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Abstract 

This paper investigates the extent to which test performance is affected by shocks to non-

cognitive skills. 440 students took a low stakes mathematics test. About half of them were 

exposed to positive affirmation while being given test instructions, whereas the other half 

served as controls. The students were allocated to 14 tutorials and randomisation was con-

ducted at the tutorial level. Mean comparisons suggest that test scores were raised by the 

intervention. In particular, students with low maths grades and with self-assessed difficulties 

in maths gained from the positive affirmation. Results suggest that teachers might increase 

their students' performance by interventions to their non-cognitive skills. 

Inference is obtained by four different methods that take into account that randomisation 

was clustered at the tutorial group level. These methods are evaluated in a Monte Carlo 

study for data generating processes which resemble actual data. We find that randomisation 

inference followed by the wild cluster bootstrap have superior size properties compared to 

conventional approaches. 
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1 Introduction

To a large extent achievement in tests determines schooling and job market decisions.

Test scores are considered to signal the ability of the person taking the test. Often ability

is equated with cognitive skills. However, evidence from the field of psychology suggests

that non-cognitive skills such as self-discipline (Duckworth and Seligman, 2005), motiva-

tion (see review in Borghans, Duckworth, Heckman, and ter Weel (2008)), self-confidence

(Bouffard-Bouchard, Parent, and Larivee, 1991), vulnerability to stereotype threat (Steele,

1997) and test anxiety (Hembree, 1988, 1990) also affect test performance. Personality

traits have been shown to affect a range of socio-economic outcomes such as schooling,

wages, crime and teenage pregnancy besides their effect on test performance (Heckman,

Stixrud, and Urzua, 2006).

If non-cognitive skills matter for achievement, is an intervention able to influence them?

Evidence from long term interventions in early childhood suggests that success in life is

affected by altering long-term personality factors (Heckman and Masterov, 2007). We

examine a short term intervention to non-cognitive skills for young adults. We assess

whether it has an impact on their achievement in a cognitive test. The intervention is

simple and cheap: students receive positive affirmation before taking a maths test. The

outcome is considerable: test scores are significantly raised. In particular, students report-

ing difficulties in maths and students with low maths grades benefit from the intervention.

This suggests that teachers may raise their students’ performance by positively affirming

them. Furthermore, the finding emphasises the importance of standardised tests when

comparing students’ cognitive and non-cognitive abilities.

Our work is most closely related to Borghans, Meijers, and Weel (2008). In an experiment,

they examine how students with different non-cognitive skills respond to financial rewards

when taking a cognitive test. They find that a student’s time investment in answering

a question depends on his personality traits and economic preferences: students with

favourable personality traits such as high performance motivation or conscientiousness

invest relatively more time in the absence of rewards and invest less than average time

when there is an incentive pay; students with low discount rates and low risk aversion,
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though, invest more time when rewards are introduced. Changes in time investment,

however, are not accompanied by changes in test scores: financial incentives do not have

significantly different effects on test scores for students with different personalities. Our

results confirm Borghans, Meijers, and Weel (2008): individual behaviour at cognitive

tests depends on non-cognitive skills. They also suggest that other interventions to non-

cognitive skills might be more successful in raising test performance compared to financial

rewards.

We conducted a field experiment to evaluate the intervention. 440 students took a low

stakes maths test. About half of them received positive affirmation before the test was

taken. The other half were just given the test instructions. Students were allocated to 14

tutorials taught by 7 tutors. Treatment was randomly assigned at the tutorial level (cluster

randomised trial). Assignment was blocked with regard to the 7 tutors. In Monte Carlo

simulations, we assess different approaches for obtaining standard errors in the presence of

intracluster correlation. We add to other Monte Carlo studies on this issue by (i) allowing

for negative intracluster correlation and by (ii) comparing randomisation inference that

takes into account blocking with approaches that ignore it. We find that randomisation

inference outperforms other approaches for arbitrary intracluster correlation and when

randomisation is blocked with respect to covariates that explain the outcome variable.

This is at the expense of reduced power. The wild cluster bootstrap achieves comparable

size properties when blocking is unnecessary. For mean comparisons we present p-values

based on five different approaches to obtain standard errors with clustered data.

This paper proceeds as follows. The next section provides some background on the role

of non-cognitive skills on performance. In Section 3 the experimental setting is described.

Section 4 discusses methodological issues such as estimation of treatment effects, and

inference when observations within a cluster are correlated and provides Monte Carlo

simulation. Section 5 describes results. The final section provides a conclusion.

4



2 Background

Non-cognitive aspects of ability such as motivation and self-confidence have often been

neglected in economic models. However, empirical evidence suggests that they matter for

success as much as (or even more) than cognitive ability. For instance, Duckworth and

Seligman (2005) find that self-discipline outperforms IQ in predicting achievement in tests.

Similarly, Heckman, Stixrud, and Urzua (2006) find that a change in non-cognitive ability

has a comparable or even greater effect on a range of socio-economic outcomes than an

equal change in cognitive skills. Furthermore, evidence suggests that non-cognitive skills

are more malleable in later years than cognitive skills, which are fairly settled by the

age of eight (Cunha, Heckman, and Lochner, 2006). This raises questions as to whether

interventions and investment in non-cognitive skills could be more efficient compared to

targeting cognitive skills.

In this section, we review some evidence on the impact of non-cognitive skills on cognitive

tests. Before doing so, we want to emphasise that the use of the term “cognitive” in

contrast to “non-cognitive” might be misleading (Borghans, Duckworth, Heckman, and

ter Weel, 2008). Many aspects of personality are a consequence of cognition; and cog-

nition depends on personality. However, we adapt the common notion in the literature.

We subsume raw problem solving ability (intelligence) under “cognitive”. We distinguish

it from other “non-cognitive” abilities such as perseverance, attention, motivation, and

self-confidence.

Zigler and Butterfield (1968) provide evidence that motivation can substantially in-

crease performance in IQ tests. They find that children from deprived backgrounds

achieved higher test scores in tests that maximised their motivation to perform well com-

pared to standard IQ tests. They also find that increases in children’s standard IQ test

results after attending a nursery school were due to motivational factors rather than

changes in the rate of intellectual development. Borghans, Duckworth, Heckman, and ter

Weel (2008) summarise several studies that show that extrinsic incentives can increase

cognitive test performance. Positive effects of cash and candy incentives are mainly found
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for children with a low IQ or socio-economic background. For high school students with a

high IQ no incentive effects can be established. An interesting experiment in this respect

is Borghans, Meijers, and Weel (2008), who find that financial incentives have heteroge-

neous effects on time spent on cognitive tests depending on an individual’s personality

traits. Students with high performance motivation, an internal locus of control, curiosity,

and other favourable personality traits invest less time in answering a question when there

is a financial reward compared to those who score lower on these traits. On the other

hand, students with lower discount rates and lower risk aversion invest more time when

there is an incentive pay reward. While financial rewards change time investment, they

do not result in significantly different effects on test scores for students with different

personalities. Increased time investment is generally not increasing test scores. Overall

this suggests that extrinsic incentives can increase test performance, but not necessarily

for all individuals. Furthermore, individuals appear to have quite diverse responses to re-

wards depending on their personality traits. It should also be kept in mind that extrinsic

incentives can have detrimental effects on intrinsic motivation (Deci and Moller, 2005).

Self-confidence has also been found to affect achievement. Bandura (1993) argues that

perceived self-efficacy affects cognitive and motivational processes: students’ beliefs in

their efficacy to regulate their own learning and to master academic activities determine

their aspirations, their level of motivation, and, consequently, their academic accomplish-

ments. Bouffard-Bouchard, Parent, and Larivee (1991) find that children with the same

level of skill development in mathematics differed significantly in their maths problem

solving process depending on the strength of their beliefs about self-efficacy. In a related

literature, it has been shown that self-confidence can be negatively affected by stereotype

threats. Steele (1997) provides evidence that stereotypes (for instance that “women are

not good at mathematics”) impair test performance when a member of a stereotyped

group is tested. Self-affirmation has been found to improve the performance of individu-

als under stereotype threat (Martens, Johns, Greenberg, and Schimel, 2006).

Finally, Hembree (1988) and Hembree (1990) provide evidence that test anxiety can seri-

ously impair test performance. Test anxiety relates to students’ self-esteem and to their
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fears of negative evaluation. Its impact depends on the perceived degree of difficulty of

the respective test.

3 The experiment

The population of the experiment consists of students participating in the first tutorial

of undergraduate macroeconomics in the autumn term of 2007 at the University of St.

Gallen in Switzerland. Tutorials accompany lectures: material from the lecture is re-

viewed and problem sets are solved. Students have an incentive to participate in tutorials

because they serve as exam preparation. Their participation is not obligatory. Of around

1000 students who took the final exam, around 450 students attended the first tutorial.

There were 14 tutorials held by 7 tutors and they took place four days after the lecture.

Each tutor was teaching one class from 12 to 2 pm and one from 2 to 4 pm. In order to

achieve equal class sizes, the University of St. Gallen has implemented a so-called bidding

system, where students can bid a share of a fixed amount of points to be assigned to a

certain tutorial according to their preferences. As a consequence, each student is assigned

to one of the 14 tutorials. However, whether students actually attend the assigned classes

or not is not controlled. In practice, it might be that students switch between tutorials

according to their time, tutor or peer preferences.

A low stakes mathematics test was conducted at the beginning of the first tutorial. This

was to show students and their tutors the extent to which students have difficulties in

certain mathematical methods that are important for undergraduate macroeconomics.

Questions consisted of solving linear equation systems, drawing linear functions, deriving

the total differential and applying the rules for logarithms and exponents. The test was

anonymous. In a questionnaire attached to the front of the test, students were asked

about their age, gender, and field of study. They were also asked whether they had dif-

ficulties in economics due to lack of mathematical skills, how long they had revised or

prepared for the first lecture, and what their grade was in the mathematics exam in their

first year (assessment level). Students had 15 minutes to solve ten questions, and then

the tests were collected. They were marked twice by different people who did not know
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which of the 14 tutorials the student belonged to.

The treatment was positive affirmation whilst giving the test instructions. Before the test

was taken each tutor read an instruction text from a printed paper. The original German

text is shown in Table A.1 in the Appendix. The English translation is:

“Before we discuss the problem set, we will conduct a self-test in mathematics. The

test is anonymous. It will not count towards your grade. The topics of the test are pre-

cisely those mathematical methods that are important for this macroeconomics class. If

you encounter difficulties in solving these problems, we recommend reviewing the respec-

tive topics. The test serves two purposes. First, it will allow you to determine your own

weak spots. Second, it will show the tutors which questions cause problems. You have 15

minutes to answer the questions. We will then collect and correct it. You will receive

printed solutions to assess your own level.”

In the treatment group the following sentences were added:

“I am sure that you will solve the given problems very well. You have al-

ready taken tests in the past with success; otherwise you would not be here.”

The treatment was meant to positively affirm students. The first sentence was intended

to signal to the students that the tutor believed that their mathematical skills were more

than sufficient for this test. This sentence could affect a student’s non-cognitive skills

through various channels. First, a teacher’s expectations might have some self-fulfilling

components (Pygmalion effects). Second, performance impairing test anxiety might be

reduced when students do not need to worry that they will not perform well. Third,

intrinsic motivation to achieve good results might be increased if this goal is described

as achievable. The second sentence was supposed to remind them of their past successes

when taking tests. From the field of psychology it is known that reminding individuals of

their past achievements boosts self-confidence. This will reinforce the non-cognitive skills

that have been activated by the first sentence. Arguably, this sentence might also provoke
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the opposite effect if said to individuals with a history of under-achievements. However,

these were all students who have been admitted to the University and passed a difficult

examination in their first University year, so that it was considered to be most likely that

the sentence caused the intended effect.

Randomisation was implemented at the student group level: 7 out of 14 student groups

were randomised to receive the treatment, while the other half served as the control group.

A cluster randomised trial can have the drawback of reduced estimation precision, com-

pared to randomisation at the individual level, as individuals within a cluster cannot be

considered as independent observations. However, in our context, students are clustered in

student groups anyway. They self-select into the 14 tutorials, experience common shocks

within a class room and interact with their peer students. Consequently, it was a natural

choice to randomise student groups instead of students. The other option would have

been to print the positive affirmation at the beginning of the maths test. However, this

would probably have had a weaker treatment effect. The positive affirmation would have

been less personal, less noticeable and less credible. Moreover, there would have been the

risk of spill-over effects if the neighbouring student belonged to a different group.

Furthermore, student groups were blocked before randomisation according to their tutor.

When there are a few clusters, blocking with respect to important covariates is recom-

mended to reduce imbalance (Cox and Reid, 2002; Bloom, 2004; Donner and Klar, 2004).

In this setting, each tutor was assigned one group under treatment and another without,

in order to avoid a bad draw in which many tutors had only one treatment status. If

there are tutor fixed effects (for instance, because better students select a certain tutor) a

trial without blocking could have resulted in a situation in which students assigned to the

treatment group would be different from students in the control group. Thus, blocking

with respect to the tutor ensures that treatment and control group each represent each

block in the same proportion. This increases the precision of the treatment estimator by

reducing standard errors, provided that tutors explain variations in test scores.

The internal validity of the experiment might be harmed if the following problems oc-
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cur: (i) randomisation changes the process of selection into the treatment (randomisation

bias); (ii) students in the control group receive close substitutes for the positive affirmation

(substitution bias); (iii) students assigned to one group do not (or only partly) participate

(drop-out bias), (iv) students behave differently because they know that an experiment

is conducted (Hawthorne effects) (see Heckman and Smith (1995)). As students were not

informed before the tutorial that an experiment would be conducted, randomisation bias

and Hawthorne effects can be ruled out. While it may be the case that students in the

second tutorial were informed that a maths test would be conducted, they were unlikely

to know about the two different instruction texts. As students did not leave the classroom

during the test, substitution bias can be ruled out as well. Drop-out bias might occur if

students assigned to treatment did not complete the tests. However, all returned tests

did contain responses. No students are known to have not returned the test. Thus, it

is unlikely that drop-out bias pollutes the randomisation design. Therefore, the interval

validity of the randomisation evaluation appears to be warranted.

We now turn to check whether the randomisation did balance important covariates.

Table A.2 in the Appendix provides some descriptive statistics on students’ characteristics,

which were obtained from the questionnaire. The first two columns in the upper panel

show mean characteristics for the overall treatment and control group. The other columns

show mean characteristics for each of the 14 student groups. The table also provides a

t-test for equality of means, where standard errors were clustered according to the cluster-

robust variance matrix (described in the next section).

Overall, 233 students were exposed to the positive affirmation and 207 students served

as controls. Around 30 percent of them are female. On average, they were 22 years

old. More than half of the students were business students, the others were economics,

international affairs and law students. Their average grade in mathematics in their first

year was around 4.75, where 6 is the highest grade and a student failed with a grade

lower than 4. Around one third of the students considered themselves to have difficulties

in economics because they lacked maths skills. On average, they prepared or revised for
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the first macroeconomics lecture for less than an hour. Equality of means tests do not

suggest that there are systematic differences between the two groups when aggregated.

The rows below show average test outcomes for the overall test. On average, students

in the treatment group achieved 6.27 out of 10 points, while students in the control

group achieved 6.01 points. The differences are not significant. However, as will be

discussed in the next section, inference in the presence of a small number of clusters is

not straightforward. Results with more appropriate inference are therefore provided in

Section 5.

When considering the student groups separately, we notice some heterogeneity between

groups. In the largest two tutorials, 45 students participated, whilst there were only 14

students in the smallest tutorial. There are usually more students in tutorials from 12

to 2 pm compared to the later one. The share of students by gender, field of study and

self-assessed difficulties in economics differs by groups. The test scores achieved range

from an average of 5.19 to 6.73. These differences could suggest a potential self-selection

into groups. Furthermore, we notice that the average test scores of students taught by

the same tutor are more alike, which could be a sign for tutor effects.

Figure A.1 in the Appendix shows the distribution of the test scores in treatment and

control groups. The test scores are discrete, as one point was given for any correct answer

and otherwise zero was given. Each student could answer at least a part of the test.

The minimum test score (1 point) and the maximum test score (10 points) were each

achieved by seven students. The median test score in both groups was 7. The variance in

the control group is higher than in the treated group. Both distributions are negatively

skewed.

4 Methodology

4.1 Estimation of treatment effects

The outcome of interest is the achieved test score, which takes discrete values between 0

and 10. In the following it is assumed that it is cardinal. In other words, the distance
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between achieving y = x and y = x + 1 point is the same for all x. We argue that in our

case this is a valid assumption, because all ten questions are considered to measure the

same degree of difficulty. Under this assumption, the difference in average test scores is

meaningful.

Since assignment to treatment was at random, unbiased treatment effects can be obtained

by comparing the means in the control and treatment groups. This is illustrated in the

potential outcome framework introduced by Rubin (1974). Let Yi denote the test score

of student i. Let Di denote the treatment state of this student, i.e. Di = 1 if he was

exposed to positive affirmation and Di = 0 if he was not. We would like to compare

test outcomes for the same student if he was exposed to treatment (as denoted by Y 1
i )

and if he was not exposed to treatment (as denoted by Y 0
i ). But for every student only

one of these potential outcomes is observed. Therefore, we cannot obtain the treatment

effect for a given student. However, we can obtain an estimate of the average impact

of the intervention. The average treatment effect (ATE) is defined as the difference in

test scores under treatment and no treatment for an individual randomly drawn from the

population:

E[Y 1 − Y 0].

In non-experimental frameworks, individuals who receive treatment are different from

individuals without treatment not only with regard to their treatment status, but also in

other covariates that affect outcomes. Then, a simple comparison of outcomes between

treated and non-treated individuals would result in selection bias. In an experiment,

however, the selection bias is removed, because assignment is random. As assignment is

uncorrelated with the attributes of the individual, on average individuals in the D = 1

group are similar to individuals in the D = 0 group. In other words, random assignment

ensures that treated and control groups have the same distribution of characteristics. This

implies that potential outcomes in treatment and control groups equal outcomes in the
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population:

E[Y 1|D = 1] = E[Y 1|D = 0] = E[Y 1],

E[Y 0|D = 1] = E[Y 0|D = 0] = E[Y 0].

Thus, we can consistently estimate the ATE by the difference in means between treatment

and control groups. Furthermore, because treated individuals are randomly drawn from

the population of interest, the average treatment effect on the treated (ATET) equals the

ATE. Besides estimating the average treatment effect, we also estimate quantile effects to

assess how the intervention affects the distribution of outcomes. But we confine ourselves

to ATEs when conducting inference.

4.2 Inference in the presence of clusters

While obtaining consistent estimates for the ATE is not affected by the presence of clus-

ters, inference is. If individuals within the same group are subject to common shocks,

their outcomes might be correlated. Moreover, because all individuals in the same group

have the same treatment status, the correlation in their outcomes might mistakenly be

interpreted as the treatment effect. To illustrate this, suppose there was a positive corre-

lation within clusters. Then each individual would contribute less to statistical efficiency

compared to a case where there were independent observations. Standard errors which

were not adjusted for clustering would underestimate the true variance of the treatment

effect. This would result in over-rejections of the null hypothesis of no treatment effect.

Bertrand, Duflo, and Mullainathan (2004) illustrate the severity of this issue: they find

5% significant effects of a non-existing intervention in up to 45% of the placebo interven-

tion.

In the following, we discuss this issue more formally. Let us consider the linear regression

model of yi on a constant and the treatment indicator Di, where i = 1, ...N denotes the

ith sample observation. The coefficient of the treatment indicator gives the ATE. There

are c = 1, ...C clusters in the overall sample. Suppose that the ith individual in the sample
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is the jth individual in the cth cluster. Then the model for clustered data is:

yjc = α + βDjc + ujc, j = 1, ..Nc, c = 1, ...C, (1)

where Cov[ujc, ukc] 6= 0 and Cov[ujc, ukd] = 0 for c 6= d. Thus, errors of individuals

belonging to the same cluster may be correlated, while errors of individuals belonging to

different clusters are uncorrelated. Note that this model allows for arbitrary individual

effect heterogeneity, i.e. β is not restricted to be the same for all individuals and could be

different in different clusters and different within clusters. Stacking observations within a

cluster yields:

yc = α + βDc + uc, (2)

where yc, Dc and uc are Nc × 1 vectors. The ATE estimator is

β̂ = Y
1 − Y

0
, (3)

where Y
1

is the mean in the treatment group and Y
0

is the mean in the control group.

Let Xc denote a Nc×2 matrix with consisting of a unit vector and Dc. Then, the central

limit theorem yields
√

N(β̂ − β) → N [0,A−1BA−1], (4)

where

A = plimN−1

C∑
c=1

X ′
cXc,

B = plimN−1

C∑
c=1

X ′
cucu

′
cXc.

Different approaches for the estimation of B have been suggested. Moulton (1986) imposes

assumptions about the structure of ucu
′
c. In his model, the error term is decomposed into

a random cluster specific constant αc and a homoskedastic individual-specific component
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εjc, i.e.:

yjc = α + βDjc + αc + εjc (5)

εjc ∼ [0, σ2
ε ]

αc ∼ [0, σ2
α]

It has a positive and constant intraclass correlation coefficient which is defined as

ρ = Cor[αc + εjc, αc + εkc] =
σ2

α

σ2
α + σ2

ε

. (6)

For simplicity assume equal cluster size Nc = m for every cluster. Let P denote the

proportion of those treated. Then, the variance for the ATE estimator is:

V ar[β̂]Moulton =
1

P (1− P )

mσ2
α + σ2

ε

mC
(7)

Due to the positive intracluster correlation, the variance is always higher compared to

a situation where randomisation had been conducted at the level of the individual. An

obvious drawback of this model is the strong assumption of homoskedasticity and positive

and constant intracluster correlation.

A less parametrically restrictive approach is to use a cluster-robust variance estimator in

the spirit of White (1980). If there are many clusters B can be consistently estimated by

replacing uc by ûc = yc − α̂− β̂Dc. It follows that the ATE estimator is asymptotically

normally distributed with variance:

V ar[β̂]cluster−robust =
(N − 1)

(N − 2)
· C

(C − 1)

( C∑
c=1

X ′
cXc

)−1 C∑
c=1

X ′
cûcûc

′
Xc

( C∑
c=1

X ′
cXc

)−1

(8)

This formula places no restriction on heteroskedasticity and correlation within a cluster.

But, it does assume that Nc is small and C → ∞. Bertrand, Duflo, and Mullainathan

(2004), Kézdi (2004) and Cameron, Gelbach, and Miller (2007) study properties of this

variance estimator when the number of clusters is small (C <= 30). They find that stan-
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dard errors are underestimated, leading to over-rejections in the usual Wald tests.

Cameron, Gelbach, and Miller (2007) suggest using bootstrap procedures when there are

only a few clusters. In Monte Carlo studies they find that bootstrap leads to considerable

improvement. From a theoretical point of view bootstrapping Wald statistics are preferred

over bootstrapping standard errors, because the former allow for asymptotic refinement

as they are asymptotically pivotal, i.e. their asymptotic distribution does not depend

on unknown parameters. Indeed, they are found to have rejection rates closer to the

theoretical value compared to bootstrapping procedures without asymptotic refinement.

When comparing different bootstrap procedures with asymptotic refinement, Cameron,

Gelbach, and Miller (2007) find that the wild cluster bootstrap procedure does especially

well. It is a cluster generalisation of the wild bootstrap for heteroskedastic models (Wu,

1986). Its implementation is described in Table A.3 in the Appendix.

Finally, Duflo, Glennerster, and Kremer (2006) suggest the use of randomisation in-

ference when the number of clusters is small or the covariance structure is unknown.

Non-parametric randomisation inference was originally developed by Fisher (1935) and

later extended by Rosenbaum (2002). It takes advantage of knowing the randomisation

process. In particular, it is the only approach that is able to take into account that tutors

have been blocked before randomisation. All other approaches are ignorant with respect

to the actual randomisation process. Randomisation inference involves generating a set of

all possible placebo random assignments {Ri}. With 7 tutors, each having one treatment

and one control group, there are 27 = 128 possible random assignments. (If there was no

blocking and 7 out of 14 tutorials had been assigned to treatment, this set would be con-

siderably larger with 3432 possible assignments.) For each possible random assignment

the average treatment effect is estimated, resulting in a set of 128 {β̂R}. Since Ri is a

placebo random assignment, E[βR] = 0. Let F̂ (β̂R) be the empirical c.d.f of β̂R for all

elements in {Ri}. We can now test whether the average treatment effect is significantly

different from zero by checking whether it lies in the tails of the distribution of placebo

treatments. We can reject H0 : β = 0 with a confidence level of 1 − α if β̂ ≤ F̂−1(α
2
) or

β̂ ≥ F̂−1(1− α
2
).
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4.3 Monte Carlo simulations

We conduct Monte Carlo simulations to examine finite sample properties of five tests

which use different approaches to address intracluster correlation:

1. a robust White estimator (ignoring clustering),

2. a Moulton estimator, as in equation 7 (assuming a positive and constant intracluster

correlation),

3. a cluster-robust estimator, as in equation 8 (allowing for arbitrary covariance, but

relying on observing many clusters),

4. a wild-cluster bootstrap implemented according to Table A.3 (allowing for a few

clusters with arbitrary covariance)

5. and randomisation inference (allowing for a few clusters with arbitrary covariance

and taking blocking into account ).

The properties of the first four estimators have already been studied by Bertrand, Duflo,

and Mullainathan (2004), Kézdi (2004) and Cameron, Gelbach, and Miller (2007). We

add to this literature (i) by allowing for negative correlation within a cluster and (ii)

by comparing randomisation inference, which takes blocking in the randomisation into

account with approaches that ignore blocking. Furthermore, we aim to study properties

for data generating processes which resemble the actual observations in our experiment.

This will allow a more precise evaluation of variance estimators for our data. Therefore,

we generate discrete data which take values that have been actually observed as test

scores. We use as many clusters (C = 14 ), and as many observations within each cluster,

as in our experiment. Each data generating process is generated as

yjc =





1 if errorjc <= q1

2 if q1 < errorjc <= q2

3 if q2 < errorjc <= q3

...

10 if q9 < errorjc

(9)
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where errorjc is a random component and qi with i = 1, ...9 are the quantiles of errorjc

which are chosen to reflect the distribution of actual test scores. For instance, q1 is the

0.016 quantile as there are 7 out of 440 individuals with a test score of 1. The intracluster

correlation is modelled by assuming different forms of the error term errorjc. We impose

H0 : β = 0 for every data generating process. We then use the actual treatment indicator

to estimate the ATE. For a given data generating process, we perform R replications,

where each replication yields a newly estimated ATE and either rejection or non-rejection

of H0. We estimate the actual rejection rate a of the particular test by â, the fraction of

replications for which H0 is rejected. This is an estimate of the true size of the test. With

a finite number of replications, the simulation standard error is: sâ =
√

â(1− â)/(R− 1).

Ideally, we would like to find an approach for which the estimated size is close to the ac-

tual size.

Table A.4 in the Appendix presents the results from a Monte Carlo simulation with

1000 replications for different data generating processes. For the wild cluster bootstrap

we use 500 replications. This lower value is justified, as the bootstrap simulation error

cancels out across the Monte Carlo simulation. In the first row, the error term is assumed

to be homoskedastic without any intracluster correlation. In the second to fourth rows,

we assume positive and constant intracluster correlation coefficients of 0.5, 0.2 and 0.01

respectively. In the fifth to tenth rows, we assume an AR(1), i.e. autoregressive process

of order 1, for the error term. This implies that the intracluster correlation decreases with

an increasing distance between observations within a cluster. In rows five, six and nine it

is always positive. In the other rows it alternates between negative and positive. In rows

five to eight the correlation parameter in the AR(1) process is the same for every cluster,

while it is different in rows nine and ten. Rows 11 to 20 add tutor fixed effects to the

respective error process.

The White robust estimator only achieves a rejection rate of 0.05 if the data are not

clustered (in rows 1 and 11). Otherwise it greatly over-rejects the true null hypothesis if

there is a positive intracluster correlation and under-rejects it for processes with positive
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and negative correlations between clustered observations. Its performance worsens when

the degree of correlation increases. The Moulton estimator only achieves rejection rates

close to the nominal size for positive intracluster correlation. Its rejection rates increase

with higher correlation. This results in over-rejection when correlation is high (not shown

here) and in under-rejection when there is no, or only a small, or negative correlation.

Rejection rates decline in the presence of tutor fixed effects. The cluster-robust estimator

over-rejects the null hypothesis of no treatment effect if there are no tutor fixed effects.

This replicates results for a small number of clusters in Cameron, Gelbach, and Miller

(2007). In the presence of tutor fixed effects, the cluster-robust estimator over-rejects

when there is a high and positive correlation and under-rejects when there is a small or

negative correlation. The wild cluster bootstrap achieves rejection rates close to the nom-

inal size in the absence of tutor fixed effects. However, with tutor fixed effects its rejection

rates decline: in particular, it severely under-rejects if correlation is small or alternating

in sign. Finally, randomisation inference yields rejection rates as desired. Regardless of

the form of correlation within clusters and regardless of tutor fixed effects, estimated size

is never significantly different from nominal size. Thus, randomisation inference outper-

forms all other approaches in its size properties.

In order to study the power properties of these approaches, we add a treatment effect of

β = 0.25 to the error term in the data generating process. This value is chosen because

it is the point estimate in our results. We then estimate how often the tests reject the

false hypothesis of a zero treatment effect. Table A.5 shows rejection rates for a signifi-

cance level α = 0.05. When there is no intracluster correlation and no tutor fixed effects,

applying bootstrap and randomisation inference results in only small power losses. When

there is intracluster correlation, approaches that take this into account are associated

with lower power compared to the White estimator. Their power increases as the degree

of correlation decreases. Power properties are better if there is positive and negative in-

tracluster correlation. The presence of tutor fixed effects makes it difficult to detect the

true positive effect for the Moulton, cluster-robust and bootstrap methods, while rejection

rates for randomisation inference are not much affected.
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In total, these results suggest that randomisation inference outperforms other ap-

proaches when observations within clusters are correlated and the randomisation is blocked

with respect to covariates that explain outcomes. It achieves good size properties for all

data generating processes considered here. This is arguably at the expense of reduced

power, but is the only way to avoid over-rejections. The wild cluster bootstrap has com-

parable performance when there are no tutor fixed effects, but is otherwise inferior.

5 Results

Mean differences in test scores for treatment and control groups are shown in the second

column of Table 1. On average, students exposed to the intervention achieved 0.25 point

higher test scores. With a maximum score of 10 points, this corresponds to an increase of

2.5 percentage points. The next five columns show p-values for five different approaches

(described above) to test whether this difference is equal to zero. The null hypothesis is

rejected for all but one approach: when randomisation inference is applied, the average

treatment effect is significant at the 5% level. Since our Monte Carlo simulations have

suggested that randomisation inference is superior to the other approaches, we consider

this as evidence that positive affirmation has significantly increased test performance.

When looking at subgroups, we notice that estimated ATEs are usually positive. Fur-

thermore, they increase and become significant in some subgroups despite smaller sample

sizes. This suggests considerable effect heterogeneity. On average, students who had a

low mathematics grade in their first year achieved a test score 0.57 points higher when

treated. Students with self-reported difficulties in mathematics achieved test score 0.8

points higher than their controls. Treatment effects are significant at the 10% level ac-

cording to all five approaches considered. With regard to the preferred randomisation

inference, they are even significant at the 1% level. Consistent with this finding, quantile

treatment effects (not reported here) are positive for the lower part of the distribution and

are usually zero for the upper part. This suggests that the intervention to non-cognitive

skills has its strongest impact for students with below average maths skills compared to
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Table 1: Estimated ATE and p-values for H0 : ATE = 0

p-values
N ATE White Moulton Cluster-

robust
BS RI

all 440 0.25 0.17 0.28 0.27 0.32 0.05
female 129 0.33 0.38 0.41 0.40 0.42 0.35
male 305 0.14 0.49 0.56 0.57 0.60 0.45
≤ 22 years of age 286 0.16 0.45 0.46 0.32 0.35 0.27
> 22 years of age 151 0.55 0.12 0.19 0.16 0.22 0.16
business 261 0.19 0.42 0.54 0.52 0.54 0.14
low grade 174 0.57 0.05 0.09 0.06 0.09 0.00
high grade 205 -0.03 0.90 0.91 0.91 1.00 1.00
difficulties 149 0.80 0.02 0.06 0.03 0.10 0.00
no difficulties 266 0.06 0.75 0.76 0.74 0.76 0.76
prepared/revised 210 0.26 0.34 0.35 0.22 0.29 0.08
not prepared/revised 223 0.15 0.56 0.67 0.65 0.67 0.50

Note: ATE is the mean difference between treatment and control group. BS is an abbreviation for
bootstrap; RI stands for randomisation inference. P-values are given for a robust White estimator
(without clustering), a Moulton estimator (equation 7), a cluster-robust estimator (equation 8), a wild
cluster bootstrap with 10000 replications (see Table A.3) and randomisation inference.

their peers. It has even stronger effects when students perceive a lack of maths skills. Of

course, these two groups are overlapping. A decomposition in further subgroups limits

inference as the sample is small. But mean comparisons suggest that the 97 students

with self-reported difficulties and low maths grades achieve the highest gains from the

intervention with an average treatment effect of 0.97. The 164 students with good maths

grades and no difficulties are hardly affected by the intervention: their test score is only

increased by 0.01 points. The 77 students with a low maths grade and no self-reported dif-

ficulties achieve test scores 0.21 points higher and the 34 students with high maths grade

and self-reported difficulties achieve test scores 0.18 points higher when treated. There is

also some evidence that the intervention had a significant effect for students who prepared

or revised for the lecture. This could suggest that an intervention to non-cognitive skills

might be more successful when knowledge has been acquired.

In order to raise efficiency, we also control for some covariates that are expected to

explain the outcome variable, but which are not affected by the intervention. Table A.6
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shows average treatment effects when gender, maths grade, and difficulties in maths are

added in a linear regression. In other specifications, we also added tutor fixed effects and

a dummy for the time of the tutorial: we obtained comparable effects. Due to controlling

for covariates the estimated ATEs increase in every case. The ATE for all students is

not only significant according to randomisation inference, but also according to the other

approaches. We consider this as confirmation of our evidence, especially as our most

preferred and second-choice approaches indicate a significant effect. As before, students

with low maths grades and self-reported difficulties in maths are the subgroups with the

highest and most significant treatment effects. For students who prepared or revised for

the lecture, the wild cluster bootstrap suggests a significant effect at the 10% level, while

randomisation inference no longer suggests a significant effect. Therefore, we are rather

careful and argue that there is no strong evidence that this particular subgroup has sig-

nificantly gained from the intervention. In contrast to the above results, we also find

significant effects for female students when applying randomisation inference. But again

we only consider this as weak evidence, since it is not found when not controlling for

covariates. As a sensitivity check, we also estimate ATE in a semi-parametric matching

approach. In contrast to the linear regression, it does not impose any functional form

assumptions and allows for individual effect heterogeneity. Estimated effects from match-

ing are different to the linear regression results as a different weighting scheme is applied.

We do not report them here, but they are usually higher than ATEs in linear regression.

This reassures us that potential misspecification in linear regression does not yield upward

biased results.

6 Conclusion

In a field experiment, we examined whether a student’s performance could be raised by a

shock to their non-cognitive skills. The shock consisted of a positive affirmation intended

to raise a student’s motivation and self-confidence and to reduce test anxiety.

Students who were exposed to the intervention achieved higher average test scores than

their controls. This was mainly due to positive quantile effects in the lower part of the
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distribution. This is also reflected in effect heterogeneity with regard to different sub-

groups: students with a low maths grade and low self-assessed maths skills especially

benefited from the intervention. These students are likely to be the students with the

lowest self-confidence and highest test anxiety. No subgroup was harmed by the inter-

vention. This suggests that teachers who aim to raise performance of their students can

repeat this intervention without risk of harm to particular students. However, other re-

search is necessary to assess whether results also hold for other populations, for other

tests and in other contexts. Currently, evidence from other studies suggests that results

generalise to pupils (Bouffard-Bouchard, Parent, and Larivee, 1991) and women under

stereotype threat (Martens, Johns, Greenberg, and Schimel, 2006).

We also note that this specific intervention to non-cognitive skills (positive affirmation)

might be more promising than introducing financial incentives when aiming to raise a

student’s test performance: extrinsic incentives were often found to be non-effective, are

likely to have diverse (even negative) effects for different individuals and are more expen-

sive to implement.
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7 Appendix

Table A.1: German test instruction

for all: Bevor wir mit der Besprechung der Aufgaben beginnen, wird ein

Mathematik-Selbsttest durchgeführt. Dieser Test ist anonym. Er

beeinflusst Ihre Note nicht. Gegenstand des Testes sind genau jene

mathematischen Methoden, die für Makro 2 wichtig sind. Falls Sie

mit diesen Aufgaben Schwierigkeiten haben sollten, empfehlen wir

den betreffenden Stoff selbständig zu wiederholen. Der Test hat

zwei Ziele. Erstens dient er Ihnen dazu festzustellen, wo bei Ihnen

ein Nachholbedarf besteht. Zweitens zeigt er uns Übungsleitern, bei

welchen mathematischen Aufgaben Sie Schwierigkeiten haben. Sie

haben 15 Minuten für die Beantwortung der Fragen Zeit. Danach

wird der Test eingesammelt und von uns korrigiert. Sie erhalten

Musterlösungen, um Ihren Kenntnisstand selbst festzustellen.

for treated: Ich bin mir sicher, dass Sie die Aufgaben sehr gut lösen

können. Sie haben ja auch in der Vergangenheit erfol-

greiche Testergebnisse erzielt, sonst wären Sie ja nicht

hier.
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Table A.2: Means of characteristics and test outcomes by treatment group

tutor all all 1 1 2 2 3 3
treatment 1 0 1 0 1 0 1 0
time 12am-2pm 1 0 1 0 0 1
observations 233 207 40 32 45 23 40 21

female 0.29 0.32 0.30 0.31 0.22 0.30 0.30 0.19
age 22.18 22.22 22.65 22.81 22.98 21.65 21.45 23.05
business 0.62 0.58 0.43 0.59 0.75 0.57 0.64 0.71
economics 0.17 0.21 0.13 0.16 0.11* 0.30 0.13 0.29
international affairs 0.12 0.12 0.28 0.16 0.09 0.04 0.15* 0.00
law 0.07 0.07 0.13 0.09 0.05 0.09 0.08 0.00
grade 4.75 4.81 4.70 4.65 4.84 4.73 4.84 4.93
difficulties 0.38 0.33 0.44 0.50 0.41 0.30 0.40 0.19
preparation in hours 0.77 0.74 0.93 0.87 0.73 0.43 0.64** 1.24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test score 6.27 6.01 5.85 5.19 5.96 5.91 6.50 6.10

tutor 4 4 5 5 6 6 7 7
treatment 1 0 1 0 1 0 1 0
time 12am-2pm 11 1 0 1 0 1 0 1
observations 45 38 18 38 28 41 16 14

female 0.31 0.42 0.47 0.26 0.29 0.22 0.25*** 0.75
age 22.07 21.87 20.72** 22.21 22.41 22.24 22.13 21.38
business 0.64 0.47 0.47 0.58 0.75 0.63 0.63 0.50
economics 0.27 0.16 0.53*** 0.18 0.07 0.20 0.13 0.40
international affairs 0.07 0.11 0.00* 0.18 0.11 0.17 0.00 0.10
law 0.02*** 0.26 0.00 0.00 0.04 0.00 0.25* 0.00
grade 4.67 4.82 4.75 4.92 4.70 4.76 4.70 5.09
difficulties 0.41 0.38 0.18 0.32 0.31 0.32 0.40* 0.09
preparation in hours 0.69 0.92 0.72 0.66 0.90** 0.37 0.81 1.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test score 6.73 6.47 6.72 6.29 6.03 6.07 6.19 5.79

Equality of means between groups is tested using t-tests, where standard errors are clustered according
to cluster-robust variance matrix. Significant t-stats are indicated by *, **, *** for 10, 5 and 1% level.
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Figure A.1: Distribution of the test scores
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Table A.3: Implementation of the wild cluster bootstrap with H0 imposed

step 1 In the original sample, estimate average treatment effect for the model
yc = α + βDc + uc and obtain β̂. Form Wald statistic for H0 : β = 0:

w =
β̂

sβ̂

,

where sβ̂ is the standard error using the cluster-robust variance estimator
from equation 8.

step 2 In the original sample, estimate restricted model yc = α+uc that imposes
H0 : β = 0. Obtain restricted mean estimator α̂R and the associated
restricted residuals uR

1 , ..., uR
C .

step 3 Do B iterations of this step. On the bth iteration:
step 3a Form a pseudo sample of C clusters (ŷ∗1, D1), ..., (ŷ

∗
C ,DC) by the fol-

lowing method. For each cluster c = 1, ..., C, form either uR∗
c = uR

c

with probability 0.5 or uR∗
c = −uR

c with probability 0.5. Then form
ŷ∗c = α̂R + û∗c . (Multiplication of residuals with 1 and -1 with probability
0.5 are so called Rademacher weights, which lead to asymptotic refine-
ment if errors are symmetric distributed (Cameron, Gelbach, and Miller,
2007)).

step 3b Calculate the Wald test statistic

w∗
b =

β̂∗b
sβ̂∗b

,

where β̂∗b and its standard error sβ̂∗b
are obtained from the unrestricted

model ŷ∗c = α + βDc + uc in the bth pseudo sample, with sβ̂∗b
computed

using the cluster-robust variance matrix from equation 8.
step 4 Reject H0 : β = 0 at level α if w < w∗

[α/2] or w > w∗
[1−α/2], where w∗

[q]

denotes the qth quantile of w∗
1, ..., w

∗
B.

This implementation is suggested by Cameron, Gelbach, and Miller (2007).
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Table A.4: Rejection rates under H0 : β = 0 for α = 0.05, 1000 simulations

errorjc White Moulton Cluster-
robust

Bootstrap Randomisation

εjc 0.05 0.03 0.09 0.05 0.04
(0.01) (0.00) (0.01) (0.01) (0.01)

εjc + αc 0.64 0.05 0.08 0.05 0.05
(0.02) (0.01) (0.01) (0.01) (0.01)

εjc + 0.5 ∗ αc 0.48 0.04 0.10 0.06 0.04
(0.02) (0.01) (0.01) (0.01) (0.01)

εjc + 0.1 ∗ αc 0.10 0.04 0.09 0.06 0.05
(0.01) (0.01) (0.01) (0.01) (0.01)

νcj = 0.9 ∗ νc(j−1) + εjc 0.59 0.05 0.08 0.05 0.05
(0.02) (0.01) (0.01) (0.01) (0.01)

νcj = 0.5 ∗ νc(j−1) + εjc 0.24 0.03 0.08 0.05 0.06
(0.01) (0.01) (0.01) (0.01) (0.01)

νcj = −0.9 ∗ νc(j−1) + εjc 0.00 0.00 0.09 0.05 0.05
(0.00) (0.00) (0.01) (0.01) (0.01)

νcj = −0.5 ∗ νc(j−1) + εjc 0.00 0.00 0.09 0.05 0.05
(0.00) (0.00) (0.01) (0.01) (0.01)

νcj = ρc ∗ νc(j−1) + εjc 0.46 0.03 0.07 0.05 0.05
(0.02) (0.00) (0.01) (0.01) (0.01)

νcj = −ρc ∗ νc(j−1) + εjc 0.02 0.01 0.10 0.06 0.06
(0.00) (0.00) (0.01) (0.01) (0.01)

tutor fixed effects
εjc + t 0.05 0.00 0.00 0.00 0.04

(0.01) (0.00) (0.00) (0.00) (0.01)
εjc + αc + t 0.64 0.03 0.08 0.04 0.05

(0.02) (0.01) (0.01) (0.01) (0.01)
εjc + 0.5 ∗ αc + t 0.47 0.02 0.05 0.03 0.05

(0.02) (0.00) (0.01) (0.00) (0.01)
εjc + 0.1 ∗ αc + t 0.09 0.00 0.00 0.00 0.05

(0.01) (0.00) (0.00) (0.00) (0.01)
νcj = 0.9 ∗ νc(j−1) + εjc + t 0.59 0.05 0.08 0.05 0.05

(0.02) (0.01) (0.01) (0.01) (0.01)
νcj = 0.5 ∗ νc(j−1) + εjc + t 0.24 0.01 0.03 0.02 0.05

(0.01) (0.00) (0.01) (0.00) (0.01)
νcj = −0.9 ∗ νc(j−1) + εjc + t 0.00 0.00 0.02 0.01 0.04

(0.00) (0.00) (0.00) (0.00) (0.01)
νcj = −0.5 ∗ νc(j−1) + εjc + t 0.00 0.00 0.00 0.00 0.05

(0.00) (0.00) (0.00) (0.00) (0.01)
νcj = ρc ∗ νc(j−1) + εjc + t 0.46 0.02 0.04 0.02 0.05

(0.02) (0.00) (0.01) (0.00) (0.01)
νcj = −ρc ∗ νc(j−1) + εjc + t 0.02 0.00 0.05 0.03 0.06

(0.00) (0.00) (0.01) (0.01) (0.01)

Standard errors in parentheses. Data generating process is given in equation 9.

εjc ∼ N(0, 1), αc ∼ N(0, 1), νc1 ∼ N(0, 1), ρc ∼ U(0, 1)
tutor fixed effects: t = t1 + t2 + t3 + t4 + t5 + t6 + t7 where ti ∼ U(0, 1)
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Table A.5: Rejection rates assuming β = 0.25 for α = 0.05, 1000 simulations

errorjc White Moulton Cluster-
robust

Bootstrap Randomisation

εjc 0.71 0.54 0.76 0.66 0.60
(0.01) (0.02) (0.01) (0.01) (0.02)

εjc + αc 0.69 0.07 0.12 0.07 0.06
(0.01) (0.01) (0.01) (0.01) (0.01)

εjc + 0.5 ∗ αc 0.64 0.11 0.19 0.13 0.11
(0.02) (0.01) (0.01) (0.01) (0.01)

εjc + 0.1 ∗ αc 0.68 0.44 0.65 0.54 0.49
(0.01) (0.02) (0.02) (0.02) (0.02)

νcj = 0.9 ∗ νc(j−1) + εjc 0.61 0.05 0.10 0.06 0.06
(0.02) (0.01) (0.01) (0.01) (0.01)

νcj = 0.5 ∗ νc(j−1) + εjc 0.56 0.16 0.34 0.23 0.23
(0.02) (0.01) (0.01) (0.01) (0.01)

νcj = −0.9 ∗ νc(j−1) + εjc 0.10 0.09 0.48 0.36 0.32
(0.01) (0.01) (0.02) (0.02) (0.01)

νcj = −0.5 ∗ νc(j−1) + εjc 0.65 0.60 0.91 0.86 0.82
(0.02) (0.02) (0.01) (0.01) (0.01)

νcj = ρc ∗ νc(j−1) + εjc 0.55 0.08 0.16 0.13 0.13
(0.02) (0.01) (0.01) (0.01) (0.01)

νcj = −ρc ∗ νc(j−1) + εjc 0.44 0.39 0.66 0.57 0.54
(0.02) (0.02) (0.01) (0.02) (0.02)

tutor fixed effects
εjc + t 0.70 0.06 0.18 0.10 0.60

(0.01) (0.01) (0.01) (0.01) (0.02)
εjc + αc + t 0.70 0.06 0.12 0.07 0.07

(0.01) (0.01) (0.01) (0.01) (0.01)
εjc + 0.5 ∗ αc + t 0.65 0.08 0.15 0.10 0.14

(0.02) (0.01) (0.01) (0.01) (0.01)
εjc + 0.1 ∗ αc + t 0.79 0.05 0.18 0.10 0.53

(0.01) (0.01) (0.01) (0.01) (0.02)
νcj = 0.9 ∗ νc(j−1) + εjc + t 0.61 0.04 0.09 0.06 0.07

(0.02) (0.01) (0.01) (0.01) (0.01)
νcj = 0.5 ∗ νc(j−1) + εjc + t 0.62 0.10 0.23 0.14 0.27

(0.02) (0.01) (0.01) (0.01) (0.01)
νcj = −0.9 ∗ νc(j−1) + εjc + t 0.15 0.09 0.27 0.17 0.38

(0.01) (0.01) (0.01) (0.01) (0.02)
νcj = −0.5 ∗ νc(j−1) + εjc + t 0.75 0.14 0.38 0.19 0.84

(0.01) (0.01) (0.02) (0.01) (0.01)
νcj = ρc ∗ νc(j−1) + εjc + t 0.60 0.04 0.12 0.06 0.17

(0.02) (0.01) (0.01) (0.01) (0.01)
νcj = −ρc ∗ νc(j−1) + εjc + t 0.35 0.20 0.44 0.34 0.46

(0.02) (0.01) (0.02) (0.01) (0.02)

Standard errors in parentheses. Data generating process is given in equation 9.

εjc ∼ N(0, 1), αc ∼ N(0, 1), νc1 ∼ N(0, 1), ρc ∼ U(0, 1)
tutor fixed effects: t = t1 + t2 + t3 + t4 + t5 + t6 + t7 where ti ∼ U(0, 1)
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Table A.6: Estimated ATE controlling for covariates and p-values for H0 : ATE = 0

p-values
N ATE White Moulton Cluster-

robust
BS RI

all 440 0.34 0.03 0.10 0.07 0.10 0.02
female 129 0.57 0.09 0.12 0.07 0.11 0.03
male 305 0.22 0.22 0.30 0.25 0.30 0.28
≤ 22 years of age 286 0.19 0.30 0.33 0.20 0.24 0.10
> 22 years of age 151 0.71 0.02 0.07 0.06 0.11 0.16
business 261 0.24 0.27 0.41 0.42 0.46 0.23
low grade 174 0.63 0.02 0.04 0.02 0.05 0.02
high grade 205 0.00 0.99 0.99 0.99 0.99 0.99
difficulties 149 0.94 0.00 0.02 0.01 0.05 0.00
no difficulties 266 0.06 0.72 0.73 0.70 0.72 0.74
prepared/revised 210 0.38 0.09 0.11 0.03 0.07 0.13
not prepared/revised 223 0.20 0.38 0.52 0.50 0.54 0.52

ATE is the coefficient for the treatment indicator in a linear regression with gender, maths grades
and difficulties in maths as additional covariates. BS is an abbreviation for bootstrap; RI stands
for randomisation inference. P-values are given for a robust White estimator (without clustering), a
Moulton estimator (equation 7), a cluster-robust estimator (equation 8), a wild cluster bootstrap with
10000 replications (see Table A.3) and randomisation inference.
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