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Abstract 

We propose an empirical approach to determine the various economic sources driving the 

US yield curve. We allow the conditional dynamics of the yield at different maturities to 

change in reaction to past information coming from several relevant predictor variables. We 

consider both endogenous, yield curve factors and exogenous, macroeconomic factors as 

predictors in our model, letting the data themselves choose the most important variables. 

We find clear, different economic patterns in the local dynamics and regime specification of 

the yields depending on the maturity. Moreover, we present strong empirical evidence for 

the accuracy of the model in fitting in-sample and predicting out-of-sample the yield curve in 

comparison to several alternative approaches. 
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1 Introduction

Over the past three decades financial economists, macroeconomists, and market practi-

tioners have all attempted to build good models for the yield curve. Depending on the

different researchers’ modeling strategies and goals in constructing the yield curve model

(for example bond pricing, policy analysis, interest rate forecasting), the resulting models

vary enormously in their form and fit. While macroeconomists focus mainly on building

equilibrium models describing the relationship between the yields and various macroe-

conomic indices/variables (mainly measures of inflation and real economic activity), the

traditional finance term structure literature decomposes the yield curve into a small set

of latent variables and ignores the macroeconomic nature.

The connection between the macroeconomic and financial views of the term structure

has been a very fertile area for recent research. The macroeconomic linkage and the

improved forecasting performance of macro variables on top of latent factors have given

rise to a new modeling framework, the so-called macro-finance models. Early works in this

field include for example Rudebusch (1995) and Balduzzi, Bertola, and Foresi (1997) who

introduce latent term structure models including the central bank’s target rate as a factor.

Studies such as Estrella and Mishkin (1997) and Evans and Marshall (1998) use VARs

with yields of various maturities together with macro variables. Ang and Piazzesi (2003)

propose models that combine two macroeconomic variables (real activity and inflation) as

state variables together with three unobserved factors. They find that the macro factors

explain up to 85 percent of the short and middle parts of the yield curve and a significantly

smaller portion (around 40 percent) of the long-end of the yield curve. Using output and

unemployment as macro factors, Ludvigson and Ng (2007) were able to explain more than

25 percent of the yield curve variation. Other important contributions in that area include

for example Dewachter, Lyrio, and Maes (2006), Dewachter and Lyrio (2006), Hoerdahl,

Tristani, and Vestin (2006), and Rudebusch and Wu (2008).

A common approach in the macro-finance field is to model the short rate dynamics

as a function of latent and macroeconomic factors. Yields of other maturities are then

derived as risk-adjusted averages of expected future short rates. Thus, the factors driving
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the short rate contain all the relevant information needed for building and estimating

term structure models.1 Factor analysis of the unconditional variance-covariance matrix

of yields commonly suggests the number of latent factors needed to explain the cross-

sectional dynamics. In addition, standard macroeconomic intuition is typically used to

determine the macro factors entering the yield curve equation. Consequently, based on

this modeling framework, the same latent and macro variables should help explain not

only the short rate but also the entire yield curve dynamics over time.

However, empirical observations cast some doubt on this view. Short and long ma-

turities are known to react quite differently in shocks hitting the economy. Whereas the

central bank (U.S. Federal Reserve) is actively targeting the short rate in order to achieve

economic stability (to promote their national economic goals), the long rates tend to

be based on real rates, forecasts of inflation and judgements regarding the gap between

long-term interest rates and inflation. Many forces are at work in driving the term struc-

ture dynamics, and identifying these forces and understanding their impact is of crucial

importance.

Almost all the above-mentioned models treat the whole post-war period as a homo-

geneous sample and do not take into account the possibility of structural breaks in the

economy documented in the macroeconomic literature. An exception to this practice

is the regime-switching models of interest rates introduced by Hamilton (1988) and -

followed for example by Sola and Driffill (1994), Evans and Lewis (1995), Garcia and Per-

ron (1996), and Gray (1996). These papers attempt to build a model that captures the

stochastic behavior of the interest rate within a stationary model. Extensive empirical

literature (see, for example, Aı̈t-Sahalia (1996), Stanton (1997), and Ang and Bekaert

(2002)) reveals that the regime-switching models better describe the nonlinearities in the

yields’ drift and the volatility found in the historical interest rate data. More recent

works, for example Ang and Bekaert (2002), Bansal and Zhou (2002), Dai, Singleton,

and Yang (2007), Bansal, Tauchen, and Zhou (2004), and Audrino and De Giorgi (2007),

have managed informally to link the succession of alternating regimes to business cycles

1This statement is only true under the convention that the market price of risk is also a function of

the same state and/or macroeconomic variables driving the short rate dynamics.
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and interest rate policies. Rudebusch and Wu (2007) suggest a link between the shift in

the interest rate behavior and the dynamics of the central bank’s inflation target. Ang,

Bekaert, and Wei (2008) develop a regime-switching model to study real interest rates

and inflation risk premia by combining latent and macroeconomic factors.

In this paper we build a regime-switching multifactor model for the term structure

dynamics over time in which for every maturity we are able to identify or infer the most

important macroeconomic and latent variables driving both the local dynamics and the

regime shifts. Our basic framework for the yield curve is a macro-factor model, yet not

the usual no-arbitrage factor representation typically used in the macro-finance literature.

The methodology adopted in this paper is mainly motivated by Audrino’s (2006) tree-

structured model for the short rate. Similarly to Audrino (2006) we employ a multiple

threshold model that is able to take into account regime-shifts in the yield curve’s dy-

namics and to exploit both macroeconomic and term structure information. However, in

our paper we do not restrict the local dynamics to follow Cox, Ingersoll, and Ross (1985)

process, but allow for a more flexible data-driven structure selected by a given decision

rule.

Our contribution to the term structure literature is twofold. First, our approach

enables an interpretable and statistically accurate identification of the most important

predictors and the regime structure driving the yield curve dynamics over time for each

maturity. Second, it remains highly competitive in terms of in- and out-of-sample fore-

casting performance.

We apply our modeling framework to U.S. data. Based on the observed patterns the

results can be summarized by three groups: short-, mid- and long-term maturities. Like

the monetary policy rules found in the macroeconomic literature,2 the short rate local

dynamics is mainly driven by inflation, real activity, and an autoregressive component.

The regimes for the short rate are linked to the level of inflation. The mid-term maturities

follow an autoregressive process (AR(1)-GARCH(1,1)), whose behavior is determined by

the term structure slope and the level of real activity. In addition, we also find some

correspondence between NBER business cycles and our limiting regimes. The long rates

2See for example Clarida, Gali, and Gertler (2000) or Taylor (1993), among others.
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capture strong macroeconomic effects. Here the volatility of inflation plays a major role

in the threshold structure as well as in the piecewise linear dynamics.

In order to improve the prediction accuracy of our model, we use bagging (short for

bootstrap aggregating). In essence, bagging is a variance reduction technique aimed at

improving the predictive performance of unstable estimators, especially trees. We compare

the out-of-sample forecasting ability of our model to that of several strong competitor

models. Using the superior predictive ability (SPA) test of Hansen (2005), we find that

such improvements are in most cases statistically significant.

The remainder of this paper is organized as follows: Section 2.1 and Section 2.2 present

the modeling framework we use for fitting and forecasting the term structure. Section 2.3

describes the techniques we employ for model estimation. The role of bagging is discussed

in Section 2.4. In Section 3 we present the empirical application to U.S. yield data, test

our model’s ability to reproduce the most important stylized facts, and discuss the results

of the out-of-sample forecast. Section 4 concludes.

2 The Model

This section introduces the modeling framework we use for fitting and forecasting the yield

dynamics. To infer the yield curve behavior, we use a model with four distinctive features.

First, to capture the cross-sectional dynamics of the yield curve, we employ two latent

term structure factors often used in the finance literature, interpreted as level and slope.

The two factors usually account for about 95% of the cross-sectional variation of yields.3

Second, we allow heteroscedasticity in the error term. Since our goal is to build a realistic

model for the term structure dynamics over time, this feature is crucial. Third, motivated

by the interpretability and the improved forecasting performance of the macro-finance

literature in comparison to the pure finance approach, we incorporate macroeconomic

variables (such as macroeconomic indicators for real activity and inflation). Fourth, our

model accommodates regime-switching behavior but still allows interpretation and clear

3For an extensive survey see for example Litterman and Scheinkman (1991) and Dai and Singleton

(2000).
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endogenous regime specification.

2.1 The yield-macro model: specification

Let Yt = (y(t, n1), . . . , y(t, nT ))′ be a T -dimensional vector of yields with maturities

n1, . . . , nT observed at time t and let ∆y(t, nτ ) ≡ y(t, nτ ) − y(t − 1, nτ ) denote the first

difference of yields at time t with maturity nτ . Further, let us assume the following model

for the term structure dynamics

∆y(t, nτ ) = µt,nτ + εt,nτ , τ = 1, . . . , T, (1)

where µt,nτ ≡ µ(Φt−1,nτ ; ψnτ ) is a parametric function representing the conditional mean

and εt,nτ is the error term of the yields’ returns with maturity nτ . More formally, εt,nτ can

be decomposed as εt,nτ =
√

h(Φt−1,nτ ; ψnτ )zt, where (zt)t∈Z is a sequence of independent

identically distributed random variables with zero mean and unit variance, and where

h(Φt−1,nτ ; ψnτ ) is the time-varying conditional variance. Above we denoted by Φt,nτ all

the relevant conditional information up to time t for maturity nτ . In our application (see

Section 3), Φt,nτ corresponds to a large number of term structure and macroeconomic

variables.

2.2 The yield-macro model with regime shifts: specification

In practice, changes in business cycle conditions or monetary policy may affect real rates,

expected inflation, as well as other macroeconomic indices and cause interest rates with

different maturities to behave quite differently in different time periods, in terms of both

level and volatility. An adequate characterization of this stylized fact requires building a

term structure model with regime shifts (see for example Ang and Bekaert (2002), Bansal

and Zhou (2002), Dai, Singleton, and Yang (2007), Rudebusch and Wu (2007), Bansal,

Tauchen, and Zhou (2004), Audrino (2006), and Audrino and De Giorgi (2007)). Rather

than following the common Markovian regime-switching approach of specifying the distri-

bution of the regime-switching variable conditionally on the future regime, here, following

Audrino (2006) and Audrino and Trojani (2006), the regimes are determined endogenously
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and represent thresholds partitioning4 the predictor space into a set of disjoint regions.

This approach enables us to determine the current regime based solely on the realization

of the state variables, macroeconomic variables, and the threshold structure. This is a

major advantage in comparison with the other regime-switching models proposed in the

literature, where information about the whole yield curve is needed. In particular, the

regime-switching dynamics for the conditional mean and the conditional variance can be

written as:

µt,nτ =

Knτ∑
j=1

(αj
0,nτ

+ αj
1,nτ

∆y(t− 1, nτ ) + (βj
nτ

)′xt−1 + (γj
nτ

)′xex
t−1)I[Φt−1,nτ∈Rj

nτ ],

ht,nτ =

Knτ∑
j=1

(ωj
nτ

+ aj
nτ

εt−1,nτ + bj
nτ

ht−1,nτ )I[Φt−1,nτ∈Rj
nτ ],

where ψnτ = (αj
0,nτ

, αj
1,nτ

, (βj
nτ

)′, (γj
nτ

)′, ωj
nτ

, aj
nτ

, bj
nτ

, j = 1, . . . , Knτ ) is a ((m + 4)×Knτ )-

dimensional vector of the unknown (true) parameters τ = 1, . . . , T . I(·) is the indicator

function and Rj
nτ

represents a region of the partition Pnτ = {R1
nτ

, . . . ,RKnτ
nτ } of the state

space Gnτ of Φt,nτ = {(∆y(t, nτ ),x
′
t,x

ex′
t )′ ∈ R1 × Rm1 × Rm2} such that

Pnτ = {R1
nτ

, . . . ,RKnτ
nτ

}, Gnτ = ∪Knτ
j=1Rj

nτ
, Ri

nτ
∩

(i6=j)
Rj

nτ
= ∅ τ = 1, . . . , T.

Above we denoted by (∆y(t, nτ ),x
′
t) and by xex′

t all the endogenous and all the exogenous

(macroeconomic) information, respectively, available at time t.

2.3 Model estimation

A common approach in the term structure literature to estimating a macro-finance model

is to assume that the term structure factors are latent and then to use one-step maxi-

mum likelihood estimation. However, this procedure typically requires some additional

restrictions due to the multiple likelihood maxima with close-to-identical likelihood val-

ues but very different yield decompositions.5 Consequently, this approach leads to severe

4Here we restrict attention to recursive binary partitions. The problem with the multiple splits is

that it usually fragments the data too quickly, leaving an insufficient number of observations at the next

level down. Moreover, this assumption is not a drawback since multiple splits can easily be achieved by

a series of binary splits.
5See for example Kim and Orphanides (2005) for discussion of this.
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estimation difficulties in implementation. Instead, in order to obtain an estimate for the

unknown (true) parameters ψ we employ a two-step procedure. As in Ang, Piazzesi, and

Wei (2006), the key assumption here is that all factors are observable.

2.3.1 Step 1: Best subset selection

One of the main questions in the term structure literature is how many yield curve factors

and/or macro variables should be included in the model. Studies such as Litterman and

Scheinkman (1991) and Dai and Singleton (2000) find that, at monthly frequency, the first

three principal components account for more than 99% of the cross sectional variation of

yields. Applying principal component analysis to our data, we find that the first principal

component explains 96.7% of the yield curve variation. Adding the second principal

component brings the percentage of yield curve variation to 99.8%.

While just a small number of factors (two or three) are sufficient to model the cross

sectional variation of yields, a few questions still remains open. How many factors are

needed to build a good model for the time series dynamics? Is there any predictability

of macro variables on top of latent factors? If so, how many and which macroeconomic

variables should be included in the model? Do these variables always have the same

impact on the yields with different maturities? A simple way to answer these questions

is to perform best subset selection. Although this statistical dimensionality reduction

technique does not impose any economic structure, it helps us identify the most relevant

predictors for each maturity.

The main idea behind best subset selection is to retain only a subset of the most

informative variables and to eliminate the noise variables from the model. This is achieved

by finding for each number of variables p ∈ {0, 1, 2, . . . ,m} the subset of size p that gives

the smallest residual sum of squares. The optimal number of predictors p is usually

chosen according to some information criteria. In this paper we use the Bayesian Schwarz

Information Criterion (BIC) since it does not suffer from convergence problems and it is

known to provide accurate results in a time series framework.6

There are at least four reasons why we favor employing a dimensionality reduction

6Other possibilities include other information criteria AIC or Cp as well as cross validation.
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technique rather than including all the possible predictors in the yield curve’s local dy-

namics. (i) The first reason is interpretability. With a large number of predictors we

would like to identify a smaller subset that contains the most relevant information. (ii)

The second reason is prediction accuracy. In general, including all possible prediction

variables often leads to poor forecasts, due to the increased variance of the estimates in

an overly complex model. Therefore, it is crucial to identify the most informative (rele-

vant) predictors and to separate them from the noise variables. By doing so, we reduce

the variance of the predicted values: the result is a parsimonious model with better pre-

diction accuracy. (iii) Besides the improved forecasting ability, a parsimonious model

often helps avoid data-mining problems. (iv) Since only a few sources of systematic risk

drive the yield curve dynamics, nearly all bond information can be summarized with just

a few variables. Therefore, just a small set of variables is needed in order to obtain a close

fit to the entire yield curve at any point in time.

2.3.2 Step 2: Regime specification

The second step of our estimation procedure involves regime specification. As stated ear-

lier, the regimes are built as multiple tree-structured thresholds partitioning the predictor

space G into relevant disjoint regions. In particular, the partition Pnτ for maturity nτ ,

τ = 1, . . . , T , is constructed on a binary tree, where every terminal node represents a parti-

tion region Rj
nτ

whose edges are determined by thresholds. In the general case, the regime

classification at time t is based on all the endogenous information (∆y(t − 1, nτ ),x
′
t−1)

and the exogenous macroeconomic variables xex
t−1 up to time t − 1. As noted above, in

contrast to the Hamilton-Markovian framework, here the number of regimes as well as

the threshold structure are derived purely from the data.

In this paper we will mention only the main steps of the binary tree construction and

estimation. However, an exact description, illustrative examples, and further applications

of the algorithm can be found for example in Audrino and Bühlmann (2001), Audrino

(2006), and Audrino and Trojani (2006).

In short, the estimation procedure involves the following three steps:

(i) Growing a large tree (a tree with a large number of nodes). The threshold selection
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is based on optimizing the conditional negative log-likelihood.

The maximal binary tree constructed in (i) can be too large and easily lead to overfitting.

In order to overcome this problem we proceed by

(ii) Combining some of the branches of this large tree to generate a series of sub-trees

of different sizes (varying numbers of nodes);

(iii) Selecting an optimal tree via the application of measures of accuracy of the tree.

Analogously to the best subset selection, we chose BIC.

2.4 Improving the forecasting ability: Bagging

One of the major problems with the two-step procedure presented in the previous section

is the high variance of the forecasts. The reason for this instability lies in the hierarchical

nature of the tree process: the effect of an error on the top of the split is propagated down

to all the splits below it. One way to overcome this problem is to average forecasts from a

large number of models selected by the given decision rule. This is actually the main idea

of bagging (short for bootstrap aggregating), proposed by Breiman (1996). Bagging is a

variance reduction technique aimed at improving the predictive performance of unstable

estimators such as trees. In general, bagging involves the following steps: (i) generate a

large number of bootstrap resamples from the data; (ii) apply the decision rule to each of

the resamples; (iii) and average the forecasts from the models selected by the decision rule

for each bootstrap sample. Initially bagging was developed for i.i.d. data (see for example

Breiman (1996)) and later extended to the time series framework (see, for example, Inoue

and Kilian (2004), Audrino and Medeiros (2008)).

The dramatic reduction of the prediction error for a wide range of models with a

similar (unstable) structure has motivated us to use bagging to improve the forecasting

performance of our model. In particular, for every maturity, we use the following three-

step procedure:

(i) Build a (n−1)×(m+1) matrix, where the first column corresponds to our response

variable ∆yt and the next m columns include all the potential predictors.

{∆y(t, nτ ), ∆y(t− 1, nτ ),x
′
t−1,nτ

,xex′
t−1,nτ

}, t = 2, . . . , n.

11



Construct B bootstrap samples denoted by

{∆y∗(i)(j + 1, nτ ), ∆y∗(i)(j, nτ ),x
∗′
(i),j,nτ

,xex∗′
(i),j,nτ

}, j = 1, . . . , n− 1,

where i = 1, . . . , B by randomly drawing with replacement blocks of rows of length

q from the matrix constructed above, where the block size q is chosen in such a way

that it captures the dependence in the error term.

(ii) For each bootstrap sample apply the two-step procedure proposed in Section 2.3.1

and Section 2.3.2. Since our two-step approach is purely data-driven, each bootstrap

tree will typically involve features different from the original. Note that for every

bootstrap sample, the number of predictors, the optimal selection for the local

dynamics, the number of terminal nodes, as well as the splitting points may be

different. Using the optimal parameters estimated from the i-th bootstrap sample,

for t = 1, . . . , Tout compute the conditional mean of the yield process denoted by

µ∗(i)t,nτ
.

(iii) For t = 1, . . . , Tout average the forecasts of the conditional mean

µ̂t,nτ =
1

B

B∑
i=1

µ∗(i)t,nτ
.

3 Empirical Results

We start this section with a brief description of the data we use for the empirical part

of the paper. Afterwards, we give an interpretation of the estimated results and test the

flexibility of the resulting model. Finally, we compare the forecasting performance of our

model to that of several strong competitors.

3.1 Data

The term structure data consist of one-month U.S. Treasury bills with eight different

maturities: 3 and 6 months and 1, 2, 3, 5, 7 and 10 years taken from the Fama-Bliss files

in the CRSP database. The data cover the time period from January 1960 until June
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2005 for a total of 534 monthly observations. This is quite a standard data set, a part

of which has already been used for example by Audrino (2006), Audrino and De Giorgi

(2007), Bansal and Zhou (2002) and Dai, Singleton, and Yang (2007). Table 1 provides a

fairly detailed description of the data.

[Table 1 about here.]

Since almost all the cross-sectional term structure information can be summarized in

just a few variables associated with the empirical proxies of level, slope, and curvature, we

build the endogenous predictors in the following way: we define the level as the 10-year

yield and the slope as the difference between the longest (10-year) and the shortest (3-

month) maturity in our data set. There are two reasons why we do not build an empirical

proxy for the curvature component. First, studies like Litterman and Scheinkman (1991)

find that the third principal component accounts for about 2% of the yield curve variation,

whereas in our data set it explains less than 0.2% of the variation. Second, in the term

structure models the third factor is usually related to heteroskedasticity. Since we model

the heteroskedasticity of the error term explicitly, adding a third factor may easily lead

to overparametrization. The curvature component also seems unimportant in a broad

range of macro-finance papers including for example the macro Nelson-Siegel framework

studied by Diebold, Rudebusch, and Aruoba (2006).

Macroeconomic data (from January 1960 onward) including some of the leading U.S.

indicators of inflation (consumer price index of finished goods (CPI), producer price index

of finished goods (PPI)), and real activity (the index of Help Wanted Advertising in News-

papers (HELP), unemployment (UE), the growth rate of industrial production (IP)) are

available from the Datastream International. In order to ensure stationarity, we transform

the monthly macro time series by using annual log differences. We follow Ang and Pi-

azzesi (2003), Audrino (2006) and Diebold, Rudebusch, and Aruoba (2006) in computing

the annual growth rates. The caption for Table 1 lists the applied transformations.

An important stylized fact is that shocks in the economy have a significant impact

on the dynamics of the yield curve. Therefore, it is intuitive that the term structure

dynamics may not only be linked to the level but also to the volatility of the different
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macroeconomic indicators. In order to exploit this additional macroeconomic information,

we construct our measures of conditional volatility of the macro indices by using a simple

24-month rolling window approach. The size of the rolling window is mainly motivated

by the degree of smoothness as well as the magnitude of correlation between the yields

of different maturities and the conditional volatility of the macroeconomic data. Finally,

we also include in our pool of predictors the empirical proxies of the variance of the

macroeconomic data just by squaring the different indices.

We divide our data set into two parts. We use the data between January 1961 and

December 2001 as the in-sample period, whereas the remaining data from January 2002

to June 2005 are left to evaluate the out-of-sample forecasts of the different models.

3.2 What is driving the Yield Curve Predictability?

3.2.1 Level dynamics

As discussed in the previous section, using best subset selection we are able to infer the

most important variables determining the level dynamics of the yields for every maturity.

Although the methodology itself has no economic structure, the consistency between the

selected variables via best subset selection and the economic literature is striking. The

results are presented in Table 2.

[Table 2 about here.]

Judging from the results presented in Table 2 Panel A, we can draw a number of

conclusions. Based on the clear pattern the results can be summarized by 3 groups:

short, mid-term, and long maturities. Whereas the behavior of the short- and long-term

maturities is linked to both endogenous and exogenous variables, the mid-term maturities

exploit only endogenous information.

The linear dynamics for the three- and six-month yields’ returns found in our model

is very similar to those implied by the standard macroeconomic models. According to the

Clarida, Gali and Gertler’s (2000) framework, which encompasses Taylor’s (1993) rule as a

special case, the central bank determines the short nominal interest rate (rt+1) depending

on the difference between the expected inflation (Et[πt+1]) and the inflation target (π?
t )
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set by the central bank (which is allowed to be time-varying), on the output gap Et(zt+1)

as well as on the lagged short-term interest rate rt−1. Precisely,

rt = β(Et[πt+1]− π?
t ) + γEt(zt+1) + ρrt−1. (2)

For the linear dynamics of our resulting model, the combination of the yield curve’s

level and the level and conditional volatility of inflation (vol.PPI) might be thought of

as a proxy for the difference between the expected and the target inflation. However,

the exact behavior of the two measures is rather difficult to disentangle. The reason is

that both expected inflation as well as the Federal Reserve inflation target are in general

unobservable. In addition, the linear combination of the expected inflation (intuitively

measured by the inflation level, the conditional volatility of inflation, and the level of

the yield curve), the square of the leading real activity index (HELP), and the slope of

the yield curve may be considered as an empirical proxy for the output gap. The above-

mentioned conclusions about the level and the slope of the yield curve are fully in line

with the existing macro-finance literature. Examining the correlations between Nelson-

Siegel yield factors and a large set of macroeconomic variables, Diebold, Rudebusch, and

Aruoba (2006) find that the level factor is highly correlated with inflation, and the slope

factor is highly correlated with real activity. Rudebusch and Wu (2008) provide a similar

interpretation. They find that the level factor reflects market participants views about the

underlying or medium term inflation target of the central bank, whereas the slope factor

captures the cyclical response of the central bank aimed at stabilizing the real economy

and keeping inflation close to target. Finally, the autoregressive term in our resulting

model corresponds to the last term in (2), reflecting the Federal Reserve policy to smooth

changes in interest rates.

For the mid-term maturities (one-, two- and three-year yields’ returns), we find that

the linear dynamics is driven only by endogenous information. More precisely, the mid-

term yield returns follow an AR(1)-GARCH(1,1) process.

Perfectly in line with the empirical observations, the long-term maturities (five-, seven-

and ten-year yields) capture a strong macroeconomic effect. They are linked to the level

of the yield curve, the level of real activity (HELP), and the conditional volatility of the

two inflation indices CPI and PPI.
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3.2.2 Regimes

Similar to the previous subsection, based on the threshold structure, the results could be

split into three parts: short-, middle- and long-term maturities. As mentioned above, the

regimes for every maturity are determined endogenously, based on our in-sample period

between January 1961 and December 2001.

Short-term maturities

For the short-term maturities we find two limiting regimes, characterized by the level

of inflation or more precisely, CPI. The results are given in Table 3.

[Table 3 about here.]

The threshold structure is fully in line with the Federal Reserve’s monetary policy,

where the short rate is used as an instrument to promote national economic goals. A

well-known fact (general monetary policy rule) is that in times of high inflation, the Fed-

eral Reserve tends to raise the short end of the yield curve in order to provide economic

stability. Therefore, it is not a surprise that the regimes are linked to the level of the

leading inflation index CPI. Though our in-sample period encompasses several Fed mone-

tary policy changes with substantial differences in the short rate response to the expected

inflation,7 our resulting model is still valid. The reason for this is that in our model the

inflation threshold has an impact mainly on the level of the short rate, whereas the con-

ditional piecewise linear dynamics - especially the linear combination of the yield curve’s

level, slope, the macroeconomic level of inflation PPI, and the conditional volatility of

inflation vol.PPI - captures the fluctuations in the short-term maturities. In other words,

the main difference between the conditional means for the two limiting regimes lies in

the magnitude of the resulting yield values. This finding is perfectly in line with the ex-

isting macro-finance literature. For example, examining the structural impulse responses

of their macro-factor model for joint dynamics of the yields, Ang and Piazzesi (2003)

document that inflation surprises have large effects on the level of the entire yield curve.

7For a discussion of the Federal Reserve policy rules in the different subperiods, see Clarida, Gali, and

Gertler (2000). Although the results are not reported here, we have also tested for structural breaks in

the economy.
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Another interesting finding is that in both regimes, shocks in the economy have an

immediate impact on the short-term yields’ returns. In periods of moderate to low in-

flation (CPI ≤ 3.5316), shocks in the economy have a small but significant impact on

the yield dynamics. In the second limiting regime, characterized by moderate to high

inflation (CPI > 3.5316), the impact of individual shocks is much higher than in the

first regime. Note also that in the second regime, the individual impact of shocks in the

economy decreases (from 0.8275 for 3-month to 0.5685 for 6-month yield returns), whereas

the persistence of the shocks increases significantly (from 0.0077 for 3-month to 0.2093

for 6-month yield returns) with time to maturity.

Mid-term maturities

The threshold structure with three limiting regimes found for the mid-term maturities

mainly reflects the yield curve behavior across business cycles. The dependence of the

regimes on the real activity index HELP confirms Ang and Piazzesi’s (2003) finding that

output shocks have a significant impact on intermediate yields. The regime structure and

the estimated coefficients are presented in Table 4.

[Table 4 about here.]

[Figure 1 about here.]

The first regime (HELP ≤ 61.82) essentially encompasses short periods towards or

right after the end of recessions with particularly low mid-term yields. The upper panel

of Figure 1 illustrates this finding.

The second limiting regime is characterized by both a negative slope of the yield curve

(slope ≤ −0.0662) and moderate to high real activity (HELP > 61.82). The dependence

on the slope is not a surprise, since in general the slope of the yield curve is considered

one of the most important forecasters of the short- and mid-term economic growth.8 This

regime structure mainly describes the mid-term yield behavior right before or in the very

beginning of recession periods. The bottom panel of Figure 1 confirms this finding. The

8The rule of thumb is that an inverted yield curve (short rates above long rates) indicates a recession

in about a year.
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resulting GARCH dynamics for this limiting regime clearly shows that individual shocks

have no immediate impact. The estimated coefficient for the autoregressive term in the

GARCH dynamics for each of the mid-term maturities in this regime (Regime 2) exceeds

one. This non-stationarity in the GARCH model indicates not only high persistence of

the individual shocks but also reflects the uncertainty in the economy.

The third regime with moderate to high real activity (HELP > 61.82) and in general

positive yield curve slope (slope > −0.0662) spans more than 70 percent of the in-sample

period and reflects the standard mid-term yield curve behavior. In this regime individual

shocks in the economy have a small but significant impact. They are also strongly persis-

tent, although less so than those found in the second regime. Here, it is also important

to note that the shock persistence in this regime decreases with time to maturity (from

0.9161 for the one-year yield to 0.7852 for the three-year yield).

Long-term maturities

Finally, for the long maturities we find that the regimes are characterized by the

conditional volatility of inflation (vol.PPI). Results are reported in Table 5.

[Table 5 about here.]

This threshold structure is fully in line with the macro-finance literature, where the

behavior of the long-end of the yield curve is strongly related to inflation (inflation level,

volatility of inflation, expected inflation, inflation target, inflation gap, inflation risk pre-

mium, etc.). For the first regime we find that it is characterized by low conditional

volatility of inflation (vol.PPI ≤ 0.5935). In this regime the resulting yields are low,

reflecting the stability in the economy. Individual shocks have moderate (for the five-year

yield) to negligible (for the ten-year yield) impact on the yields’ returns, whereas their

persistence increases with maturity. The other limiting regime is characterized by mod-

erate to high conditional volatility of inflation (vol.PPI > 0.5935). Here the levels of the

long-term yields are significantly higher than those found in the other limiting regime.

The persistence of individual shocks is very high, whereas their immediate impact is com-

paratively small. For the seven-year yield we were not able to find any optimal threshold

structure.
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Based on the threshold structure found for each maturity, one may easily conclude that

overall the entire yield curve is potentially subject to twelve (two for the short-term, three

for the mid-term, and up to two for the long-term maturities) regime shifts. However,

due to the mutual dependence among the different thresholds, in reality, the number of

regimes is much smaller, since the resulting thresholds (level of CPI, volatility of PPI,

slope of the yield curve, and level of HELP) are correlated.

Finally, analogously to Audrino (2006), we analyze the correspondence between NBER

business cycles and the regime structure found for each maturity. In particular, we com-

pute the frequency of the regimes in the recessions versus expansions. The results are

reported in Table 6.

[Table 6 about here.]

In addition, as in Bansal, Tauchen, and Zhou (2004) and Audrino (2006), we compute

correlations between the yield curve’s slope, HELP, CPI and NBER business cycles. The

absolute correlations between yield curve slope, HELP, CPI, and the NBER indicator

are 0.1248, 0.1654, and 0.4452, respectively. Thus, we can once again conclude that the

optimal threshold structure we find for each maturity is quite natural.

3.2.3 Stylized Facts

An adequate term structure model should not only give insight into the economic forces

driving the dynamics of the yields with different maturities, but it should also be in line

with the most important stylized facts. In this section we test our model’s ability to

replicate the following stylized facts: (i) the average yield curve is upward-sloping and

concave; (ii) the fitted model is able to reproduce the variety of yield curve shapes observed

through time: upward-sloping, downward-sloping, humped, and inverted-humped; (iii)

short rates are more volatile than long rates; (iv) long rates are more persistent than

short rates.

Figure 2 and Figure 3 provide a graphical representation of the above-mentioned facts.

[Figure 2 about here.]
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The upper panel of Figure 2 shows the average (median) fitted yield curve together

with its interquartile ranges. The average upward-sloping form, the concavity, as well as

the fact that short rates are more volatile than long rates are apparent. The short end

of the yield curve is obviously steeper and flattens with maturity. Based on Figure 2, we

can easily draw one more conclusion - the distribution of yields around their median is

asymmetric with a longer right tail.

[Figure 3 about here.]

Next, Figure 3 presents four fitted yield curves for some selected dates. Apparently,

our model is able to capture the broad variety of shapes the actual yield curve assumes

through time: upward-sloping, downward-sloping, humped, and inverted-humped. The

model does not provide a perfect fit at any point in time, but its overall match is quite

good.

The boxplots presented in the bottom panel of Figure 2 show that our model is per-

fectly in line with the stylized fact that short rates are more volatile than long rates.

The clear linear pattern presented in Table 2 Panel A as well as the threshold structure

given in Table 2 Panel B reflect one additional stylized fact: yields of near maturities are

highly correlated, and therefore it is quite natural that the forces moving the short, middle,

and long part of the yield curve are one and the same within the three groups, but quite

different among them.

3.3 Out-of-Sample Forecasting

Apart from the economic linkage and the ability to replicate at least the most important

stylized facts, a good term structure model should also be able to provide a good out-

of-sample fit. In this section we compare the out-of-sample performance of our model

to those of several strong competitors for maturities of 3 and 6 months and 1, 2, 3, 5,

7 and 10 years. In particular, we focus on the following 6 models: (i) Random walk;

(ii) VAR(1) on yields level; (iii) two dynamic specifications of Nelson-Siegel proposed by

Diebold and Li (2006); (iv) Markovian regime switching model of Gray (1996); (v) tree

structured regime switching model of Audrino (2006); and (vi) the one regime version of
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our model. We perform out-of-sample forecasts over the period January 2002 - June 2005

for a total of 42 observations.

In this paper, we assess the prediction accuracy of the different models by means of

two different measures. In particular, we focus on the mean squared errors (MSE) and

the mean absolute error (MAE). The measures are given by:

MSE-mean =
1

n

n∑
t=1

(∆y(t, nτ )− µ̂t,nτ )
2 and MAE-mean =

1

n

n∑
t=1

|∆y(t, nτ )− µ̂t,nτ |.

To improve the prediction accuracy of our model, we use bagging. As stated above, bag-

ging is a machine learning technique aimed at reducing the variance and thus improving

the forecasting performance of unstable estimators such as trees. Applied to our data set,

for building the bootstrap samples we use block bootstrapping of Künsch (1989), where

we set the block size value q to be equal to 20 and the number of iterations B to be equal

to 50.

For completeness, we also apply bagging to all the competitors’ models. Apart from

Audrino’s (2006) model we do not find any significant improvement in the out-of-sample

performance of the other models. The reason for this lies in the structure of the modeling

framework.9 The results are presented in Table 7.

[Table 7 about here.]

To assess the statistical differences in the out-of-sample performances of the different

models and their bagged versions, we perform a series of tests for superior predictive

ability introduced by Hansen (2005). The results are summarized in Table 8.

[Table 8 about here.]

Comparing the one-month-ahead out-of-sample results of the different models (see Ta-

ble 7), without considering bagging, we find that our model has overall good performance

at all eight maturities both in terms of MSE and MAE. Matters improve dramatically,

once we apply bagging. The SPA p-values presented in Table 8 reveal that the forecasts

9Bühlmann and Yu (2002) have conducted extensive research on this topic.
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yield from the bagged versions of our model are significantly better than almost all of the

alternative approaches. Based on the multiple comparison test, we cannot conclude that

our model significantly outperforms the random walk.10 However, a direct comparison

between the bagged version of our model and those of the random walk via Diebold and

Mariano (1995) test indicates that we are able to beat the random walk at least for the

short- and the long-term maturities.

4 Conclusion

In this paper we present a methodology to build and estimate a discrete-time regime-

switching model of interest rates that incorporates latent and macroeconomic factors and

takes into account the heteroskedastic nature of the interest rates.

In contrast to the existing models, the proposed model is purely data-driven and is

able to identify, for every maturity, the most relevant latent and macroeconomic factors

both for the local dynamics as well as for the regime structure. As such, it offers a clear

interpretation and regime specification while remaining highly competitive in terms of

out-of-sample forecasting.

Applying our model to US interest rate data we draw a number of conclusions. First,

we find one and the same clear pattern both for the resulting local dynamics and for the

regime structure. Based on the pattern, we split the results into three groups: short-, mid-

and long-term maturities. For the short maturities we find correspondence between the

resulting local structure and the monetary policy models described in the macroeconomic

literature. More precisely, the local dynamics of the short end of the yield curve is

driven by macroeconomic (inflation, real activity) and term structure (level, slope, and

autoregressive term) information. Not surprisingly, we find two limiting regimes linked to

the level of inflation (CPI). The optimal threshold structure for the mid-term maturities is

determined by the sign of the term structure slope coefficient and the leading real activity

indicator HELP. Here, the local dynamics follows a pure AR(1)+GARCH(1,1) process.

10Several studies (see, for example, Duffee (2002) and Ang and Piazzesi (2003)) have documented that

beating the random walk is indeed a challenging task, especially over short horizons.
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For the long-term maturities we find that they are subject to up to two regime shifts

determined by the conditional volatility of inflation. The local structure of the long end

of the yield curve captures the strong macroeconomic impact related to the level of the

real activity (HELP) and the inflation’s conditional volatility (CPI and PPI).

Second, we conclude that our framework is consistent with the key stylized facts of

the yield curve behavior. Finally, we compare the out-of-sample accuracy of our model

to those of several strong competitors and find that the bagged version of our model

significantly outperforms the other approaches most of the time.
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Summary Statistics of Data

Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

∆ Yield 3M -0.0020 0.5230 -2.1023 18.0171 0.1517 -0.0661 -0.0291
∆ Yield 6M -0.0029 0.5156 -1.6226 17.4492 0.1661 -0.0622 -0.0712
∆ Yield 1Y -0.0028 0.5038 -1.0525 16.06739 0.1630 -0.0986 -0.0863
∆ Yield 2Y -0.0024 0.4587 -0.6168 10.9402 0.1395 -0.0970 -0.0740
∆ Yield 3Y -0.0022 0.4199 -0.4246 7.5918 0.1305 0.0884 -0.0748
∆ Yield 5Y -0.0019 0.3709 -0.2641 4.8015 0.1068 -0.0863 -0.0676
∆ Yield 7Y -0.0018 0.3426 -0.1923 3.5260 0.0856 -0.0852 -0.0596
∆ Yield 10Y -0.0014 0.3177 -0.1267 2.7397 0.0642 -0.0771 -0.0533
CPI 4.1503 2.7383 1.4282 1.6165 0.9914 0.9784 0.9639
PPI 3.5834 4.4352 1.0159 1.5395 0.9759 0.9451 0.9153
HELP 82.4983 25.8153 -0.1730 -1.1146 0.9892 0.9787 0.9658
IP 3.1122 4.3763 -0.8378 1.0030 0.9642 0.9093 0.8426
UE 1.2577 15.6301 1.1064 1.2066 0.9560 0.9132 0.8564
CPI.sq 24.7100 34.7598 2.4530 5.8395 0.9930 0.9811 0.9644
PPI.sq 32.4777 60.4715 3.2759 12.5513 0.9614 0.9265 0.8893
HELP.sq 7471.2510 4189.7830 0.2397 -1.0312 0.9886 0.9787 0.9660
IP.sq 28.8038 31.1617 1.6884 3.2806 0.9316 0.8390 0.7311
UE.sq 245.4443 463.4325 3.8516 18.7554 0.9265 0.8375 0.7377
vol.CPI 0.8168 0.5930 1.3497 1.1439 0.9937 0.9774 0.9527
vol.PPI 1.9207 1.3050 1.1334 0.4714 0.9900 0.9656 0.9295
vol.HELP 7.2742 4.3801 0.6408 -0.7335 0.9902 0.9639 0.9228
vol.IP 2.7813 1.8615 1.2099 0.8497 0.9890 0.9657 0.9321
vol.UE 9.9326 6.0700 0.9794 0.0586 0.9889 0.9670 0.9357
slope 1.3401 1.3334 -0.3714 0.1274 0.9438 0.8799 0.8264
Yield 10Y (level) 7.0158 2.4334 0.8696 0.3816 0.9891 0.9770 0.9662

Table 1: Descriptive statistics for monthly yields at eight different maturities, and for the
yield curve level and slope, where we define the level as the 10-year yield and the slope as
the difference between the 10-year and 3-month yields. The inflation measures CPI and
PPI refer to CPI inflation and PPI (finished goods) inflation, respectively. We calculate
the inflation measure at time t using log(Pt/Pt−12) where Pt is the (seasonally adjusted)
inflation index. The real activity measures HELP, IP, and UE refer to the index of help
wanted advertising in newspapers, the (seasonally adjusted) growth rate in industrial
production, the unemployment rate, and the US gross domestic product, respectively.
The growth rate in industrial production is calculated using log(It/It−12) where It is the
(seasonally adjusted) industrial production index. The conditional volatility measures
vol.CPI, vol.PPI, vol.HELP, vol.IP, vol.UE are constructed by using a simple 24-month
rolling window approach. By CPI.sq, PPI.sq, HELP.sq, IP.sq, UE.sq we denote the square
of the macroeconomic indices CPI, PPI, HELP, IP, UE, respectively. The last three
columns contain sample autocorrelations at displacements of 1, 2, and 3 months. The
sample period is January 1960 to June 2005.
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Panel A: Best Subset Selection

Maturity (nτ ) ∆ynτ slope level PPI HELP HELP.sq vol.PPI vol.CPI

3M ? ? ? ? ? ?
6M ? ? ? ? ? ?
1Y ?
2Y ?
3Y ?
5Y ? ? ? ?
7Y ? ? ? ?
10Y ? ? ? ?

Panel B: Optimal Regime Structure

Maturity Optimal Regime Structure # Regimes

3M
CPIt−1 ≤ 3.5316

2
CPIt−1 > 3.5316

6M
CPIt−1 ≤ 3.5316

2
CPIt−1 > 3.5316

1Y
HELP ≤ 61.82

3HELP > 61.82 and slope ≤ −0.0662
HELP > 61.82 and slope > −0.0662

2Y
HELP ≤ 61.82

3HELP > 61.82 and slope ≤ −0.0662
HELP > 61.82 and slope > −0.0662

3Y
HELP ≤ 61.82

3HELP > 61.82 and slope ≤ −0.0662
HELP > 61.82 and slope > −0.0662

5Y
volatilityPPIt−1 ≤ 0.5935

2
volatilityPPIt−1 > 0.5935

7Y no regimes 1

10Y
volatilityPPIt−1 ≤ 0.5935

2
volatilityPPIt−1 > 0.5935

Table 2: Best subset selection results (Panel A) and optimal regime structure (Panel B)
found for every maturity. The variables we take into consideration are the following: the
yield’s first difference for maturity nτ , τ = 1, . . . , 8 denoted by ∆ynτ , yield curve’s level,
defined as the yield with the longest maturity in our sample (10 years), the yield curve’s
slope (the longest (10 years) minus the shortest maturity (3 months) in our sample)
the macroeconomic indices CPI, PPI, HELP, IP, UE, the square of the macroeconomic
indices CPI.sq, PPI.sq, HELP.sq, IP.sq, UE.sq, and the conditional volatility of the above-
mentioned macroeconomic indices vol.CPI, vol.PPI, vol.HELP, vol.IP, vol.UE. See text
for more details about the model setup and the estimation procedure.
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Short-term Maturities’ Parameter Estimates

3 Months 6 Months

Optimal Regime Structure Variable Coefficient t-statistic Coefficient t-statistic

CPIt−1 ≤ 3.5316

const 0.1729 29.5631 0.2101 31.1557
∆y 0.1826 33.6940 0.2463 29.4939
slope 0.0406 18.9258 0.1205 6.8212
level 0.0262 15.8349 -0.0557 -14.2697
PPI 0.0084 19.0392 0.0092 27.4288
HELP.sq 8e-06 2.2432 0.0000 0.0000
vol.PPI -0.0580 -31.1357 -0.0909 -69.8259
ω 0.0385 27.0689 0.0462 27.0864
ε2 0.1347 4.2985 0.1068 3.5909
σ2 0.0000 0.0046 0.0006 0.8040

CPIt−1 > 3.5316

const 0.2131 9.5540 0.2541 46.8190
∆y 0.1202 10.4486 0.1010 19.8693
slope 0.1064 40.2900 0.0849 7.2371
level -0.0458 -11.6777 -0.0361 -7.3638
PPI -0.0012 -0.3901 0.0059 0.1370
HELP.sq 4e-06 0.3462 0.0000 0.0000
vol.PPI -0.0152 -5.8731 -0.0519 -3.3263
ω 0.1800 22.7663 0.1598 10.3497
ε2 0.8275 51.1376 0.5685 44.9099
σ2 0.0077 0.2294 0.2093 11.5955

LB2
5 7.2069 (0.2057) 6.1919 (0.2880)

LB2
10 15.033 (0.1309) 14.0398 (0.1712)

LB2
15 16.6322 (0.3413) 15.9012 (0.3886)

Table 3: Local parameter estimates, optimal threshold structure and related statistics for
3- and 6-month yields from the macro-tree regime-switching model. The sample period
is January 1961 - December 2001, for a total of 492 monthly observations. t-statistics are
based on heteroskedastic-consistent standard errors. LB2

i denotes the Ljung-Box statistic
for serial correlation of the squared residuals out to i lags. p-values are in parentheses.
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Mid-term Maturities’ Parameter Estimates

1 Year 2 Years 3 Years

Regime Structure Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

HELP ≤ 61.82

const 0.0372 1.6952 0.0240 1.3363 0.0189 1.5250
∆ y -0.1259 -0.8400 -0.1606 -1.2175 -0.0027 -0.0243
ω 0.0071 1.4674 0.0061 2.2538 0.0032 2.2138

ε2 0.5131 1.1935 0.3814 1.5724 0.2993 1.7977

σ2 0.1387 0.8706 0.2040 1.0613 0.3263 2.1271

HELP > 61.82
slope ≤ −0.0662

const -0.0568 -0.8287 -0.0468 -0.6951 -0.0159 -0.2608
∆ y -0.2591 -1.2252 -0.2654 -1.7572 -0.2788 -1.9412
ω 0.0317 1.0229 0.0000 0.0000 0.0000 0.0000

ε2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σ2 1.0709 20.5100 1.1434 26.8699 1.1303 32.5502

HELP > 61.82
slope > −0.0662

const 0.0206 1.2551 0.0131 0.6677 0.0131 0.6852
∆ y 0.0635 1.3306 0.0613 1.2087 0.0405 0.8011
ω 0.0040 0.9031 0.0164 1.9815 0.0183 2.2763

ε2 0.0338 2.6079 0.0721 2.9940 0.0607 2.6512

σ2 0.9161 9.7915 0.7935 11.7520 0.7852 10.9538

LB2
5 5.3243 (0.3776) 4.5076 (0.4789) 4.1067 (0.5342)

LB2
10 5.8277 (0.8295) 10.7420 (0.3780) 6.4213 (0.7787)

LB2
15 15.8527 (0.3919) 14.1564 (0.5137) 9.3152 (0.8605)

Table 4: Local parameter estimates, optimal threshold structure and related statistics for
1-, 2- and 3-year yields from the macro-tree regime-switching model. The sample period
is January 1961 - December 2001, for a total of 492 monthly observations. t-statistics are
based on heteroskedastic-consistent standard errors. LB2

i denotes the Ljung-Box statistic
for serial correlation of the squared residuals out to i lags. p-values are in parentheses.
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Long-term Maturities’ Parameter Estimates

5 Years 10 Years

Optimal Regime Structure Variable Coefficient t-statistic Coefficient t-statistic

volPPIt−1 ≤ 0.5935

const -0.1540 -0.8477 0.2117 1.1637
level 0.0654 1.0950 -0.0374 -0.7929
HELP -0.0017 -0.7444 -0.0004 -0.2575
vol.CPI -0.0643 -0.4163 0.1795 1.1959
vol.PPI 0.0024 0.0131 -0.1450 -0.9841
ω 0.0005 0.2769 0.0003 1.9806
ε2 0.6736 2.4245 0.0001 0.0011
σ2 0.3216 1.7743 0.7778 16.6318

volPPIt−1 > 0.5935

const 0.1331 1.4707 0.1131 1.3419
level -0.0527 -3.9959 -0.0445 -4.0519
HELP 0.0024 2.3462 0.0020 2.0917
vol.CPI 0.1886 3.2182 0.1551 3.6091
vol.PPI -0.0678 -2.9253 -0.0520 -3.1801
ω 0.0094 1.1868 0.0056 1.6716
ε2 0.1036 2.9457 0.0930 2.3062
σ2 0.8334 11.0224 0.8543 13.8319

LB2
5 4.6216 (0.4638) 4.8898 (0.4295)

LB2
10 9.7054 (0.4667) 10.4846 (0.3991)

LB2
15 10.8031 (0.7664) 13.5046 (0.5634)

7 Years
Optimal Regime Structure Variable Coefficient t-statistic

no regimes

const 0.0474 1.0659
level -0.0462 -2.6178
HELP 0.0029 2.5623
vol.CPI 0.1869 2.7582
vol.PPI -0.0641 -2.6711
ω 0.0002 0.0602
ε2 0.1856 2.5730
σ2 0.8496 13.5133

LB2
5 21.4143 (0.0007)

LB2
10 39.9147 (0.0000)

LB2
15 57.6575 (0.0000)

Table 5: Local parameter estimates, optimal threshold structure and related statistics for
5-, 7- and 10-year yields (in the upper table) from the macro-tree regime-switching model.
The optimal resulting structure for the 7-year yield is the global model (without regime
shifts). The sample period is January 1961 - December 2001, for a total of 492 monthly
observations. t-statistics are based on heteroskedastic-consistent standard errors. LB2

i

denotes the Ljung-Box statistic for serial correlation of the squared residuals out to i lags.
p-values are in parentheses.
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Regime Frequency in Recession and Expansions

Maturity Regime
Frequency

total recession expansion

3 and 6 months
CPI ≤ 3.516 246/492 = 0.500 11/73 = 0.152 235/419 = 0.561
CPI > 3.516 246/492 = 0.500 62/73 = 0.850 184/419 = 0.439

1, 2 and 3 years
HELP ≤ 61.82 65/492 = 0.132 10/73 = 0.137 55/419 = 0.132
HELP > 61.82 & slope ≤ −0.066 62/492 = 0.126 17/73 = 0.233 45/419 = 0.107
HELP > 61.82 & slope > −0.066 365/492 = 0.742 46/73 = 0.630 319/419 = 0.761

5 and 10 years
vol.PPI ≤ 0.5935 62/492 = 0.126 0/73 = 0.000 62/419 = 0.148
vol.PPI > 0.5935 430/492 = 0.874 73/73 = 1.000 357/419 = 0.852

Table 6: Frequency of the different regimes in NBER recessions and expansions for the
in-sample period January 1961 - December 2001, for a total of 492 observations. To-
tal (#observations in the regime/total number of observations), recession (# recession
observations in the regime/ total number of recession observations) and expansion (# ex-
pansion observations in the regime/ total number of expansion observations) frequencies
for our model are reported.
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Out-of-Sample Results

Out-of-sample MSE

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.0124 11.5538 0.2777 0.3280 0.0147 0.0150 0.0174 0.0293
6M 0.0216 12.9953 0.1844 0.2254 0.0171 0.0248 0.0363 0.0504
1Y 0.0352 0.0322 0.0853 0.1100 0.0346 0.0448 0.0395 0.5491
2Y 0.0949 0.0901 0.1280 0.0934 0.0901 0.0961 0.0910 0.1428
3Y 0.1179 0.1178 0.1648 0.1366 0.1236 0.1261 0.1166 0.1481
5Y 0.1346 0.2294 0.2153 0.2316 0.1345 0.1313 0.1269 0.1217
7Y 0.1286 0.1286 0.2796 0.4171 0.1219 0.1185 0.1261 0.1441
10Y 0.1014 0.1151 0.0996 0.1108 0.1035 0.1024 0.0974 0.1205

Out-of-sample MSE for the bagged models

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.0068 0.0820 0.5781 0.6626 0.0147 0.1315 0.0128 0.1440
6M 0.0099 0.0368 0.4329 0.5083 0.0171 0.1135 0.0196 0.0798
1Y 0.0284 0.0653 0.2420 0.3014 0.0346 0.1486 0.0357 0.3754
2Y 0.0824 0.0905 0.0845 0.1253 0.0950 0.2045 0.0887 0.3112
3Y 0.1149 0.1449 0.1550 0.1439 0.1236 0.2295 0.1142 0.2941
5Y 0.1242 0.1434 0.1679 0.1323 0.1345 0.1905 0.1230 0.2607
7Y 0.1155 0.1155 0.4108 0.6082 0.1219 0.1510 0.1116 0.2707
10Y 0.0918 0.0995 0.1230 0.1731 0.1035 0.1204 0.0951 0.2093

Out-of-sample MAE

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.0949 3.2111 0.4937 0.5457 0.0843 0.0948 0.1237 0.1487
6M 0.1218 3.3961 0.3804 0.4308 0.0976 0.1267 0.2691 0.1995
1Y 0.1479 0.1431 0.2450 0.2805 0.1474 0.1693 0.1669 0.6552
2Y 0.2411 0.2322 0.2894 0.2266 0.2410 0.2529 0.2389 0.5194
3Y 0.2655 0.2654 0.2794 0.2689 0.2782 0.2884 0.2650 0.5111
5Y 0.2772 0.4071 0.2625 0.3858 0.2943 0.2928 0.2790 0.2675
7Y 0.2679 0.2679 0.4582 0.5795 0.2764 0.2757 0.2855 0.3157
10Y 0.2395 0.2525 0.2460 0.2708 0.2561 0.2515 0.2436 0.2638

Out-of-sample MAE for the bagged models

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.0644 0.2595 0.7361 0.7946 0.0843 0.3249 0.0821 0.3552
6M 0.0813 0.1643 0.6214 0.6808 0.0976 0.2945 0.1242 0.1654
1Y 0.1326 0.2142 0.4387 0.5000 0.1474 0.3378 0.1562 0.5774
2Y 0.2236 0.2301 0.2612 0.2826 0.2410 0.3787 0.2360 0.4926
3Y 0.2600 0.2577 0.3094 0.3047 0.2782 0.4047 0.2618 0.4654
5Y 0.2698 0.3018 0.3222 0.2815 0.2943 0.3624 0.2714 0.4450
7Y 0.2564 0.2564 0.4686 0.7115 0.2764 0.3251 0.2561 0.3257
10Y 0.2282 0.2379 0.2876 0.3584 0.2561 0.2840 0.2378 0.3513

Table 7: Results of out-of-sample 1-month-ahead forecasting using eight models and their
bagged versions, as described in detail in the text. The results are based on the out-of-
sample period January 2002 - June 2006, for a total of 42 observations.
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Superior Predictive Ability Test

Out-of-Sample SPA test for the MSE

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.1006 0.0000 0.0000 0.0000 0.2474 0.0687 0.0000 0.0068
6M 0.0944 0.0000 0.0000 0.0000 0.4006 0.0880 0.0000 0.0000
1Y 0.5676 0.5671 0.1427 0.0000 0.4637 0.2033 0.0836 0.0000
2Y 0.1071 0.3433 0.3635 0.3652 0.5876 0.5519 0.4364 0.0187
3Y 0.4202 0.4341 0.4520 0.6570 0.4399 0.4442 0.5854 0.0371
5Y 0.2370 0.0124 0.1720 0.4418 0.5135 0.6211 0.6414 0.6219
7Y 0.4120 0.4120 0.0000 0.0000 0.5557 0.5475 0.3730 0.1071
10Y 0.4441 0.0446 0.5197 0.0565 0.3647 0.2809 0.6092 0.0000

Out-of-Sample SPA test for the MSE for the bagged models

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.5952 0.0000 0.0000 0.0000 0.2474 0.0000 0.1265 0.0000
6M 0.5260 0.0123 0.0000 0.0000 0.4006 0.0000 0.0231 0.0039
1Y 0.5371 0.0000 0.0000 0.0000 0.4637 0.0000 0.5118 0.0000
2Y 0.6423 0.2842 0.5915 0.0973 0.3876 0.0000 0.4496 0.0000
3Y 0.6677 0.4843 0.3679 0.3726 0.4399 0.0063 0.6521 0.0000
5Y 0.6578 0.0740 0.0278 0.6332 0.5135 0.0000 0.6947 0.0000
7Y 0.6845 0.6845 0.0000 0.0000 0.5557 0.0521 0.6721 0.1050
10Y 0.6290 0.2346 0.0473 0.0000 0.3647 0.0226 0.4608 0.0000

Out-of-Sample SPA test for the MAE

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.0595 0.0000 0.0000 0.0000 0.4035 0.0507 0.0000 0.0000
6M 0.0000 0.0000 0.0000 0.0000 0.4551 0.0459 0.0000 0.0000
1Y 0.5061 0.5553 0.1090 0.0000 0.4091 0.1827 0.0516 0.0000
2Y 0.2909 0.4371 0.3017 0.6873 0.4292 0.5103 0.2179 0.0000
3Y 0.4048 0.3371 0.5405 0.5583 0.4352 0.3805 0.5171 0.0000
5Y 0.4965 0.0000 0.0000 0.1128 0.4150 0.4945 0.7182 0.5721
7Y 0.6146 0.6146 0.0000 0.0000 0.5185 0.5391 0.0605 0.0760
10Y 0.3893 0.2474 0.4487 0.0101 0.3538 0.1757 0.0944 0.2051

Out-of-Sample SPA test for the MAE of the bagged models

Maturity Macro Tree Best Subset NS AR(1) NS VAR(1) RW VAR(1) Audrino Tree Gray’s RS

3M 0.5433 0.0000 0.0000 0.0000 0.4035 0.0000 0.2360 0.0000
6M 0.3680 0.0000 0.0000 0.0000 0.4551 0.0000 0.0000 0.0000
1Y 0.5688 0.0000 0.0000 0.0000 0.4091 0.0000 0.1832 0.0000
2Y 0.6851 0.3987 0.6193 0.1475 0.4292 0.0000 0.3010 0.0000
3Y 0.6458 0.5351 0.3744 0.3710 0.4352 0.0000 0.5464 0.0000
5Y 0.6580 0.0000 0.0461 0.5154 0.4150 0.0067 0.5669 0.0000
7Y 0.6967 0.6967 0.0000 0.0000 0.5185 0.0000 0.5161 0.1026
10Y 0.7041 0.1806 0.0099 0.0000 0.3538 0.0102 0.1039 0.0000

Table 8: p-values of superior predictive ability (SPA) test of Hansen (2005) for all eight
models and their bagged versions. The results are based on the out-of-sample period
January 2002 - June 2006, for a total of 42 observations.
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Mid-term Maturity Regimes and NBER Business Cycles
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Figure 1: The top and the bottom panels plot the one-year yield time series for the period
January 1961-December 2001. The gray bars in the top panel overlay periods with low
real activity HELP ≤ 61.82 as found in Regime 1. The gray bars in the bottom panel
overlay periods with medium and high real activity HELP > 61.82 and yield curve slope
≤ -0.0662 as found in Regime 2. NBER recessions are indicated by shaded bars. See text
for more details.
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Panel A: Median Yield Curve
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Panel B: Boxplots Yield Curve
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Figure 2: Panel A shows the median fitted (data-based) yield curve with interquartile
range (25th and 75th percentiles). Panel B presents Boxplots for the fitted (model-based)
yields for every maturity. The data span the time period January 1961-December 2001,
for a total of 492 observations.
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Selected Fitted Yield Curves
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Figure 3: Fitted (model-based) yield curves for selected dates (dotted lines), together
with actual yields (stars). See text for details.
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