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Abstract

In the paper a new approach to the modelling of common compo-
nents in long memory processes is introduced. The approach is based
on a two-step procedure relying on Fourier transform methods (�rst
step) and principal components analysis (second step), which, di¤er-
ently from previous contributions to the literature, allows the mod-
elling of large data sets, both in terms of temporal and cross-sectional
dimensions. Monte Carlo evidence, supporting the two-step estima-
tion procedure, is also provided, as well as an empirical application to
real data.
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1 Introduction

Recent contributions to the literature have considered the estimation of single
or common long memory components for time series observed with or with-
out measurement error/noise.1 Among the seminal contributions, Harvey
(1998) has proposed the use of the Wiener-Kolmogorov �ltering approach,
generalized to the multivariate common long memory components case by
Morana (2002). Beltratti and Morana (2006) have also proposed a semipara-
metric version of the Harvey (1998) �lter, showing a similar performance of
the parametric version in Monte Carlo simulations, with the advantage of not
requiring the speci�cation of the exact parametric structure of the process
under investigation. Moreover, Arino and Marmol (2004) have generalized
the Beveridge-Nelson (1981) permanent-transitory decomposition to the case
of univariate non stationary long memory processes, while in Morana (2004)
and in Morana (2006) two approaches for the estimation of the common long
memory components in fractionally cointegrated processes2, based on the
Kasa (1992) and the Gonzalo and Granger (1995) decompositions, respec-
tively, have been proposed. The advantage of these latter two approaches,
relatively to those existing in the literature, is that the decomposition is
carried out without requiring the numerical maximization of the frequency
domain likelihood function, which can become computationally di¢ cult as
the number of processes increases.
In the paper a new permanent (P)-persistent (P)-non persistent (NP) de-

composition (P-P-NP) or permanent (P)-transitory (T) decomposition (P-
T) for multivariate long memory processes is introduced. The approach is
based on a two-step procedure, requiring the computation of the P-P-NP or
P-T decomposition of each individual series by means of Fourier transform
(FT) based �ltering (�rst step), and of the common long memory factors
by means of principal components analysis (PCA) (second step). Relatively
to previous contributions, the proposed approach has the advantage of be-
ing computationally fast and easily implementable also when the temporal
or cross-sectional dimension is very large. Moreover, both a statistical and
economic interpretation in terms of long term, medium term and short term
forecasts/components, respectively, can be given to the estimated compo-
nents. While recent works of Bai (2003, 2004) and Bai and Ng (2004) have
justi�ed the use of the PCA estimator also for strongly dependent processes,
in this paper Monte Carlo evidence supporting the use of the PCA estimator
also for the case of long memory processes is provided. Monte Carlo evidence

1See Baillie (1996) and Robinson (2003) for an introduction to long memory processes.
2See Engle and Granger (1987), Robinson and Yajima (2002) and Marinucci and Robin-

son (2001) for details about the concept of fractional cointegration.
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supporting the proposed two-step estimation procedure is provided as well.
Finally, an empirical application showing how the two-step approach can be
implemented is provided.
After this introduction, the paper is organized as follows. In Sections

2 and 3 the econometric methodology is introduced and the Monte Carlo
evidence discussed; in Section 4 the empirical application is presented, while
in Section 5 conclusions are drawn.

2 Econometric methodology

2.1 P�P-NP and P-T decompositions

Consider the long memory process fytgT�1t=0 (I(d); 0 < d < 1). For the station-
ary long memory case (0 < d < 0:5) the following Permanent-Persistent-Non
Persistent (P-P-NP) decomposition holds

yt = �+ Pt +NPt; (1)

where � is the unconditional mean of the series, i.e. the permanent compo-
nent, Pt is the persistent component (I(d), 0 < d < 0:5) and NPt is the non
persistent component (I(0)3). The unconditional mean component � can be
interpreted as the long-run forecast for the series yt, since lim

s!1
Et+syt = �;

given that lim
s!1

Et+sNPt = 0 and, for d < 0:5, lim
s!1

Et+sPt = 0:4 The mean

component is denoted as the long-run component (LRC). The persistent
component can be interpreted as the medium-run component (MRC), since
for a su¢ ciently long, but �nite, forecast horizon lim

s!k<1
Et+s(yt � �) =

lim
s!k<1

Et+sPt; since lim
s!k<1

Et+sNPt = 0: The non persistent component can

�nally be interpreted as the short-run component (SRC).
On the other hand, for the non stationary long memory case (I(d), 0:5 �

d < 1) the following Permanent-Transitory (P-T) decomposition holds

yt = Pt + Tt; (2)

where Pt is the permanent component (I(d), 0:5 � d < 1) and Tt is the
transitory component (I(0)). In this setting the component Pt can be in-
terpreted as the long-run forecast for the series yt, since lim

s!1
Et+syt = Pt

3An I(0) process is a stochastic process which does not require (integer/fractional)
di¤erencing to become weakly stationary. It is characterized by �nite long-run variance,
or, equivalently, �nite spectral density at the zero frequency.

4This follows from the fact that, under covariance stationarity, the mean reversion
property implies that the long-run forecast converges to the unconditional mean.
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and lim
s!1

Et+sTt = 0.5 Moreover, the permanent component is denoted as the

long-run component (LRC), while the transitory component as the short-run
component (SRC).

2.1.1 Estimation

While the estimation of the permanent component in the stationary long
memory case can be performed by means of the sample mean estimator6, the
estimation of the persistent (I(d), 0 < d < 0:5)/permanent (I(d), 0:5 � d <
1) component Pt can be performed as follows. Firstly, the discrete Fourier
transform of the demeaned yt process (yM;t), is computed

~yt =
1

T

T�1X
k=0

yM;te
i2�k=T . (3)

Then, the portion of the transformed process corresponding to the non
persistent/transitory component is discarded by setting

~y�t =

�
~yt 0 � t � H
0 t > H

.

Finally, the Pt component is estimated by applying the inverse discrete
Fourier transform to ~y�t , yielding

P̂t =
1

T

T�1X
k=0

~y�t e
�i2�k=T .7 (4)

5The 0:5 � d < 1 case is often referred as the non stationary, yet mean reverting,
long memory case. The mean reversion property depends on the fact that the e¤ects of
shocks eventually dye out, i.e, provided d < 1, the sequence of impulse response weights
converges to zero asymptotically. It is the dissipation of shocks that allows one to denote
these non covariance stationary processes as �mean reverting�(Robinson, 2003; p.20). Yet
this characterization is not fully accepted in the literature. For instance, Phillips and Xiao
(1999, p.34) have argued against the latter interpretation, due to the lack of covariance
stationarity. The author is grateful to a referee for having raised this issue and a very
useful discussion on this point.

6Results of Beran (1994, ch.8) point that the sample mean estimator is unbiased and
e¢ cient also in the stationary long memory case (0 < d < 0:5). In the Gaussian case the
estimator is also the maximum likelihood estimator and therefore it is optimal relative
to the class of both linear and non linear estimators. The sample mean estimator is also
consistent, albeit the rate of convergence in the stationary long memory case is slower than
for the i.i.d. case: T�d rather than T�0:5. E¢ cient and robust estimators of the location
parameter belonging to the class of M-estimators have also been proposed in Beran (1994,
ch.8). It is found that the loss of e¢ ciency for this latter class of consistent estimators,
relatively to the sample mean estimator, is small and null in the case of Gaussian long
memory processes.

7For the non stationary long memory case the standard FT formula requires a cor-
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A two-step procedure for the determination of the trimming frequency
2�H=T can be followed. Once the degree of fractional integration (d̂y) of the
process yt has been determined, candidate persistent/permanent processes
are computed by allowing H to vary, i.e. H = f3; 4; :::T � 1g ; computing,
in correspondence of each value of H, the degree of persistence of the recon-
structed persistent/permanent (d̂s;H) and non persistent/transitory (d̂n;H)
components. The optimal trimming frequency can then be determined by
selecting H in such a way that

d̂s;H ' d̂y and dn;H ' 0;

i.e. as the frequency at which the reconstructed persistent/permanent com-
ponent has a degree of persistence not statistically di¤erent from the one
of the actual process and the reconstructed non persistent/transitory com-
ponent has a degree of persistence not statistically di¤erent from zero. In
the case more than a frequency satis�ed this latter criterion, the farthest
one from the zero frequency may be selected in order not to disregard sig-
nal potentially belonging to the persistent/permanent component. On the
other hand, if a smoothed version of the unobserved component is sought,
or when the non persistent/transitory component may still be an integrated
process I(b), 0 < b < d, although of lower order than the actual series, the
optimal trimming frequency may be set equal to the closest one to the zero
frequency, still satisfying the above persistence requirements. Once the per-
manent and persistent components are available, the N̂Pt and T̂t components
can be obtained as yM;t � P̂t. Monte Carlo results, providing full support to
the proposed methodology, are reported in the next section.8

rection. In fact, from formula [59] in Phillips (1999), for the process (1� L)d xt = ut,
t = 1; :::; T , 0:5 < d < 1 it is found wx(�s) ' (1 � ei�s)�dwu(�s) � ei�s

1�ei�s
xTp
2�T

. See
also Knsch (1986) on FT of stationary long memory processes, and Pollock (2005) for
additional details on FT based signal extraction methods. Finally, see Engle (1974) for a
seminal contribution to FT based �ltering and estimation.

8There are two other non stationary cases of interest, which are not directly covered
by the proposed approach. The �rst one is the non mean reverting fractional integration
case, i.e. the d � 1 case. The second one is the deterministic non stationary case. Yet, the
proposed approach could be still employed to handle such cases. The non mean reverting
case would require integer di¤erencing to be applied to the series before FT �ltering, and
then the integration of the estimated signal. On the other hand, the deterministic non
stationary case would require the �ltering out of the deterministic break process before FT
�ltering is performed on the series, and then its addition to the estimated signal obtained
from the break-free process.
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2.2 P-P-NP and P-T decomposition for long memory
processes with common persistent components

Consider the vector of n I(d) fractionally cointegrated pure long memory
processes yt. The de�nition of fractional cointegration employed is the one
of Engle and Granger (1987), according to which the vector process of order n
is fractionally cointegrated of order d and b, i.e. CI(d; b), if there exist up to
n�1 linear combinations of the series characterized by an order of integration
equal to b, with b < d. Then, a permanent-persistent-non persistent (P-P-
NP) decomposition or a permanent-transitory (P-T) decomposition for the n
series can be carried out by means of a two-step procedure based on Fourier
transform and principal components analysis, and written as

yt = �̂+ P̂t + N̂Pt (5)

for the stationary long memory case, or

yt = P̂t + T̂t (6)

for the non stationary long memory case, where �̂ is the n � 1 vector of
estimated unconditional mean components, P̂t is the n�1 vector of estimated
long memory components (I(d), 0 < d < 1), and N̂Pt or T̂t is the n � 1
vector of estimated short memory components (or less persistent components
I(b), b < d).
Once an estimate of the individual permanent/persistent components is

available (P̂t), i.e. the FT based �rst step has been carried out, the s com-
mon long memory factors can be obtained by means of principal components
analysis, applied to the estimated persistent/permanent processes (second
step).9

The decomposition can be written as

yt = �̂+ �̂f t +NP
�
t ; (7)

or
yt = �̂f t +T

�
t ; (8)

where �̂ = B̂�̂
1=2

p is the estimated n� s common long memory factor load-
ing matrix, �̂p is the estimated diagonal matrix of the non zero eigenval-
ues of the estimated reduced rank variance-covariance matrix of the persis-
tent/permanent processes �̂p (rank s < n), B̂ is the estimated matrix of

9Bierens (2000) has proposed a similar approach for the estimation of the common non
linear deterministic components from a set of estimated individual non linear deterministic
components. Yet, the discussion of this approach cannot be found in the published version
of his paper.
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the associated orthogonal eigenvectors, and ft = �̂
�1=2
p B̂

0
P̂t is the estimated

s � 1 vector of the standardized (�̂p = Is) estimated principal components
or common persistent/permanent processes. Finally, NP�t = N̂Pt + "̂p;t and
T�t = T̂t + "̂p;t, where "̂p;t is an n� 1 vector of estimated idiosyncratic com-
ponents from P̂t = �̂f t + "̂p;t.10

To date no theoretical results concerning the asymptotic properties of
the (time domain) PCA estimator for long memory processes have been pro-
vided in the literature. Yet, recent theoretical developments of Bai (2003,
2004) and Bai and Ng (2004) have justi�ed the use of the PCA estimator
also for dependent processes. In particular, Bai (2004) has considered the
generalization of PCA to the case in which the series are weakly dependent
processes, establishing consistency and asymptotic normality when both the
unobserved factors and idiosyncratic components show limited serial corre-
lation, also allowing for heteroskedasticity in both the time and cross section
dimension in the idiosyncratic components. In Bai (2003) consistency and
asymptotic normality has been derived for the case of I(1) unobserved factors
and I(0) idiosyncratic components, also in the presence of heteroskedasticity
in both the time and cross section dimension in the idiosyncratic compo-
nents. Finally, Bai and Ng (2004) have established consistency also for the
case of I(1) idiosyncratic components. As pointed out by Bai and Ng (2004),
consistent estimation should also be achieved by PCA in the intermediate
case represented by long memory processes. Monte Carlo evidence that the
performance of the principal components approach is indeed not a¤ected by
the presence of long memory, being also robust to the presence of moderate
noise, is provided in the section below.

10The Engle and Granger (1987) de�nition of fractional cointegration is not the only one.
Generalizations considered in Marinucci and Robinson (2001) and Robinson and Yajima
(2002) allow for the case of subsets of variables showing di¤erent orders of integration. If
some of the higher order variables cointegrate within their own subset, the consequent order
reduction may allow fractional cointegration to concern variables belonging to di¤erent
subsets. The proposed approach allows to handle this latter case, requiring the PCA
analysis to be carried out considering subsets of variables characterized by the same order
of integration. For instance, common factors would be �rst extracted within the block of
higher order variables and the corresponding cointegration relationships estimated. Then,
the lower order estimated cointegrating errors would be included, as variables, in the block
composed of the other series of the same integration order and the PCA analysis carried
out on this latter block of variables.
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3 Monte Carlo results

Two Monte Carlo experiments have been carried out to evaluate the perfor-
mance of the decomposition methodology, as well as the PCA approach to
common long memory factor estimation.

3.1 P-NP and P-T decomposition

The following data generation process has been assumed for the series

yt = Pt +NPt

(1� L)dPt = "t

"t~n:i:d:(0; 1)

NPt = �t or Tt = �t
�t~n:i:d:(0; �

2)

Cov("t; �s) = 0 t� s = 0; 1; :::

with d = f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g; �2 = f2; 1:5; 1; 0:5; 0:25; 0:125g;
t = 1; :::; T , T = 100; 1000: The number of replications has been set to 500
for each case. In the assessment, the degree of persistence of both the ac-
tual series and the persistent component have been estimated11, so that the
evaluation concerns the feasible version of the proposed methodology. The
performance of the approach has also been evaluated assuming di¤erent de-
grees of bias in the estimation of the fractional di¤erencing operator, i.e. the
size of the bias has been set to b = f0:1; 0:2; 0:3;�0:3;�0:2;�0:1g.

3.2 Common long memory factor estimation

The following data generation process has been assumed for the series

yt = �f t + vt

vt~n:i:d:(0;�)

�f t = "t

"t~n:i:d:(0; I);

Cov("it; �js) = 0 t� s = 0; 1; ::: 8i; j

where yt; t = 1; :::; T , T = f100; 1000g, is a n � 1 vector of generated
processes with n = f2; 3; 4; 6; 8g, � is a k�k diagonal matrix � = diag((1�
11For its good properties and robustness to bandwidth selection, the estimator proposed

by Robinson (1998) has been employed.
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L)d; :::; (1 � L)d), ft is a k � 1 vector of generated common order (d) long
memory processes with k = f1; 2g, � is a n�k factor loading matrix , de�ned
as � =

�
1 ::: 1

�0
in the single factor case for n = 2; 3; 4,

� =

�
1 1 0 0
0 0 0:5 0:5

�0
in the two-factor case for n = 4,� =

�
1 1 1 0 0 0
0 0 0 0:5 0:5 0:5

�0
in the two-factor case for n = 6, and� =

�
1 1 1 1 0 0 0 0
0 0 0 0 0:5 0:5 0:5 0:5

�0
in the two-factor case for n = 8, d = f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g,
vt is a n�1 vector of generated idiosyncratic Gaussian white noise processes,
� is a n�n diagonal matrix, with� = diag(�2; :::; �2), �2 = f2; 1:5; 1; 0:5; 0:25; 0:125g.
The number of replications has been set to 500 for each case. The robust-
ness of the approach to wrongly neglecting the presence of one factor, in the
estimation of the other factor, has been evaluated as well.

3.3 Results

The performance of the estimators has been assessed with reference to the
ability of recovering the unobserved components Pt, and ft, respectively. The
Theil inequality coe¢ cient (IC) and the correlation coe¢ cient (�) have been
employed in the evaluation

IC =

vuut 1
T

TX
t=1

(x�t � x̂t)
2

vuut 1
T

TX
t=1

x�2t +

vuut 1
T

TX
t=1

x̂2t

;

� =
Cov(x�t ; x̂t)p
V ar(x�t )V ar(x̂t)

;

where x�t is the true unobserved component and x̂t is its estimated counter-
part. The above statistics have been computed for each Monte Carlo repli-
cation and then averaged. For the two-factor case, averages of the statistics
obtained for the two estimated factors are reported.
The results of the Monte Carlo exercise for the P-NP and P-T decompo-

sitions and the principal components (PCA) factor estimation approach are
reported in Tables 1-9. As is shown in Table 1, the performance of the P-NP
and P-T �ltering approaches is satisfactory, both in terms of correlation co-
e¢ cient and inequality coe¢ cient. In general the performance of the �ltering
approach tends to increase with the degree of persistence of the series and
the sample size, and to decrease with the inverse signal to noise ratio. As far
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as the e¤ects of a change in the degree of persistence is concerned, they are
particularly noticeable when the non stationary and stationary long memory
cases are compared, for large inverse signal to noise ratios. For instance, in
the worst case (T = 100, �2 = 2) an increase in the correlation coe¢ cient
of up 200%, from 0.36 to 0.78, may be noted as the persistence parameter
increases from 0 to 0.9 (from 0.343 to 0.973 in the large sample case). Less
dramatic improvements can be noted as the inverse signal to noise ratio falls,
bottoming at about 10% for the best case scenario (�2 = 0:125), where the
correlation coe¢ cient is never below 0.87 (0.89 in the large sample case). The
increase in performance due to the increase of the sample size is also notice-
able, particularly for the non stationary case and when the inverse signal to
noise ratio is large, with an increase in the correlation coe¢ cient up to about
20%, i.e. from 0.78 to 0.98 in the best case scenario (d = 0:9, �2 = 2).
Similar �ndings hold when the inequality coe¢ cient is employed in the

assessment. For instance, even in the worst case scenario values larger than
0.50 are found only in 8% of the cases (T = 100, �2 = 2, d < 0:5), the IC
statistic being below 0.30 in 50% of the cases and below 0.40 in about 70%
of the cases. Even better results can be found for the large sample case, with
the IC statistic taking values larger than 0.50 only in the 5% of the cases,
and below 0.30 and 0.40 in 60% and 72% of the cases, respectively.
Moreover, as shown in Table 2, estimating the fractional di¤erencing pa-

rameter with moderate positive bias only has a small negative impact on the
ability of the estimator to recover the actual process, particularly when the
inverse signal to noise is large. In terms of correlation coe¢ cient, up to a
20% loss in performance can be found in the worst case (� = 2) for the large
sample case, while an up to 10% loss in performance can be found in the small
sample case. Yet, the �ndings are not univocal since, in some cases, also an
improvement in performance is associated with the postive bias, particularly
for the d = 0:4 case. Coherent with the �ndings for the correlation coe¢ cient,
no major di¤erences can also be found for the IC statistic.12 Therefore, it can
be concluded that the proposed P-NP �ltering approach shows a satisfactory
performance, being robust to the presence of noise, sample size, degree of
persistence, and biased estimation of the degree of persistence.
As far as the PCA approach is concerned, as shown in Tables 3-9, in-

dependently of the number of factors, the performance of the approach is
negatively a¤ected by the presence of noise, but positively a¤ected by the
degree of persistence of the series, and the temporal and crossectional di-
mensions of the sample. For instance, for the single factor case increasing

12Results for the negative bias case are qualitatively similar and are not included for
reasons of space. They are however available upon request from the author.
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the crossectional dimension of one unit, i.e. from n = 2 to n = 3, leads to
an increase in the correlation coe¢ cient of up to 20%, while increasing it of
a further unit, i.e. from n = 3 to n = 4, yields an additional improvement
of up to 10%. Yet, the improvement in performance, due to increasing the
crossectional dimension of the sample, tends to be less noticeable as the de-
gree of persistence increases. Di¤erently, the improvement in the correlation
coe¢ cient due to increasing the temporal dimension of the sample tends to
increase with the degree of persistence, with the extension of the sample size
from 100 to 1000 observations leading to an increase of up to 30% in the
correlation coe¢ cient between the actual and generated factors. As far as
the e¤ects of observational noise are concerned, independently of the crossec-
tional dimension of the sample, the negative impact tends to become stronger
as the temporal dimension of the sample lowers as well as the degree of per-
sistence decreases. For instance, in the worst case (n = 2, d = 0:2) increasing
the inverse signal to noise ratio from 0.125 to 2 yields more than a halving
in the correlation coe¢ cient. Finally, as far as the e¤ects of the degree of
persistence on the performance of the approach are concerned, independently
of the size dimensions of the sample, an increase in the fractional di¤erenc-
ing parameter leads to an improvement in the correlation coe¢ cient between
the actual and estimated factors, with the improvement been particularly
noticeable when the stationary long memory case is compareed with the non
stationary long memory one. The best cases for the n = 2, n = 3, and n = 4
cases point to an increase of up to 100%, 70%, and 50%, respectively. Yet,
the performance of the approach is always very satisfactory. Even in the
worst case, i.e. n = 2, d = 0:2, T = 100, �2 = 2, the correlation coe¢ cient
between the actual and estimated factor is close to 0.40, while, when the
e¤ects of the observational noise are negligible (�2 = 0:125), the correlation
coe¢ cient, for the same case, is close to 0.90. Yet, even in the presence of
observational noise (�2 = 2), the correlation coe¢ cient is larger than 0.60 for
the non stationary case (n = 2, d > 0:5, T = 100). Similar conclusions holds
when the inequality coe¢ cient is employed, with the coe¢ cient exceeding the
0.5 value only in 8% of cases in the worst scenario (n = 2; T = 100). Still in
the worst scenario the Theil inequality coe¢ cient takes values below 0.3 in
50% of the cases and below 0.40 in 75% of the cases.
As shown in Tables 7, 8, and 9, similar results hold for the two-factor case

as well, although in general the performance of the PCA approach tends to
be lower than for the single factor case. This �nding is a consequence of the
averaging of the results for the two factors, since, as far as the �rst factor
alone is concerned, the performance of the method is actually superior to
what found for the single factor case, due to the large number of relevant
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series involved.13

Moreover, by comparing Tables 6 and 3 it is possible to notice that the
performance of the approach does not seem to be a¤ected by the inclusion of
information (additional variables) non relevant for the estimation of the fac-
tor of interest. In fact, �gures for the two cases are always very close, without
evidence of a clear ranking pattern. This �nding can also be interpreted as
poiting that the performance of the approach is not negatively a¤ected by
neglecting a second factor when estimating the one of interest, i.e. the �rst
one. This result is fully coherent with the way the PCA estimator extracts
the common factors, with the factor explaining the higher proportion of to-
tal variance being not a¤ected, by construction, by the other factors which
follows in estimation.
From above the results it can then be concluded that also the overall

performance of the PCA approach is very satisfactory, being robust to the
presence of noise, degree of persistence and temporal/crossectional sample
size.
Then, overall, the �ndings suggest that both the P-NP and P-T decompo-

sition and the principal components approach may be successfully employed
in the case of long memory processes.

4 An application to interest rate volatility

In the application daily realized volatility14 processes for the overnight in-
terest rate, and the one-week, two-week, one-month, three-month, six-month
and twelve-month EONIA swap rates have been employed. The realized
volatility processes have been obtained from intra-daily observations, sam-
pled at the 5-minute frequency. The latter have been computed as averages of
real-time, bid-ask quotes taken from REUTERS screens. The sample investi-
gated is from 28/11/2000 through 22/04/2005, for a total of 107,291 5-minute
observations, excluding weekends and holidays. Excluding thin trading days
(days in which prices did not change) 91,392 usable observations were left,
i.e. 952 days, with 95 5-minutes observations each (from 9 a.m. to 5 p.m.).
The implementation of the approach requires at the �rst stage the esti-

mation of the degree of persistence of each series. In order to achieve robust
conclusions on the order of integration of the series, both parametric and

13For reasons of space detailed results are not reported. They are however available
from the author upon request.
14See Andersen et al. (2001) and Barndor¤-Nielsen and Shephard (2002).
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semiparametric estimators have been employed. The semiparametric estima-
tors employed belong to two classes, i.e. log periodogram estimation (GPH,
Geweke and Porter-Hudak, 1983), and local Whittle estimation (Künsch,
1987; Robinson,1995), considering, in addition to the original contributions,
also recent extensions.15 Following Taqqu and Teverovsky (1998), in all the
cases the �nal estimates have been obtained as averages over the stable re-
gion closest to the zero frequency. On the other hand, parametric estimation
of the fractional di¤erencing operator has been performed by means of ex-
act maximum likelihood (Sowell, 1992), modi�ed pro�le likelihood (An and
Bloom�eld, 1993) and non linear least squares estimation (Beran, 1995).16

An overall estimate of the fractional di¤erencing parameter for each series has
then been computed as the median of the estimates obtained by means of the
various estimators. The evidence points to a moderate degree of long mem-
ory for all the variables, with median estimates in the range 0.22-0.35, and
an average value equal to 0.296 (0.032).17 Since the test for the equality of
the fractional di¤erencing parameters (Robinson and Yajima, 2002; Morana,
2006) does not allow to reject the null of equality of the fractional di¤erenc-
ing parameters at the 1% signi�cance level in all cases, the average estimate
obtained for the eight series (0.296 (0.032)) has then been employed in the
fractional cointegration analysis. According to the results of the Robinson
and Yajima (2002) fractional cointegrating rank test, six cointegrating vec-
tors can be found for the eight realized volatility series, at the 1% signi�cance
level, with the two implied common long memory factors explaining 100% of
total variance at the selected bandwidth (2 ordinates)18.
The �ltering out of the non persistent components has been carried out by

15Recent extensions to these two classes of estimators, aiming to improve the perfor-
mance of the estimators in the presence of short memory dynamics (Andrews and Guggen-
berger (2003) bias reduced log periodogram estimator, Andrews and Sun (2004) biased
reduced local Whittle estimator, Shimotsu and Phillips (2005) pooled log periodogram esti-
mator, Moulines and Soulier (1999) broad band log periodogram estimator), observational
noise (Sun and Phillips (2003) non linear log periodogram estimator), non stationarity
(Shimotsu and Phillips (2004) exact local Whittle estimator), have been considered. On
the basis of Monte Carlo results available in the literature, also the estimator of Robinson
(1998), which has proved to be robust to both bandwidth selection and the presence of
nonstationarity, has been employed.
16The ARFIMA(0,d,0) model was selected for all of the series using the BIC criterion.
17The estimated fractional di¤erencing parameters are equal to 0.217(0.032),

0.268(0.031), 0.333(0.030), 0.352(0.029), 0.332(0.031), 0.279(0.035), 0.292(0.032), and
0.292(0.032), for the overnight, the one-week, two-week, one-month, three-month, six-
month, nine-month and one-year rates, respectively.
18The non zero eigenvalues of the spectral matrix at the zero frequency are equal to

1.531 and 0.175. Hence, the proportion of variance explained by the two common long
memory factors is 89.8% and 10.2%, respectively.
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applying the FT to the demeaned individual series, trimming high frequency
ordinates, and then applying inverse FT to the trimmed transformed series.
Optimal trimming has been implemented as described in the methodologi-
cal section, i.e. the optimal trimming frequency has been selected as closest
one to the origin at which the decomposition objective is achieved.19 The
estimation of the common long memory factors has then been carried out by
applying principal components analysis to the estimated persistent compo-
nents. On the basis of the results of the cointegration analysis, it is expected
that two common long memory factors explain the bulk of persistent �uctu-
ations. Indeed, according to the PCA results, two factors account for about
75% of total variance, supporting the results of cointegration analysis. The
estimated factors, with 95% con�dence bounds, and the persistent compo-
nents for the one week and one month log standard deviation processes, are
reported in Figure 1. As shown by the estimated factor loading matrix20,
the �rst factor a¤ects positively all series, while the second factor a¤ects the
shorter (up to the two-week horizon) and the longer maturities (from the one-
month horizon onwards) with di¤erent signs, re�ecting an excess persistent
volatility component in the longer maturities, relatively to the shorter ones.
While the �rst factor points to forward transmission of persistent volatility
shocks along the term structure, the second factor could capture the reaction
to the �ow of news about economic conditions, to which only the longer end
of the curve is likely to react, given the characteristics of the monetary policy
operational framework of the European Central Bank.21

19A smoothed persistent component characterized by a degree of persistence non sta-
tistically di¤erent from the one determined by the semiparametric analysis (d = 0:296
(0:032)), and a non persistent component characterized by a degree of persistence non
statistically di¤erent from zero. The optimal trimming ordinates range between 5 (the
overnight rate) and 121 (the one month rate).
20The estimated factor loadings are as follows. First factor: 0.127(0.056), 0.618(0.059),

0.646(0.027), 0.965(0.008), 0.533(0.062), 0.402(0.016), 0.317(0.036), 0.246(0.028),
0.635(0.029) for the overnight, one-week, two-week, one-month, three-month, six-month,
nine-month, one-year rates, respectively. Second factor: -0.232(0.066), -0.292(0.054),
-0.295(0.006), 0.119(0.007), 0.066(0.031), 0.284(0.034), 0.369(0.032), 0.078(0.026),
0.126(0.007) for the overnight, one-week, two-week, one-month, three-month, six-month,
nine-month, one-year rates, respectively. Standard errors have been computed from the
cross sectional distributions of the parameters obtained allowing the persistent compo-
nents to be estimated using several optimal trimming bandwidths, falling in the range
5-121, i.e. the range matching the one found relevant for the actual series.
21At issue is the control exercised by the ECB on the shortest end on the yield curve.

Low volatility should be expected in the case of successful control. For reason of space
detailed results for the empirical application have not been reported. They are however
available from the author upon request.
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5 Conclusions

In the paper a new approach to multivariate modelling of common long mem-
ory components has been introduced. Di¤erently from previous contributions
to the literature, the proposed approach is suitable of implementation also
for the case of large data sets, both in terms of temporal and cross-sectional
dimensions, not requiring neither the estimation of the fractional cointegra-
tion space nor the maximization of a frequency domain likelihood function.
Monte Carlo evidence strongly supports the proposed approach. Finally,
an empirical application, showing that the proposed approach can be easily
implemented using real data, has been provided.
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Table 1
P-NP �ltering, Monte Carlo results; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.343 0.328 0.381 0.358 0.419 0.527 0.728 0.797 0.765 0.975
1.5 0.410 0.394 0.453 0.427 0.492 0.599 0.780 0.840 0.813 0.981
1 0.509 0.494 0.552 0.529 0.590 0.689 0.842 0.887 0.866 0.987
0.5 0.676 0.661 0.713 0.691 0.741 0.816 0.914 0.939 0.928 0.993
0.25 0.806 0.796 0.832 0.816 0.850 0.898 0.954 0.968 0.962 0.997
0.125 0.892 0.885 0.908 0.898 0.918 0.945 0.976 0.983 0.980 0.998

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.511 0.521 0.486 0.501 0.462 0.398 0.282 0.238 0.258 0.080
1.5 0.468 0.478 0.442 0.457 0.419 0.357 0.249 0.209 0.228 0.070
1 0.409 0.418 0.384 0.397 0.361 0.304 0.207 0.173 0.189 0.057
0.5 0.313 0.321 0.290 0.303 0.273 0.225 0.150 0.125 0.137 0.041
0.25 0.232 0.239 0.215 0.225 0.201 0.164 0.108 0.090 0.098 0.029
0.125 0.169 0.174 0.155 0.164 0.146 0.118 0.077 0.065 0.071 0.021

P-NP �ltering, Monte Carlo results; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.360 0.315 0.312 0.332 0.351 0.468 0.492 0.443 0.636 0.780
1.5 0.418 0.372 0.371 0.393 0.422 0.543 0.564 0.509 0.703 0.824
1 0.514 0.477 0.472 0.495 0.522 0.631 0.656 0.609 0.781 0.876
0.5 0.683 0.646 0.638 0.662 0.685 0.777 0.794 0.758 0.876 0.934
0.25 0.809 0.783 0.775 0.793 0.813 0.876 0.885 0.861 0.933 0.966
0.125 0.892 0.876 0.872 0.885 0.896 0.934 0.938 0.926 0.965 0.982

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.502 0.533 0.535 0.521 0.507 0.436 0.420 0.451 0.337 0.251
1.5 0.463 0.493 0.493 0.480 0.463 0.392 0.379 0.410 0.298 0.222
1 0.404 0.430 0.433 0.418 0.403 0.339 0.325 0.352 0.250 0.183
0.5 0308 0.332 0.335 0.322 0.307 0.253 0.241 0.264 0.183 0.132
0.25 0.230 0.249 0.252 0.241 0.228 0.183 0.176 0.194 0.132 0.094
0.125 0.169 0.182 0.185 0.176 0.167 0.132 0.127 0.140 0.094 0.068

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the P-NP �ltering approach.
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Table 2
P-NP �ltering, Monte Carlo results, biased estimation; sample size 1,000 observations

Correlation coe¢ cient

�nd
2
1.5
1
0.5
0.25
0.125

b = 0:10
0.2 0.4 0.6 0.8
0.352 0.451 0.615 0.845
0.421 0.522 0.680 0.878
0.520 0.622 0.760 0.915
0.683 0.764 0.864 0.954
0.810 0.866 0.927 0.975
0.893 0.927 0.961 0.986

b = 0:20
0.2 0.4 0.6 0.8
0.352 0.444 0.591 0.839
0.421 0.515 0.660 0.874
0.519 0.615 0.744 0.911
0.683 0.759 0.850 0.953
0.811 0.861 0.916 0.974
0.894 0.924 0.953 0.985

b = 0:30
0.2 0.4 0.6 0.8
0.351 0.468 0.678 0.847
0.418 0.537 0.737 0.881
0.522 0.637 0.808 0.916
0.684 0.777 0.893 0.956
0.811 0.875 0.942 0.977
0.895 0.933 0.969 0.988

Theil Inequality coe¢ cient

�nd
2
1.5
1
0.5
0.25
0.125

b = 0:10
0.2 0.4 0.6 0.8
0.504 0.443 0.348 0.205
0.460 0.401 0.310 0.180
0.401 0.343 0.262 0.149
0.307 0.259 0.191 0.108
0.228 0.189 0.138 0.080
0.167 0.137 0.099 0.060

b = 0:20
0.2 0.4 0.6 0.8
0.504 0.446 0.359 0.209
0.461 0.404 0.321 0.183
0.402 0.347 0.271 0.152
0.308 0.261 0.201 0.110
0.228 0.192 0.147 0.081
0.167 0.140 0.109 0.060

b = 0:30
0.2 0.4 0.6 0.8
0.505 0.433 0.310 0.204
0.462 0.392 0.275 0.178
0.401 0.335 0.231 0.148
0.307 0.251 0.168 0.106
0.228 0.183 0.122 0.077
0.166 0.132 0.088 0.056

P-NP �ltering, Monte Carlo results, biased estimation; sample size 100 observations
Correlation coe¢ cient

�nd
2
1.5
1
0.5
0.25
0.125

b = 0:10
0.2 0.4 0.6 0.8
0.285 0.470 0.569 0.584
0.345 0.529 0.643 0.659
0.447 0.633 0.727 0.746
0.610 0.769 0.841 0.849
0.757 0.872 0.913 0.920
0.858 0.929 0.954 0.958

b = 0:20
0.2 0.4 0.6 0.8
0.295 0.371 0.517 0.775
0.351 0.433 0.598 0.819
0.449 0.534 0.683 0.873
0.614 0.701 0.812 0.932
0.765 0.822 0.897 0.964
0.866 0.902 0.946 0.981

b = 0:30
0.2 0.4 0.6 0.8
0.320 0.376 0.462 0.605
0.390 0.428 0.525 0.673
0.488 0.533 0.638 0.747
0.654 0.698 0.773 0.855
0.792 0.823 0.869 0.921
0.882 0.901 0.931 0.958

Theil Inequality coe¢ cient

�nd
2
1.5
1
0.5
0.25
0.125

b = 0:10
0.2 0.4 0.6 0.8
0.552 0.434 0.375 0.366
0.512 0.397 0.333 0.324
0.448 0.338 0.283 0.273
0.351 0.256 0.209 0.203
0.263 0.186 0.151 0.145
0.196 0.136 0.109 0.105

b = 0:20
0.2 0.4 0.6 0.8
0.546 0.494 0.406 0.254
0.505 0.449 0.360 0.224
0.445 0.393 0.310 0.185
0.348 0.299 0.229 0.133
0.259 0.221 0.166 0.096
0.190 0.162 0.118 0.069

b = 0:30
0.2 0.4 0.6 0.8
0.526 0.494 0.439 0.355
0.483 0.457 0.400 0.316
0.422 0.395 0.337 0.270
0.325 0.302 0.255 0.199
0.243 0.222 0.188 0.144
0.178 0.163 0.134 0.105

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC) for the
P-NP �ltering approach.
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Table 3
PCA analysis, Monte Carlo results: n = 2, k = 1; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.512 0.479 0.531 0.582 0.596 0.734 0.766 0.940 0.925 0.985
1.5 0.585 0.551 0.602 0.651 0.661 0.787 0.814 0.954 0.943 0.989
1 0.677 0.649 0.694 0.736 0.746 0.847 0.867 0.969 0.961 0.993
0.5 0.809 0.787 0.819 0.848 0.854 0.917 0.929 0.984 0.980 0.996
0.25 0.894 0.881 0.901 0.918 0.921 0.957 0.963 0.992 0.990 0.998
0.125 0.944 0.936 0.948 0.957 0.959 0.978 0.981 0.996 0.995 0.998

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.484 0.503 0.473 0.445 0.437 0.357 0.339 0.222 0.234 0.185
1.5 0.443 0.462 0.433 0.406 0.399 0.326 0.309 0.211 0.220 0.182
1 0.390 0.407 0.380 0.356 0.350 0.288 0.275 0.199 0.206 0.179
0.5 0.312 0.326 0.306 0.287 0.283 0.240 0.231 0.186 0.190 0.175
0.25 0.256 0.265 0.251 0.239 0.237 0.209 0.204 0.179 0.181 0.173
0.125 0.219 0.225 0.216 0.209 0.207 0.192 0.189 0.175 0.176 0.172

PCA analysis, Monte Carlo results: n = 2, k = 1; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.462 0.465 0.409 0.553 0.483 0.643 0.723 0.691 0.704 0.898
1.5 0.543 0.539 0.485 0.628 0.558 0.707 0.777 0.750 0.764 0.922
1 0.643 0.634 0.594 0.715 0.654 0.784 0.839 0.818 0.829 0.947
0.5 0.784 0.776 0.746 0.834 0.794 0.879 0.913 0.900 0.905 0.973
0.25 0.879 0.876 0.853 0.912 0.884 0.936 0.954 0.948 0.950 0.986
0.125 0.935 0.934 0.921 0.953 0.940 0.967 0.976 0.973 0.974 0.993

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.514 0.514 0.546 0.461 0.503 0.411 0.365 0.384 0.377 0.253
1.5 0.469 0.472 0.501 0.421 0.459 0.376 0.334 0.349 0.343 0.237
1 0.413 0.417 0.442 0.370 0.405 0.330 0.294 0.307 0.302 0.217
0.5 0.331 0.333 0.353 0.297 0.322 0.267 0.244 0.253 0.248 0.196
0.25 0.268 0.270 0.285 0.244 0.264 0.226 0.212 0.217 0.216 0.184
0.125 0.227 0.228 0.238 0.212 0.223 0.202 0.193 0.196 0.195 0.178

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 4
PCA analysis, Monte Carlo results: n = 3, k = 1; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.600 0.611 0.618 0.643 0.714 0.741 0.803 0.933 0.988 0.981
1.5 0.667 0.678 0.682 0.706 0.769 0.793 0.844 0.949 0.991 0.985
1 0.751 0.759 0.763 0.782 0.833 0.852 0.891 0.965 0.994 0.990
0.5 0.857 0.864 0.866 0.878 0.909 0.920 0.942 0.982 0.997 0.995
0.25 0.923 0.927 0.928 0.935 0.952 0.958 0.970 0.991 0.998 0.998
0.125 0.960 0.962 0.963 0.966 0.976 0.979 0.985 0.996 0.999 0.999

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.492 0.486 0.483 0.470 0.432 0.418 0.384 0.311 0.276 0.281
1.5 0.457 0.452 0.449 0.437 0.403 0.390 0.362 0.301 0.274 0.278
1 0.413 0.408 0.406 0.396 0.368 0.358 0.335 0.290 0.272 0.274
0.5 0.354 0.351 0.349 0.343 0.325 0.319 0.305 0.280 0.270 0.271
0.25 0.316 0.314 0.313 0.309 0.298 0.295 0.287 0.274 0.269 0.270
0.125 0.294 0.292 0.292 0.290 0.284 0.282 0.278 0.271 0.268 0.269

PCA analysis, Monte Carlo results: n = 3, k = 1; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.590 0.598 0.581 0.637 0.630 0.775 0.784 0.800 0.864 0.764
1.5 0.663 0.668 0.643 0.698 0.697 0.821 0.824 0.841 0.895 0.814
1 0.747 0.752 0.734 0.780 0.776 0.874 0.880 0.890 0.928 0.867
0.5 0.855 0.861 0.847 0.876 0.873 0.933 0.936 0.941 0.962 0.930
0.25 0.920 0.924 0.918 0.935 0.933 0.966 0.967 0.970 0.981 0.963
0.125 0.959 0.961 0.957 0.966 0.965 0.983 0.983 0.985 0.990 0.981

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.499 0.493 0.506 0.474 0.479 0.401 0.396 0.387 0.352 0.406
1.5 0.463 0.459 0.470 0.441 0.443 0.375 0.371 0.366 0.334 0.381
1 0.417 0.413 0.423 0.397 0.401 0.345 0.342 0.337 0.314 0.348
0.5 0.357 0.354 0.362 0.344 0.346 0.311 0.309 0.306 0.292 0.312
0.25 0.318 0.315 0.320 0.310 0.311 0.290 0.290 0.288 0.281 0.292
0.125 0.294 0.294 0.296 0.290 0.291 0.280 0.279 0.278 0.275 0.281

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 5
PCA analysis, Monte Carlo results: n = 4, k = 1; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.686 0.678 0.696 0.700 0.761 0.837 0.918 0.965 0.982 0.991
1.5 0.745 0.738 0.754 0.757 0.809 0.873 0.938 0.974 0.987 0.993
1 0.813 0.808 0.821 0.823 0.864 0.912 0.957 0.982 0.991 0.995
0.5 0.897 0.894 0.901 0.903 0.927 0.954 0.978 0.991 0.995 0.998
0.25 0.946 0.944 0.948 0.949 0.962 0.976 0.989 0.996 0.998 0.999
0.125 0.972 0.971 0.974 0.974 0.981 0.988 0.994 0.998 0.999 0.999

Theil Inequality Coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.493 0.497 0.488 0.486 0.456 0.419 0.377 0.352 0.343 0.339
1.5 0.465 0.468 0.460 0.459 0.432 0.401 0.367 0.348 0.341 0.337
1 0.430 0.433 0.427 0.426 0.405 0.381 0.357 0.343 0.338 0.336
0.5 0.388 0.390 0.386 0.385 0.373 0.359 0.345 0.338 0.336 0.335
0.25 0.363 0.364 0.362 0.361 0.354 0.346 0.339 0.336 0.335 0.334
0.125 0.349 0.349 0.348 0.348 0.344 0.340 0.336 0.335 0.334 0.334

PCA analysis, Monte Carlo results: n = 4, k = 1; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.685 0.605 0.691 0.667 0.642 0.753 0.737 0.728 0.907 0.896
1.5 0.744 0.675 0.751 0.726 0.707 0.803 0.792 0.778 0.929 0.921
1 0.816 0.760 0.817 0.801 0.787 0.859 0.849 0.843 0.951 0.947
0.5 0.899 0.864 0.901 0.889 0.880 0.925 0.919 0.916 0.975 0.973
0.25 0.947 0.927 0.948 0.941 0.937 0.961 0.958 0.956 0.987 0.986
0.125 0.973 0.962 0.973 0.970 0.968 0.980 0.978 0.978 0.994 0.993

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.495 0.532 0.492 0.505 0.517 0.462 0.469 0.474 0.384 0.389
1.5 0.465 0.499 0.463 0.476 0.484 0.436 0.44 0.447 0.373 0.375
1 0.431 0.459 0.430 0.438 0.444 0.407 0.414 0.418 0.360 0.363
0.5 0.389 0.406 0.388 0.392 0.397 0.374 0.377 0.379 0.347 0.348
0.25 0.362 0.373 0.363 0.366 0.368 0.355 0.357 0.357 0.341 0.341
0.125 0.349 0.355 0.349 0.350 0.352 0.345 0.345 0.346 0.337 0.337

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 6
PCA analysis, Monte Carlo results: n = 4, k = 2 (only the �rst factor is estimated);

sample size 1,000 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.525 0.533 0.511 0.553 0.624 0.705 0.800 0.930 0.951 0.958
1.5 0.595 0.603 0.584 0.621 0.690 0.761 0.842 0.945 0.957 0.965
1 0.688 0.696 0.677 0.711 0.769 0.826 0.889 0.960 0.962 0.972
0.5 0.815 0.821 0.807 0.832 0870 0.905 0.941 0.975 0.968 0.980
0.25 0.898 0.902 0.893 0.907 0.930 0.950 0.969 0.983 0.971 0.984
0.125 0.947 0.948 0.944 0.951 0.964 0.974 0.984 0.987 0.973 0.986

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.477 0.472 0.485 0.461 0.420 0.375 0.317 0.191 0.254 0.218
1.5 0.437 0.431 0.444 0.422 0.383 0.342 0.291 0.179 0.250 0.212
1 0.384 0.378 0.391 0.371 0.337 0.301 0.259 0.165 0.246 0.206
0.5 0.308 0.304 0.313 0.298 0.273 0.249 0.221 0.149 0.242 0.200
0.25 0.253 0.250 0.257 0.247 0.230 0.215 0.199 0.141 0.240 0.197
0.125 0.218 0.216 0.220 0.214 0.204 0.195 0.186 0.136 0.239 0.195

PCA analysis, Monte Carlo results: n = 4, k = 2 (only the �rst factor is estimated);
sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.422 0.555 0.452 0.436 0.586 0.589 0.616 0.727 0.831 0.892
1.5 0.500 0.627 0.527 0.518 0.659 0.663 0.686 0.775 0.869 0.914
1 0.609 0.719 0.633 0.630 0.747 0.747 0.761 0.830 0.910 0.938
0.5 0.764 0.838 0.784 0.780 0.854 0.857 0.855 0.893 0.952 0.963
0.25 0.868 0.914 0.879 0.877 0.920 0.923 0.911 0.927 0.975 0.976
0.125 0.929 0.954 0.935 0.935 0.955 0.958 0.942 0.945 0.988 0.982

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.532 0.454 0.511 0.520 0.427 0.432 0.432 0.310 0.296 0.266
1.5 0.488 0.413 0.467 0.474 0.386 0.392 0.393 0.279 0.271 0.251
1 0.426 0.361 0.408 0.413 0.337 0.343 0.350 0.242 0.244 0.233
0.5 0.340 0.289 0.324 0.329 0.269 0.276 0.291 0.195 0.212 0.213
0.25 0.275 0.238 0.263 0.267 0.223 0.229 0.252 0.164 0.192 0.203
0.125 0.232 0.208 0.223 0.226 0.194 0.201 0.230 0.147 0.182 0.197

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 7
PCA analysis, Monte Carlo results: n = 4, k = 2; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.358 0.359 0.350 0.398 0.450 0.508 0.734 0.648 0.675 0.801
1.5 0.419 0.419 0.413 0.463 0.515 0.570 0.785 0.673 0.672 0.816
1 0.507 0.509 0.503 0.555 0.602 0.652 0.845 0.701 0.677 0.833
0.5 0.655 0.655 0.651 0.701 0.738 0.775 0.915 0.735 0.692 0.847
0.25 0.781 0.779 0.778 0.816 0.842 0.867 0.955 0.754 0.699 0.856
0.125 0.872 0.870 0.870 0.894 0.911 0.925 0.977 0.765 0.697 0.862

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.530 0.527 0.536 0.502 0.469 0.429 0.395 0.334 0.372 0.283
1.5 0.487 0.486 0.492 0.461 0.430 0.394 0.385 0.324 0.377 0.276
1 0.432 0.432 0.434 0.406 0.378 0.347 0.378 0.314 0.376 0.269
0.5 0.350 0.347 0.352 0.327 0.306 0.284 0.391 0.302 0.370 0.265
0.25 0.285 0.284 0.286 0.267 0.256 0.239 0.397 0.296 0.367 0.261
0.125 0.341 0.238 0.248 0.228 0.220 0.210 0.427 0.293 0.369 0.258

PCA analysis, Monte Carlo results: n = 4, k = 2; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.293 0.335 0.302 0.295 0.364 0.387 0.444 0.474 0.582 0.714
1.5 0.362 0.396 0.372 0.368 0.428 0.458 0.511 0.520 0.641 0.746
1 0.471 0.482 0.471 0.475 0.519 0.548 0.596 0.573 0.715 0.785
0.5 0.641 0.633 0.642 0.647 0.654 0.696 0.706 0.643 0.821 0.828
0.25 0.780 0.758 0.776 0.785 0.759 0.806 0.772 0.686 0.895 0.853
0.125 0.871 0.849 0.867 0.876 0.830 0.879 0.819 0.711 0.939 0.866

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.581 0.559 0.573 0.578 0.525 0.519 0.477 0.421 0.396 0.321
1.5 0.534 0.521 0.523 0.531 0.483 0.472 0.436 0.395 0.362 0.305
1 0.467 0.463 0.465 0.467 0.423 0.415 0.385 0.369 0.312 0.287
0.5 0.376 0.363 0.367 0.370 0.340 0.326 0.329 0.338 0.258 0.269
0.25 0.303 0.290 0.293 0.290 0.289 0.269 0.298 0.319 0.224 0.258
0.125 0.251 0.247 0.246 0.248 0.258 0.235 0.277 0.308 0.203 0.253

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 8
PCA analysis, Monte Carlo results: n = 6, k = 2; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.431 0.432 0.441 0.492 0.492 0.652 0.726 0.818 0.794 0.887
1.5 0.496 0.496 0.505 0.558 0.553 0.704 0.750 0.852 0.803 0.900
1 0.583 0.587 0.595 0.645 0.637 0.770 0.784 0.890 0.813 0.914
0.5 0.722 0.727 0.733 0.776 0.761 0.854 0.816 0.934 0.824 0.927
0.25 0.832 0.836 0.840 0.869 0.852 0.908 0.843 0.958 0.829 0.935
0.125 0.905 0.908 0.910 0.929 0.911 0.939 0.848 0.970 0.831 0.939

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.518 0.516 0.511 0.479 0.477 0.384 0.346 0.295 0.290 0.262
1.5 0.479 0.477 0.472 0.441 0.441 0.356 0.335 0.277 0.285 0.256
1 0.428 0.425 0.421 0.392 0.394 0.320 0.320 0.255 0.280 0.248
0.5 0.351 0.348 0.345 0.321 0.326 0.275 0.307 0.228 0.275 0.241
0.25 0.290 0.290 0.286 0.269 0.277 0.244 0.295 0.211 0.272 0.236
0.125 0.247 0.245 0.244 0.231 0.242 0.225 0.295 0.202 0.271 0.234

PCA analysis, Monte Carlo results: n = 6, k = 2; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.383 0.403 0.432 0.417 0.461 0.370 0.549 0.500 0.704 0.718
1.5 0.451 0.484 0.499 0.495 0.529 0.468 0.611 0.566 0.754 0.748
1 0.550 0.584 0.607 0.594 0.613 0.579 0.689 0.663 0.812 0.781
0.5 0.703 0.739 0.750 0.740 0.732 0.750 0.794 0.787 0.883 0.822
0.25 0.820 0.845 0.854 0.846 0.817 0.858 0.867 0.872 0.923 0.845
0.125 0.897 0.916 0.917 0.915 0.871 0.923 0.907 0.927 0.947 0.859

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.570 0.543 0.528 0.543 0.516 0.549 0.455 0.491 0.360 0.347
1.5 0.525 0.493 0.486 0.494 0.464 0.494 0.415 0.443 0.334 0.333
1 0.455 0.431 0.413 0.424 0.411 0.431 0.370 0.385 0.303 0.318
0.5 0.361 0.343 0.335 0.342 0.345 0.346 0.312 0.316 0.264 0.301
0.25 0.297 0.284 0.277 0.282 0.300 0.288 0.273 0.268 0.239 0.291
0.125 0.252 0.241 0.239 0.241 0.273 0.255 0.250 0.233 0.224 0.286

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Table 9
PCA analysis, Monte Carlo results: n = 8, k = 2; sample size 1,000 observations

Correlation coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.497 0.486 0.512 0.557 0.588 0.700 0.721 0.826 0.912 0.886
1.5 0.563 0.550 0.578 0.619 0.646 0.745 0.768 0.860 0.927 0.895
1 0.650 0.639 0.663 0.699 0.723 0.800 0.824 0.897 0.944 0.904
0.5 0.780 0.768 0.790 0.813 0.826 0.870 0.891 0.939 0.960 0.914
0.25 0.872 0.864 0.878 0.893 0.897 0.914 0.930 0.961 0.969 0.918
0.125 0.930 0.925 0.933 0.941 0.939 0.938 0.951 0.973 0.973 0.921

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.511 0.518 0.502 0.478 0.458 0.393 0.384 0.325 0.273 0.281
1.5 0.474 0.481 0.465 0.444 0.425 0.368 0.358 0.304 0.263 0.276
1 0.425 0.432 0.417 0.399 0.383 0.337 0.327 0.280 0.251 0.270
0.5 0.354 0.361 0.348 0.335 0.325 0.297 0.287 0.251 0.237 0.265
0.25 0.300 0.305 0.296 0.287 0.282 0.270 0.260 0.232 0.229 0.262
0.125 0.260 0.264 0.258 0.252 0.252 0.252 0.244 0.221 0.224 0.260

PCA analysis, Monte Carlo results: n = 8, k = 2; sample size 100 observations
Correlation coe¢ cient

�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.457 0.432 0.463 0.490 0.439 0.475 0.606 0.500 0.650 0.694
1.5 0.530 0.503 0.537 0.564 0.494 0.549 0.672 0.543 0.696 0.754
1 0.636 0.609 0.637 0.656 0.565 0.637 0.749 0.595 0.747 0.823
0.5 0.775 0.753 0.770 0.784 0.657 0.757 0.848 0.661 0.821 0.904
0.25 0.870 0.854 0.865 0.871 0.713 0.834 0.913 0.703 0.869 0.950
0.125 0.930 0.919 0.924 0.924 0.474 0.882 0.951 0.729 0.896 0.974

Theil Inequality coe¢ cient
�nd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.539 0.564 0.538 0.529 0.488 0.523 0.454 0.498 0.423 0.398
1.5 0.494 0.515 0.492 0.480 0.455 0.479 0.418 0.472 0.397 0.365
1 0.433 0.452 0.434 0.425 0.418 0.428 0.374 0.443 0.367 0.327
0.5 0.357 0.372 0.360 0.353 0.370 0.364 0.316 0.413 0.327 0.276
0.25 0.301 0.312 0.305 0.302 0.342 0.321 0.275 0.395 0.301 0.242
0.125 0.260 0.270 0.265 0.266 0.325 0.294 0.245 0.385 0.285 0.218

The table reports the root mean square forecast error (RMSFE) and Theil inequality coe¢ cient (IC)
for the PCA approach.
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Figure 1: Persistent factors with 95% con�dence bounds (top plots);
selected persistent components (one week and one month rates) with actual

series (bottom plots).
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