. However, the smallest such fraction of biased players
0 renders the exhibition of R2 by any player to be unpro�table. Similarly, if a player exhibits
R2 then it is su¢ ciently unlikely that a future opponent is a biased player,  � 00, otherwise
R2 would not be pro�table. However the largest such fraction of biased players 00 renders
playing H as a �rst mover myopically optimal, thus the agent cannot exhibit R1.

3 Characterization of SPBE

We now o¤er a characterization of the SPBE. We start with the case where b is small and
therefore neither group displays R2 (Proposition 1). Within the case of small b, there are
four subcases. For  smaller than b�1

b , neither group exhibits R1 yet both are aggressive as a
�rst mover in the �rst period. For  between b�1

b and some M , both groups exhibit R1. For
 between the values M and some m, only the minority exhibits R1. For  greater than
m, neither group exhibits R1 and neither are aggressive as a �rst mover in the �rst period.
We then characterize the SPBE where b is intermediate and therefore the minority group
displays R2 but the majority does not (Proposition 2). Finally, we characterize the SPBE
where b is large and therefore both groups displays R2 (Proposition 3).

Proposition 1 If b < 2
�(1�) + 1 then the unique SPBE is such that neither group exhibits

R2, �i1(H) = 0. Furthermore, if it is also the case that:
(i)  < b�1

b then the unique SPBE is such that neither group exhibits R1 where �i1(1) = 1.
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(ii)  2 ( b�1b ; M ) then the unique SPBE is such that both groups exhibit R1 where
�i1(1) = 1.

(iii)  2 (M ; m) then the unique SPBE is such that only the minority exhibits R1 where
�m1 (1) = 1 and �

M
1 (1) = 0.

(iv)  > m then the unique SPBE is such that neither group exhibits R1 where �
i
1(1) = 0.

Proof: See Appendix.

Proposition 1 states that for small b, neither group will display R2 because it will not be
pro�table to play H as a second mover in order to enter the second period with a posterior
even as high as 1. For (i), both groups play aggressively as a �rst mover. In the �rst period,
the optimal strategy turns out to be the one which myopically maximizes �rst period payo¤s,
therefore �i1(1) = 1 does not imply R1. For (ii), both groups display R1. In the �rst period,
both groups play H as a �rst mover rather than D, despite the fact that the latter yields a
higher stage game payo¤. The myopic action is not selected because the �rst period, �rst
mover selecting D would forfeit a su¢ ciently valuable reputation. For (iii), only m displays
R1. This asymmetry arises asM does not �nd it pro�table to maintain its reputation because
a future outgroup match is not su¢ ciently likely. For (iv), neither player selects H in the �rst
period as a �rst mover because of the high likelihood of being matched with a biased player.
No unbiased agent plays H as a second period, �rst mover unless the opponent has played D
in the �rst period.

Proposition 2 If b 2 ( 2
�(1�) + 1;

2
(1��)(1�) + 1) then the unique SPBE is such that only

the minority exhibits R2 where �M1 (H) = 0 and �
m
1 (H) 2 (0; 1).

Proof: See Appendix.

For intermediate b, the minority �nds it pro�table to play H as a second mover with
probability strictly between 0 and 1. This mixing is done so that the agent who plays H
as a second mover in the �rst period, enters the second period with a posterior of b�1b . To
see why the SPBE requires mixing, note that if �m1 (H) = 1 then the agent who plays H as
a second mover in the �rst period will enter the second period with an unchanged posterior
which does not justify the �rst period action. Further, if �m1 (H) = 0 then the agent who plays
H as a second mover in the �rst period, will enter the second period with a posterior of 1 and
therefore there is a pro�table deviation. Unlike m, M never �nds it pro�table to play H as a
�rst period, second mover even if it secures a posterior of 1 in the second period. Again, this
is because of the insu¢ cient likelihood of an outgroup match for the majority. Therefore, m
displays R2 and M does not. Note that by Lemma 2, we can restrict attention to  <

�
b�1
b

�2
and therefore every agent plays H as a �rst period, �rst mover. By being able to restrict
attention to  <

�
b�1
b

�2
we do not have the number of cases that we had in the Proposition 1.

Proposition 3 If b > 2
(1��)(1�) + 1 then the SPBE is such that both groups exhibit R2

where �i1(H) 2 (0; 1).
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Proof: See Appendix.

For large b, both groups exhibit R2. Both groups mix so that the agent who plays H as
a second mover in the �rst period, will enter the second period with a posterior of b�1b . The
reasoning for Proposition 2 involving m now holds for both groups.

Propositions 1, 2 and 3 characterize the SPBE. Figure 1 demonstrates, given a value of
�, the regions of b and  which are consistent with a SPBE.

FIGURE 1 HERE

The northwest portion of the graph corresponds to the values of b and  which yield the
SPBE as described in Proposition 3. In other words, for high b and low , both groups
exhibit R2. The band to the right of this corresponds to the parameters which yield the
SPBE as described in Proposition 2. To the right of this band, there are three small bands
which correspond to the parameters which yield the SPBE as described in Proposition 1 (i),
(ii) and (iii). Finally, the southeast portion of the graph corresponds to the values of b and
 which yield the SPBE as described in Proposition 1 (iv).

We now provide the following example in order to facilitate a more intuitive understanding
of the model. While we vary b, we assume speci�c values for � and . In the �rst case (b = 3)
neither group displays R2, in the second case (b = 5) only the minority displays R2 and in
the �nal case (b = 7) both groups display R2.

Example 1 Consider an SPBE where the majority group constitutes 60% of the population
(� = 0:6), each group contains a 10% fraction of biased players ( = 0:1) and the prize b is
either 3, 5, or 7:

(i) In the case that b = 3, the SPBE strategies look similar to that of the unperturbed
game.14 The only di¤erence being that those matched with a player who played H as a second
mover in the �rst period will play D as a �rst mover. The SPBE strategies are:

�i1(1) = 1 and �i1(H) = 0 for i 2 fm;Mg
�i2(1; h

j) = 0 if hj = HH for i 2 fm;Mg
�i2(1; h

j) = 1 if hj 6= HH for i 2 fm;Mg

When b < 2
�(1�) + 1 � 4:7 (and thus b < 2

(1��)(1�) + 1 � 6:6) the minority (majority) has

no incentive to deviate from �i1(H) = 0. Here, in both majority and minority groups, only
biased players destroy surplus.

(ii) In the case that b = 5 the incentives (and therefore �rst period strategies) are identical
to the b = 3 case for M , but not for m. Here �m1 (H) = 0 cannot be part of an SPBE.
However it also cannot be that �m1 (H) = 1 because this would imply pm(HH) =  and thus

14The interested reader is referred to the appendix for the proofs of Propositions 1 (i), 2 and 3 respectively
for the strategies given in parts (i), (ii) and (iii) of the example.
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�M2 (HH) = 0 for M as  < b�1
b . Therefore �m1 (H) must be such that p

m(HH) = b�1
b = 4

5 .
This is the posterior which makes the agent as a �rst mover indi¤erent between H and D.
This mixing probability occurs at �m1 (H) =


(1�)(b�1) = 0:028.

(iii) In the case that b = 7, both m and M will mix such that pi(h) = 6
7 . This mixing

probability occurs at �i1(H) = 0:0185. Similarly both groups must mix as a second period,
second mover in order to keep the �rst period, second mover indi¤erent between playing H
and D against an H.�

4 Comparative Statics: Social Fragmentation and Inequitable
Environments

In this section, we present our main results. We examine the relationship between social
con�ict, as measured by e¢ ciency loss, and social heterogeneity. We also examine the rela-
tionship between social con�ict, as measured by e¢ ciency loss, and inequitable environments.
These results provide an individually rational explanation for the relevant empirical results.

The comparative statics which follow, deserve some comment. Recall that Propositions 1,
2 and 3 stated that for generic parameter values, the SPBE is unique. Therefore, comparative
statics on these parameter values are unproblematic. However, the SPBE is not unique for
nongeneric parameter values.15 As a result of the nonuniqueness for the nongeneric parameter
values, we apply the appropriate amount of caution when performing comparative statics.

Many authors use the fragmentation index, de�ned as the probability that two randomly
selected people are from di¤erent social groups, as a measure of social heterogeneity. In the
present context, this would imply that the fragmentation index is 2�(1� �). By contrast we
use 1 � � as a measure of social heterogeneity. Both measures are maximized on [0; 0:5] at
� = 0:5 and are strictly decreasing in �. Furthermore, nothing is gained by considering the
more complicated measure of heterogeneity.

To formally state our results, we �rst de�ne the total e¢ ciency loss in the SPBE as I(b; �).
This quantity is the probability of aggressive discrimination ((H;H) outcomes) in either period
multiplied by the total material surplus which could have been achieved, b+1: We denote the
probability of an (H;H) outcome in period t by P ((H;H) in t). We state I(b; �) as explicitly
depending on � and b but not on  (fraction of biased players), as we will shortly explore the
implications of varying the �rst two but not the last parameter. Furthermore,  is hard to
measure and to our knowledge, no empirical papers have studied the matter.

De�nition 5 I(�; b) is the total e¢ ciency loss in the SPBE :

I(b; �) = (b+ 1) [P ((H;H) in t = 1) + P ((H;H) in t = 2)] ;

15Proposition 8, given in the appendix, characterizes the SPBE for the nongeneric parameter values where
the equilibrium is not unique.
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Note that I is not a measure of social welfare. Speci�cally, I is not the average of the
utilities of the agents in the game. The value of I is intended to provide a measure of
the material payo¤s not captured in the bargaining procedure. While it is often assumed
that a social planner seeks to maximize the utility of every agent, with standard assumptions
regarding utility, this condition is equivalent to maximizing the material surplus of each agent.
However, in our case these two notions are not identical. Indeed, to be consistent with the
spirit of the social planner, we would seek to maximize the volume of trade rather than
accommodate the discriminatory preferences of the biased players. The value of I provides
a measure of the material outcomes in the population and we therefore consider it to be the
most appropriate objective function.

The next result shows that there exists a level of heterogeneity such that for every smaller
value of heterogeneity, e¢ ciency loss I is strictly increasing in heterogeneity.

Proposition 4 For all (b,) the SPBE is such that there exists a level of heterogeneity
1� �� such that for all heterogeneity less than 1� ��, e¢ ciency loss I is strictly increasing in
heterogeneity.

Proof: See Appendix.

The intuition behind the proposition is as follows: when heterogeneity increases, the oc-
currence of outgroup matches also increases. Within these outgroup matches are matches
involving only biased players and matches involving at least one unbiased player. Obviously,
in the biased-only matches, an increase in heterogeneity will, by assumption, imply a greater
e¢ ciency loss. Also, matches involving exactly one unbiased player will imply a greater ef-
�ciency loss unless every unbiased agent always plays D. However, unbiased-only matches
will also exhibit e¢ ciency loss if either player exhibits R1 or R2; further, this e¢ ciency loss
is increasing in heterogeneity.

To better understand the nuanced statement of the proposition, we consider the four
possibilities of the relationship between e¢ ciency loss I and heterogeneity 1 � � for a given
b and . A particularly simple case is illustrated by Figure 2. Here b and  are such
that e¢ ciency loss is strictly and continuously increasing in heterogeneity for all levels of
heterogeneity.

FIGURE 2 HERE

As illustrated in Figure 2, there exist values of b and  for which a single qualitative SPBE
describes the behavior for all values of heterogeneity. However, it could also be the case
that, as heterogeneity increases, a qualitatively di¤erent SPBE can occur. As heterogeneity
1 � � gets larger, the minority reputation becomes less valuable and the majority reputation
becomes more valuable. Therefore, only two types of such "jumps" can occur as heterogeneity
becomes larger. Either the majority does not exhibit reputation for any heterogeneity whereas
the minority exhibits reputation for small heterogeneity and for large values does not exhibit
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reputation (Figure 3). Or it can be that the minority always exhibits reputation and for small
heterogeneity the majority does not display reputation and for large values, the majority does
(Figure 4).

FIGURE 3 HERE
FIGURE 4 HERE

Figures 2, 3 and 4 illustrate that, as heterogeneity increases, e¢ ciency loss strictly increases
almost everywhere with at most one point of discontinuity. In other words, for these values
there does not exist an interior extrema. However, there also exists parameter values where
such an interior extrema can occur. Figure 5 illustrates a possible relationship.

FIGURE 5 HERE

Here in Figure 5, for heterogeneity 1 � � less than 0:49 the minority displays R2 and the
majority does not. However, for heterogeneity greater than 0:49 neither the majority nor the
minority displays R2. There is an interior maximum of e¢ ciency loss at a heterogeneity of
0:485. Therefore, for such a case to hold we need the interior maximum on the e¢ ciency
loss function where only m displays R2 to occur at a smaller degree of heterogeneity than the
point of discontinuity. Although the extremum is always "close" to 0:5, it still remains that
there is a small region for which e¢ ciency loss is decreasing in heterogeneity.16

In order to relate the �gures to the proposition, note that in the cases of Figures 2 and 4
e¢ ciency loss is everywhere strictly increasing in heterogeneity, therefore 1� �� = 0:5. In the
case of Figure 3, 1� �� is at the point of downward continuity. And in Figure 5, 1� �� is at
the interior maximum.17

This completes our discussion of the relationship between social con�ict and social het-
erogeneity. We now turn to the relationship between social con�ict and the inequitability of
the environment. We show that increasing the inequitability of the environment leads to an
increase in social con�ict as measured by e¢ ciency loss.18

Proposition 5 For all (�,) the SPBE is such that e¢ ciency loss I is strictly increasing
in b.

The map I
b+1 is a function in b with �ve points of upward discontinuity. The intuition

behind the result is as follows: as b increases, playing H becomes more attractive. This leads
to an increase in the probability which unbiased agents play H and this increases the e¢ ciency
loss. Figure 6 illustrates a typical relationship between I

b+1 and b.
19

16Note that this interior maximum only ranges from 1� �� = 0:4833 to 0:5.
17Here only m displays R2. The mixing probability of m is decreasing in heterogeneity and this e¤ect

dominates when e¢ ciency loss otherwise becomes nearly constant. When both m and M display R2, the
probability mix of M increases in heterogeneity, and the changes in the mixing of m are o¤set by the mixing
of M .

18The proof is available from the author upon request.
19To better understand the values for which the SPBE is not unique, see Proposition 8.
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FIGURE 6 HERE

Our model provides an explicit account of the individual behavior which drives the social
con�ict. Speci�cally, the presence of biased players means that e¢ ciency loss is increasing
in the inequitability of the environment. Furthermore, Proposition 5 is free of the built-in
e¢ ciency loss present in Proposition 4. Any increases beyond the smallest value of I

b+1 in
Figure 6 are driven exclusively by the behavior of the unbiased agents.

5 SPBE Results

We now characterize some basic properties of the SPBE. We illustrate the underlying asym-
metry in payo¤s by showing that the majority always does strictly better for parameter values
such that both groups have identical equilibrium strategies. We also show that reputation
is always more valuable for the minority players. Hence, we �nd that minority players will
always exhibit weakly more aggressive behavior in the �rst period, than do majority players.20

Although the SPBE is generically unique, depending on the particular parameters of the
game, the equilibrium can have signi�cantly di¤erent properties. For some parameter values,
SPBE strategies and therefore equilibrium payo¤s can exhibit some asymmetry. However,
there is also a basic asymmetry inherent in our model, which is best illustrated when attention
is restricted to strongly symmetric strategies - that is, �rst period strategy pro�les which are
identical across groups. This motivates the following de�nition.

De�nition 6 Let �� be the SPBE of �: Then � is strongly symmetric if the �rst period
strategies in �� can be written without reference to group membership.

We say that a game is strongly symmetric if its parameters are such that all players have
identical �rst period equilibrium strategies. However, even in such a markedly symmetric
environment, the majority does strictly better than the minority, as the next result shows.21

Proposition 6 If � is strongly symmetric, the majority has a strictly higher ex-ante payo¤
than the minority.

This result follows from the fact that majority group members are more likely than minority
group members to be in an ingroup match. If � is strongly symmetric, an ingroup match is
more pro�table than an outgroup match. Additionally, the posteriors for a given history are
identical across groups, which implies that second period strategies are also identical. These
facts combine to produce the result.

20As this paper proposes a general model of social con�ict, the only assumed asymmetry involves the
probability of an outgroup match. The following results crucially depend on this symmetry. In modeling a
particular situation, where the symmetry assumptions are not justi�ed, a modi�ed version of our model will
su¢ ce.

21The proof is available from the author upon request.
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Note that this result crucially depends on the existence of the biased players ( > 0). In
the unperturbed game ( = 0), members of both groups have an expected payo¤ of b + 1.
Therefore if there are no biased players then we observe no payo¤ di¤erences based on group
membership.

Although Proposition 6 demonstrates that for strongly symmetric �, the majority always
does better than the minority, the majority can do worse if the equilibrium strategies across
groups are su¢ ciently asymmetric. We now present an example of such an SPBE where the
minority has a larger expected payo¤ than the majority.

Example 2 Suppose that � = 0:6, b = 2, and  = 0:55. The SPBE which corresponds
to these parameter values is described by Proposition 1 (iii). In this SPBE the minority
displays R1 and the majority does not. Therefore, the SPBE is not strongly symmetric. If
we let Ei represent the ex-ante payo¤ of player i, then it follows that:

Em = 2:825 > EM = 2:687

�

The above example demonstrates the necessity of the strong symmetry assumption in
Proposition 6. The intuition behind Example 2 is that the majority does not obtain a
reputation while the minority does. Hence, the minority does su¢ ciently better than the
majority in outgroup matches and so the minority does better overall.

In Example 2, the minority exhibits more aggressive behavior in the �rst period than does
the majority. This is a general feature of the SPBE, as we show in the next proposition.
Speci�cally, we show that the minority is always at least as likely as the majority to play H
as both a �rst and second mover in the �rst period.

Proposition 7 In every generic SPBE, the minority plays at least as aggressively as the
majority M as a �rst and second mover in the �rst period:

�M1 (1) � �m1 (1) and �M1 (H) � �m1 (H):

Proof: See Appendix.

The intuition behind Proposition 7 is that reputation is more valuable to the minority than
the majority, as the former is more likely to be in a second period outgroup match. Note
that we assume very little asymmetry between the groups; we assume uniform matching, an
equal probability of being a �rst and second mover in each period for both groups, and an
equal fraction of biased players in each group. The only assumed asymmetry relates to the
composition of society. One could imagine a situation where these symmetry assumptions are
not appropriate. However, the purpose of this paper is to investigate social outcomes when
assuming as little group asymmetry as possible. Therefore, we do not explore these issues.
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We interpret Proposition 7 to be consistent with psychology literature related to the group
identity of majorities and minorities. Psychologists �nd that minorities have a stronger group
identity than do majorities.22 As a result of this stronger identity, we expect stronger behavior;
and in the context of our model, stronger behavior means more aggressive play.

6 Concluding Remarks

We have modeled a social setting containing some agents as described by our interpretation
of the social identity literature. We have demonstrated that the struggle for resources, in
the presence of agents with a taste for discrimination, can induce agents without such a taste
to aggressively discriminate. The paper showed that for games which induce a su¢ ciently
symmetric equilibrium, the majority has a greater ex-ante payo¤ than the minority. Addi-
tionally, we showed that the minority always plays the game at least as aggressively as the
majority. We interpret this result as consistent with the experimental �ndings that minorities
have stronger group identities than do majorities.

We showed that our model is consistent with empirical papers which �nd a relationship
between social con�ict and a measure of the social heterogeneity. Our results are also consis-
tent with the literature identifying a relationship between social con�ict and the inequitability
of the environment. Indeed our model provides an individually rational explanation for these
results. One possible alternative explanation for the empirical results is that every member
of the society has a preference for better material outcomes for ingroup members, however the
fraction of agents intransigently playing H in outgroup matches is increasing in b or 1 � �.
We regard our explanation as superior to this alternate explanation, as the latter e¤ectively
assumes the result.

It should be noted that there remain interesting, unanswered questions. For instance, it
could be fruitful to investigate a model in which information is less than perfect. Obviously
some information is required for these results to hold, however it might prove productive to
investigate such weaker assumptions. It would also be interesting to model the presence of
three or more groups. It could be the case that there is be an interaction among the groups
which is not present with only two groups.

In light of the recent interest in fairness, it is useful to note that there exist aspects of every
society which could be described as unfair. In every society, economic inequalities persist on
the basis of race, religion and gender. We argue that, in economic situations, unfairness is
at least as important than fairness. It is also our opinion that the social identity literature is
useful in providing direction for the study of unfairness.

22See Gurin et. al. (1999).
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7 Appendix

The appendix is arranged as follows. First we prove some technical results which we use sub-
sequently. Then we prove our characterization of the SPBE where it is unique (Propositions
1, 2 and 3). Next we prove Proposition 4 then Proposition 7. Finally we characterize the
SPBE where it is not unique (Proposition 8).

Before we begin, note that characterizing the SPBE boils down to characterizing �i1(1),
�i1(H) and �

i
2(h

j) for all i 2M(m), j 2 m(M) and all hj 2 H. Also, we de�ne vi(hi) as the
expected payo¤ of i entering period 2 with a history of hi. The di¤erence in continuation
payo¤s can be summarized by the di¤erence in expected payo¤s as a second period, second
mover as strategy for an ingroup and outgroup as a �rst mover are independent of the player�s
own history. The following two lemmas provide useful technical results and together prove
Lemma 1.

Lemma 2 If  �
�
b�1
b

�2
then b < 2

�(1�) + 1

Proof: Note that b < 2
�(1�) + 1 is equivalent to

 >
�(b� 1)� 2
�(b� 1) : (1)

With a domain of � 2 [0:5; 1], the right hand side of (1) attains a maximum at � = 1. Therefore,

b� 3
b� 1 �

�(b� 1)� 2
�(b� 1) :

Notice that for all b > 1
3 �

b� 1
b

�2
>
b� 3
b� 1 (2)

and so (2) implies that if  �
�
b�1
b

�2
then it must be that  > �(b�1)�2

�(b�1) . Therefore, the lemma
is proved.�

Lemma 3 b < 2
(1��)(1�) + 1 (b <

2
�(1�) + 1) if and only if M (m) does not exhibit R2.

Proof: It must be that �M1 (H) > 0 if and only if

1 +

�
1� �
2

�
� 0 +

�
1� �
2

�
(b(1� ) + ) :

The left side represents the expected utility heading into the second period with a posterior
of 1 and the right side represents the expected utility entering the second period known to be
unbiased. The analogous reasoning holds for m.�

Corollary 1 R2 cannot occur in any SPBE if  �
�
b�1
b

�2
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This corollary follows from Lemmas 2 and 3 since b � 2
�(1�) + 1 (b �

2
(1��)(1�) + 1) is

a necessary condition for m (M) to display R2. This is the lower bound of b for which a
player would sacri�ce an immediate payo¤ of 1 in order to �nd entering the second period
with a posterior of 1. This allows us to restrict attention to the SPBE which contains R2
to  <

�
b�1
b

�2
. Furthermore, note that the second condition for R1 requires that (1� )(1�

�j1(H))b < 1. This implies that R1 only occurs when  � b�1
b as b�1

b >
�
b�1
b

�2
. In other

words, there are no parameter values for which the SPBE exhibits both R1 and R2, which
proves Lemma 1.

Proof of Proposition 1: In any SPBE with

2

(1� �)(1� ) + 1 >
2

�(1� ) + 1 > b

it must be that �i1(H) = 0, by Lemma 3. This implies posteriors of p
i(hi) = 1 for hi = HH and

pi(hi) = 0 for hi = DH and strategies �j(hi) = 0 for hi = HH. If �i1(H) = 0 then p(HH) = 1
and therefore �i2(HH) = 0. It also must be that �

i
2(h

j
1) = 1 if h

j
1 2 HD. Furthermore, there

can be no other SPBE strategies.
(i) It will be that �i2(h

j) = 1 if hj 2 fI; Eg because pj(hj) =  < b�1
b . It remains to

determine �i1(1) and �
i
2(H1). It cannot be that �

i
1(1) = 0 as this would imply that p

i(H1) = 1

and �j2(H1) = 0. However, a deviation is easy to �nd as both the �rst period stage game
payo¤s are higher for H:

b(1� ) > 1 (3)

and

vi(H1) > vi(D1) (4)

because pi(H1) = 1 > b�1
b > pi(D1) = 0. Therefore, �i1(1) 6= 0. It cannot be that

�i1(1) = �
� 2 (0; 1) because the �rst period, �rst mover cannot be indi¤erent between playing

H and D as a �rst mover. Therefore, �i1(1) = 1 and pi(H1) =  so that �i2(h
j) = 1.

Furthermore, there can be no other SPBE strategies.
(ii) Here it cannot be that �i1(1) = 0 as this would imply that p

i(H1) = 1, �i2(h
j) = 0 for

hj = H1. However, a deviation exists for M :

b(1� ) + vM (H1) > 1 + vM (D1)

b(1� ) +
�
1� �
2

�
(b� 1)(1� ) > 1 (5)

b� 1 +
�
1��
2

�
(b� 1)

b+
�
1��
2

�
(b� 1)

= M > :

And similarly for m:
b� 1 +

�
�
2

�
(b� 1)

b+
�
�
2

�
(b� 1)

= m
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where m > M > b�1
b . Therefore, �i1(1) > 0 despite the fact that the �rst period stage

game payo¤ for D is greater than that of H for a �rst mover of both groups. Hence, both m
and M display R1. It also cannot be that �i1(1) 2 (0; 1). In order for the �rst period, �rst
mover to mix, it would require:

b(1� ) + vi(H1) = 1 + vi(D1): (6)

Since  > b�1
b , (or b(1� ) < 1), (6) will only hold if vi(H1) > vi(D1). Expression (6) only

holds when �i1(1) is such that p
i(H1) � b�1

b . Since M > 

b(1� ) + vM (H1) > 1 + vM (D1)

if pi(H1) > b�1
b . Therefore, the only way to satisfy (6) is to select �j2(h

i) for hi = H1 such
that pi(H1) = b�1

b and this is impossible given that the prior  is strictly greater than b�1
b . If

�i1(1) is such that p
i(H1) > b�1

b then �j2(h
i) = 0 for hi = H1. Therefore, the optimal choice

is �i1(1) = 1 and as a consequence �
j
2(h

i) = 0 for hi = H1. It also follows that since  > b�1
b

that �i2(h
j) = 0 for hj 2 fI; Eg. Indeed, this last fact holds for the �nal three sections of the

proof. Furthermore, there can be no other SPBE strategies.
(iii) Since  2 (M ; m) we can make identical arguments as those given in part (ii)

only for m and not M . Therefore �m1 (1) = 1 and �M (hm) = 0 such that hm = H1. In
the case of M , it cannot be that �M1 (1) = 1 because (5) no longer holds. It cannot be
that �M1 (1) 2 (0; 1) because (6) cannot be satis�ed by any value in this range. Therefore,
�M1 (1) = 0 and �m2 (h

M ) = 0 for hM = H1 as pM (H1) = 1 as it is no longer for worthwhile
for M to display R1. Furthermore, there can be no other SPBE strategies.

(iv) Now the arguments supporting �i1(1) 2 (0; 1] in cases (ii) and (iii) do not hold for
either group. Therefore, �i1(1) = 0 and �

i
2(h

j) = 0 for hj = H1 as pi(H1) = 1. It is no longer
for either group to display R1. Furthermore, there can be no other SPBE strategies.�

Proof of Proposition 2: In any SPBE with 2
(1��)(1�) + 1 > b >

2
�(1�) + 1, it must

be that �m1 (H) = �� 2 (0; 1) such that pm(HH) = b�1
b and �M1 (H) = 0. By Lemma 3, it

cannot be that �M1 (H) > 0. Therefore, �M1 (H) = 0 and �
m
2 (h

M ) = 0 when hM = HH. In
the case of m, it cannot be that �m1 (H) = 0. It also cannot be that �

m
1 (H) = 1 as this implies

that pm(HH) =  < b�1
b and so vm(HH) = vm(DH). Therefore, �m1 (H) = 0 is a pro�table

deviation. It must be that �m1 (H) = �
� such that

pm(HH) =
b� 1
b

=


 + (1� )��

�� =

�


1� 

��
1

b� 1

�
If �m1 (H) > �

� then pm(HH) < b�1
b which would imply �M2 (h

m) = 1 where hm = HH. There
would be no bene�t for �m1 (H) > 0, and so it must be that �m1 (H) � ��. If �m1 (H) < ��

then pm(HH) > b�1
b which would imply that �M2 (h

m) = 0 where hm = HH. However, if
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�M2 (h
m) = 0 where hm = HH then �m1 (H) = 1 is optimal. By the above argument this

cannot be the case, therefore �m1 (H) = �
�. The SPBE requires

0 + vm(HH) = 1 + vm(DH)

0 +

�
�

2

�
[b(1� )(1� �M2 (HH)) + (1� )�M2 (HH) + ] = 1 +

�
�

2

�
so that

�M2 (HH) =

�
�
2

�
(b� 1)(1� )� 1�
�
2

�
(b� 1)(1� )

:

Therefore, �m1 (H) = �
� such that pm(HH) = b�1

b . Additionally, since  <
�
b�1
b

�2
< b�1

b , it

must be that �i2(h
j) = 1 for hj 2 fI; E;D1; DHg. Since  �

�
b�1
b

�2
the SPBE must be that

�M1 (1) = 1 because
b(1� )(1� ��) + vM (H1) � 1 + vM (D1) (7)

vM (H1) = vM (D1) as pM (H1) < b�1
b . Therefore, (7) holds when  �

�
b�1
b

�2
. Furthermore,

�m1 (1) = 1 and �
M
2 (h

m) = 1 for hm = H1. This is true as vm(H1) = vm(D1) and b(1�) > 1.
Furthermore, there can be no other SPBE strategies.�

Proof of Proposition 3: In any SPBE with b � 2
(1��)(1�) + 1 >

2
�(1�) + 1, it must

be that �i1(H) = �
� 2 (0; 1) such that pi(HH) = b�1

b . Here, the argument presented in the
proof of Proposition 2 goes through for both M and m. It also must be that �i2(h

j) 2 (0; 1)
where hj = HH. Just as in Proposition 2, in order to determine �M2 (HH) it must be that

0 +

�
�

2

�
(b(1� )(1� �M2 (HH)) + (1� )�M2 (HH) + ) = 1 +

�
�

2

�
and similarly for �m2 (HH). Additionally, Lemma 2 allows us to restrict attention to  <�
b�1
b

�2
< b�1

b . This allows us to determine that �
i
2(h

j) = 1 for hj 2 fI; Eg. Since  �
�
b�1
b

�2
arguments in the proof of Proposition 2 apply to both M and m therefore �i1(1) = 1 and
�i2(h

j) = 1 for hj = H1. Furthermore, there can be no other SPBE strategies.�

Proof of Proposition 4: For every set of parameter values (b; �; ), the statement of
Propositions 1, 2 and 3 map to the corresponding values of I. Therefore in the proof of
Proposition 4, we note the trajectory of I, given b and , as � varies. As 1� � changes, the
incentives for each group changes. Speci�cally, as 1 � � gets larger, the minority reputation
becomes less valuable and the majority reputation becomes more valuable. As 1� � becomes
large one of the following three possibilities occur. In the �rst case, no qualitative change
occurs in the SPBE. In the second case, the majority does not exhibit reputation whereas the
minority exhibits reputation for small 1� � and for large values does not exhibit reputation.
In the third case, the minority always exhibits reputation and for small 1 � � the majority
does not display reputation and for large values, the majority does display reputation.

Now we characterize the relationship between I and 1 � � for every pair of (b; ). If
b � 2+(1�)

3(1�) , then for all values of 1� �, it will be that I = (b+ 1)�(1� �)[4
2]. This implies
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that for values of (b; ) in this region I is strictly increasing and continuous in 1��. Therefore
1� �� = 0:5.

If b 2 (2+(1�)3(1�) ;
4+(1�)
5(1�) ) then for small values of 1 � � it will be that I = (b + 1)�(1 �

�)[(1+3)] and for large values of 1�� it will be that I = (b+1)�(1��)[42]. Intuitively, for
small 1�� the minority exhibits R1. However, for large 1��, it is no longer pro�table for the
minority to exhibit R1. This downward discontinuity occurs at 1�� such that b = 2+�(1�)

(2+�)(1�) .
Note that at this downward discontinuity the minority is indi¤erent between displaying R1 or
not. Therefore, I 2 [(b+1)�(1��)[42]; (b+1)�(1��)[(1+3)]] at 1�� where b = 2+�(1�)

(2+�)(1�) .

Hence, 1� �� is where b = 2+�(1�)
(2+�)(1�) and this is strictly larger than zero.

If b = 4+(1�)
5(1�) then I = (b+1)�(1� �)[(1+ 3)] for all values of 1� �. This implies that

for values of (b; ) such that b = 4+(1�)
5(1�) then I is strictly increasing and continuous in 1� �.

Therefore, 1� �� = 0:5.
If b 2 (4+(1�)5(1�) ;

1
1� ) then for small values 1�� it will be that I = (b+1)�(1��)[(1+3)]

and for large values of 1� � it will be that I = (b+1)�(1� �)2(1+ ). Intuitively, for small
1� � the majority does not exhibit R1 however for large 1� � the reputation of the majority
becomes su¢ ciently pro�table to display R1. This upward discontinuity occurs at 1� � such
that b = 2+(1��)(1�)

(3��)(1�) . Note that at this discontinuity, the majority is indi¤erent between
displaying R1 or not. Thus, I 2 [(b+ 1)�(1� �)[(1 + 3)]; (b+ 1)�(1� �)2(1 + )] at 1� �
where b = 2+(1��)(1�)

(3��)(1�) . As there is a single upward discontinuity and is increasing at every
point of continuity therefore 1� �� = 0:5.

If b = 1
1� then for all values of 1 � � it will be that I 2 [(b + 1)�(1 � �)[(1 + 3)]; (b +

1)�(1 � �)(3:5 + 0:5)]. Note that for these particular values of b and  any value of I
in the above speci�ed region will su¢ ce. However, given any second period strategies for
the histories I, H1 or E, e¢ ciency loss is increasing and continuous in 1 � �. Therefore,
1� �� = 0:5.

If b 2 ( 1
1� ;

2
1�+1] then for all values of 1�� it will be that I = (b+1)�(1��)(3:5+0:5).

This implies that for values of (b; ) in this region I is strictly increasing and continuous in
1� �. Therefore, 1� �� = 0:5.

If b 2 ( 2
1� + 1;

4
1� + 1) then for small values of 1 � � it will be that I = (b + 1)�(1 �

�)(3:5+ �
2+
�
1��
2

�
) and for large values of 1�� it will be that I = (b+1)�(1��)(3:5+0:5).

Intuitively, for small 1� � the minority exhibits R2 and for large 1� � the minority does not
exhibit R2. This boundary occurs at 1� � 2 (0; 0:5) such that b = 2

�(1�) + 1. Although the
minority is indi¤erent between exhibiting R2 or not, it is not the case that any combination
will su¢ ce. Therefore, at 1 � �00 where b = 2

�(1�) + 1, the minority either exhibits R2 or

not: I 2 f(b + 1)�(1 � �)(3:5 + 0:5); (b + 1)�(1 � �)(3:5 + �
2 +

�
1��
2

�
)g. Due to the

particular behavior of (b+ 1)�(1� �)(3:5 + �
2 +

�
1��
2

�
) we denote its interior maximum as

1 � �0 = 9��
p
2+6+57

3(1�) . The quantity 1 � �0 is increasing from 0:4833 when  = 0 to 0:5
when  = 1. Therefore, 1� �� = minf1� �0; 1� �00g and this is bounded away from zero.

If b = 4
1�+1 then for all values of 1�� it will be that I = (b+1)�(1��)(3:5+

�
2+
�
1��
2

�
).

This implies that for values of b and  in this region I is strictly increasing and continuous in
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1� �. Therefore, 1� �� = 1� �0

If b 2 ( 4
1�+1;1) then for small values of 1�� it will be that I = (b+1)�(1��)(3:5+

�
2+�

1��
2

�
) and for large values of 1�� it will be that (b+1)�(1��)4. Intuitively, for small 1��

the majority does not �nd it pro�table to exhibit R2 however for large 1� � the reputation of
the majority becomes su¢ ciently pro�table. This upward discontinuity occurs at 1� � such
that b = 2

(1��)(1�) +1. Although the majority is indi¤erent between exhibiting R2 or not, it
is not the case that any combination will su¢ ce. Therefore, the majority either exhibits R2
or not: I 2 f(b+ 1)�(1� �)(3:5 + �

2); (b+ 1)�(1� �)4g at 1� � where b =
2

(1��)(1�) + 1.
Therefore, 1� �� = 1� �0.

Therefore, for every value of (b; ) there exists 1� �� > 0 such that for all 1� � < 1� ��,
e¢ ciency loss I is increasing in 1� �.�

Proof of Proposition 7: We begin by showing that �M1 (H) � �m1 (H). Suppose there
was an SPBE such that

�M1 (H) > �
m
1 (H):

First note that by Lemma 2, if �i1(H) > 0 then  <
�
b�1
b

�2
. If �i1(H) = 1 and  < b�1

b

then there is no bene�t to foregoing payment in the �rst period because pi(HH) =  < b�1
b .

Furthermore, arguments advanced in the Proof of Proposition 2 show that if �i1(H) 2 (0; 1)
then it must be that �i1(H) = �

� such that pi(HH) = b�1
b . Therefore, �

i
1(H) 2 f0; ��g. To

satisfy the inequality it must be that �M1 (H) = �
� > �m1 (H) = 0. In order to support this

SPBE it must be that
1 = vM (HH)� vM (DH)

and therefore

1 =

�
1� �
2

�
(b� 1)(1� )(1� �m2 (HH)).

It must also be that

1 > vm(HH)� vm(DH)

1 >

�
�

2

�
(b� 1)(1� ).

This is a contradiction as�
1� �
2

�
(b� 1)(1� )(1� �m2 (HH)) <

�

2
(b� 1)(1� )

and so it is proved that �M1 (H) � �m1 (H).
Now we show that �M1 (1) � �m1 (1). By way of contradiction, suppose that:

�M1 (1) > �
m
1 (1).

In the case that  > b�1
b , for all �

i
1(H) 2 [0; 1], it must be that pi(HH) > b�1

b and so
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�j2(HH) = 1. Therefore, in order for �
i
1(H) 2 (0; 1), it must be that23

b(1� ) + vi(H1) = 1 + vi(D1):

This condition only holds for M in the case of the majority and m in the case of the minority.
Since we are restricting attention to generic parameters, we can exclude �i1(H) 2 (0; 1).
Therefore, the only remaining case for  > b�1

b is: 1 = �M1 (1) > �
m
1 (1) = 0. This implies that

b(1� ) + vM (H1) > 1 + vM (D1)

b(1� ) + vm(H1) < 1 + vm(D1)

and so �
�

2

�
(b� 1)(1� ) < 1� b(1� ) <

�
1� �
2

�
(b� 1)(1� ):

This is a contradiction and so for  > b�1
b , it must be that �

M
1 (1) � �m1 (1).

In the case that  < b�1
b , �

i
1(H) will a¤ect �

j
2(HH). We investigate �i1(H) 2 (0; ��) [

f��g [ (��; 1) where �� =
�


(1�)(b�1)

�
which implies pi(HH) = b�1

b . In order for i to mix,
it must be that:

b(1� )(1� �j1(H)) + vi(H1) = 1 + vi(D1): (8)

It must be that vi(H1) � vi(D1). Since  < b�1
b , (8) only holds when �

j
1(H) > 0. However,

since �j1(H) only takes one nonzero value:


(1�)(b�1) . Since a player is displaying R2, by

Lemma 2 it must be that  <
�
b�1
b

�2
. However, b

�
1� b

b�1

�
= 1 is not satis�ed by any

 <
�
b�1
b

�2
therefore b

�
1� b

b�1

�
+vi(H1) = 1+vi(D1) cannot be satis�ed by any  <

�
b�1
b

�2
.

Therefore, the only remaining case for  < b�1
b is: 1 = �M1 (1) > �m1 (1) = 0. In this case,

vM (H1) = vM (D1) as pM (H1) =  < b�1
b . A deviation of m would imply pm(H1) = 1 and

therefore, vm(H1) > vm(D1). This leads to a contradiction as it cannot be that

b(1� ) > 1

and
b(1� ) + vm(H1) < 1 + vm(D1):

Therefore, �M1 (1) � �m1 (1) for generic parameter values.�

7.1 Non-generic parameter values

The SPBE is generically unique, as the following corollary shows. Following the corollary, is
a result which describes the SPBE for non-generic parameter values. There exists a set 	,
of measure zero, in the parameter space for which the SPBE is not unique. For parameter

23Note that since  > b�1
b
no player displays R2.
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values not contained in 	, the SPBE is unique. We explicitly de�ne 	 as

	 = f(b; �; ) : b 2 f 2

�(1� ) + 1;
2

(1� �)(1� ) + 1g

or  2 fb� 1
b
;
b� 1 +

�
1��
2

�
(b� 1)

b+
�
1��
2

�
(b� 1)

;
b� 1 +

�
�
2

�
(b� 1)

b+
�
�
2

�
(b� 1)

gg

The following corollary follows from Propositions 1, 2 and 3.

Corollary 2 If parameters (b, �, ) are not contained in the set 	 then the � satisfying the
conditions for SPBE will be unique.

Lemma 2 demonstrates that either a condition for b can be satis�ed or a condition for
 can be satis�ed, but not both. The values of b given above are the values for which the
minority (respectively majority) will be indi¤erent between displaying R2 or not. The �rst
value of  represents the value for which a second period, second mover will be indi¤erent
between playing H and D against an opponent with a history h such that pi(h) = . The
second (and third) value(s) of  denotes the parameter for which the majority (minority) is
indi¤erent between displaying R1 and not.

Now, we characterize the SPBE for each element of 	.

Proposition 8 (a) If b < 2
�(1�) + 1 and  =

b�1
b then the SPBE is not unique as the

strategies speci�ed in Proposition 1 (i) or (ii) or any mixture will su¢ ce.

(b) If b < 2
�(1�) +1 and  =

b�1+( 1��2 )(b�1)
b+( 1��2 )(b�1)

then the SPBE is not unique as the strategies

speci�ed for M in Proposition 1 (ii) or (iii) or any mixture will su¢ ce.

(c) If b < 2
�(1�) + 1 and  =

b�1+( �2)(b�1)
b+( �2)(b�1)

then the SPBE is not unique as the strategies

speci�ed for m in Proposition 1 (iii) or (iv) or any mixture will su¢ ce.
(d) If b = 2

�(1�) + 1 then the SPBE is not unique as the strategies speci�ed for m in
Proposition 2 and those speci�ed in Proposition 1 (i), however no mixture between them will
su¢ ce.

(e) If b = 2
(1��)(1�) + 1 then the SPBE is not unique as the strategies speci�ed for M

in Proposition 3 and those speci�ed in Proposition 2, however no mixture between them will
su¢ ce.

Proof: In the case of (a), any �i2(h) 2 [0; 1] where h such that pj(h) =  is an SPBE. For
such histories, the second period, second mover is indi¤erent between actions. For histories I,
H1 and E any second period strategies will su¢ ce. In the case of (b), the majority is indi¤erent
between displaying R1 or not. Any �M1 (1) 2 [0; 1] will constitute an SPBE. These �rst
period, �rst mover strategies will induce posteriors strictly between  and 1. Therefore, the
second period strategies are unchanged. In the case of (c), the minority is indi¤erent between
displaying R1 or not. Reasoning similar to case (b) applies to m. In the case of (d), the
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minority is indi¤erent between displaying R2 or not. However, unlike the previous cases, the
SPBE cannot contain any mixture between the equilibria will not form a SPBE. Given
condition (iii) of the de�nition of SPBE it must be either �m1 (H) 2 f0;

�


(1�)(b�1)

�
g. Any

other value would imply pm(HH) 6= b�1
b . Unlike the cases of (a), (b), and (c), the �rst period

strategy nontrivially a¤ects the second period posteriors, as  < b�1
b . For the parameter

values given, there is no deviation from the m strategy given in Proposition 2. Likewise,
there is no deviation from the strategy given in Proposition 1(i). In the case of (e), the
majority is indi¤erent between displaying R2 or not. Reasoning similar to case (d) applies to
M .�

The statement of Proposition 8 elucidates Figure 6 in the body of the paper. In this
�gure, the relationship between I and b is connected at 3 points of discontinuity ((a), (b) and
(c)) and not connected at two points of discontinuity ((d) and (e)).
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γ

Figure 1-SPBE regions of b and  given �

Figure 2-E¢ ciency loss strictly increasing in heterogeneity.

Figure 3-E¢ ciency loss almost everywhere increasing in heterogeneity, with a single
downward discontinuity.

31



Figure 4-E¢ ciency loss everywhere increasing in heterogeneity, with a single upward
discontinuity.

Figure 5-E¢ ciency loss increasing in heterogeneity, with a maximum at 0:485 and a
downward discontinuity at 0:49.

Figure 6-Probability of an ine¢ cient outcome
and the inequitability of the environment.
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