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Abstract:

This paper studies multifactor asset pricing in the presence of Markov regime switches.

We present a state-dependent version of the Fama and French (1993) model.

Performance of the unconditional Fama-French model is quite poor in some

subperiods, in particular in recent years. The regime-switching model seems to

overcome most of these shortcomings. We find strong evidence that two separate

regimes coexist, one of which is characterized by a very high factor loading on the

value risk factor. Comparison of the dynamics of the transition probabilities with major

macroeconomic indicators suggest the interpretation of this state as a financial-distress

regime, therefore giving support to the risk-based explanation of the size and value

"anomalies". In a forthcoming paper we will present evidence for the Swiss equity

market as well as applications of the model to asset allocation.
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1 Introduction

It is nowadays well recognized that the CAPM cannot explain the average
returns of many investment opportunities: we need factors, sources of priced
risk, beyond changes in the market portfolio in order to explain cross sectional
variations in average returns. Multifactor models extend the CAPM precisely
in this sense, attributing high average returns to positive correlation with ad-
ditional risk factors other than movements in market risk. Multifactor mod-
els can be constructed using two completely different techniques. The first
methodology (e.g. Connor and Korajczyk (1986)) extracts common factors
from the sample covariance matrix of returns using factor or principal com-
ponent analysis. The second technique first assigns assets to several groups
based on certain characteristics so that sample mean returns differ across the
groups. The difference in average returns across the groups is then used as
a factor in a multifactor pricing relation. This is the approach used by Fama
and French (1993) in constructing their three-factor model (FF-model, in what
follows). In this paper we focus precisely on the FF-model, certainly the most
popular multifactor model and nowadays playing a very prominent role in
empirical financial research, dominating the performance attribution and ex-
planation of average returns. Motivated by an attempt to explain the size
and value CAPM-anomalies (observed by Banz (1981) and Rosenberg et al.
(1985), respectively) the Fama-French three-factor model largely captures the
average returns on U.S. portfolios formed on size and book-to-market, but also
on other variables known to cause problems for the CAPM (earnings/price,
cashflow/price, past sales growth and long-term past returns), see Fama and
French (1996). Moreover, Fama and French (1998) claim that the international
version of their model describes well the average returns on portfolios in 13
major markets.

However, recent empirical evidence questions the usefulness of these models.
Most of the criticism has focussed on the distress premia identified by Fama
and French (1993). Lakonishok et al. (1994) regard the distress premia for a
real but irrational phenomenon, resulting from investors’ overreaction leading
to underpricing of distressed stock and overpricing growth stocks. On the other
hand, MacKinlay (1995) views the distress premia as the product of data
snooping: a variable related to average returns, but just in the sample used to
identify it. A further attack to the FF-model comes from Daniel and Titman
(1997), suggesting that the value premia traces for characteristics, not risk.
Assume for example that investors irrationally like growth stocks and dislike
value stocks: the result is a premia that is not due to risk. In a typical test,
Daniel and Titman (1997) show that one cannot distinguish the risk story
from the characteristics story: industries moves through periods of distress
and growth, so that when we form portfolios to capture a risk factor related
to relative distress, the portfolios pick up return covariation within industries
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that is always present, but that for the moment seems to be associated with
growth or distress.

In this paper we focus on another potential limitation of the (unconditional)
FF-model, namely its implicit assumption of constant model coefficients. There
is nowadays large evidence of time-variation in betas and expected returns (as
well as return volatilities) over the past two decades and a growing literature
is emerging on testing conditional asset pricing models. Recent tests of con-
ditional FF-models (He et al. (1996), Ferson and Harvey (1999)) cast serious
doubts on the empirical performance of the model and clearly reject its condi-
tional versions, generating the impression that the conditional FF-model fails
miserably at dynamics of asset returns. These tests results seem surprising, as
one would expect that by allowing for time-varying betas and risk premia, dy-
namic versions of the FF-model should perform even better. One explanation
is the critique by Ghysels (1998). In fact, while the idea of time-varying betas
and risk premias is theoretically very appealing, it is empirically extraordinar-
ily challenging since there is no theoretical guidance on how betas and risk
premia vary with variables that represent conditioning information. Ghysels
(1998) stressed the impact of misspecification of beta risk dynamics on infer-
ence and estimation, and showed that several well-known time-varying beta
models are seriously misspecificed, such that they are often outperformed by
constant beta models. (One notable exception is the nonparametric approach
by Wang (2002).)

We tackle the problem of modelling the dynamics in model parameters from
a completely different perspective. Rather than being time-varying in the
usual sense, we allow the parameters to switch in regime. Several fundamen-
tal changes in the economic environment come in the form of discontinuous
changes. Shifts in economic policy or major exogenous economic events influ-
encing financial time series, can be viewed as episodes of identifiable duration
in which the behaviour of key economic series might be expected to differ
significantly form that seen outside these episodes. In an attempt to capture
these facts we develop a version of FF-model where the parameters are sub-
ject to markovian regime switches and test for its validity. The methodology
is inspired by Hamilton (1990). With an eye on practical applications, we keep
the model in its simplest form, namely with only two endogenous regimes. Of
course, our model is a very special conditional one, since the information set
on which we condition consists only of two states. However, this approach has
several advantages. Only the probability law governing the shifts—a simple
Markov chain—needs to be specified, thus minimising the risk of misspecifica-
tions. Our task is then to determine when the shifts occur and to estimate the
parameters in the different regimes. Moreover, our models nests the FF-model
and thus allows direct comparison of the results.

The paper is structured as follows. We start by reviewing the traditional FF-
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model. We then extend the estimation period to December 2002 and present
estimation and testing results. In the third section we present the regime
switching methodology and develop our multifactor model. We assume that
the FF specification holds true in both regimes, but allow factor loadings to
vary across states. This permits to endogenously identify the different regimes
and to compute the Markov probabilities. We present these results in detail in
section 3.2. In section 4, we turn to testing the FF- model in a regime switching
context. We find that the model performs fairly well. Later in section 4.3 we
look at the alternation of regimes over the last 70 years. A striking feature of
the our model is how well it captures the main episodes of aggregate financial
distress. We conclude by formulating some recommendations about the use of
the different models in normal and “distressed” times.

2 Fama & French 3-factor models

2.1 Methodology

Similarly to Fama and French (1993) we test the FF-model using the time-
series regression approach of Black et al. (1972), since it allows to capture the
variation in the different factor loadings and to identify the market’s regimes.
Moreover, the time-series regression slopes have the clear interpretation as
risk-factor sensitivities. In a time-series regression a correctly specified model
produces intercepts that are not significantly different from zero. Thus, the es-
timated intercept provide a simple formal test for comparing the performance
of different asset pricing models.

The model attempts to explain the returns for 25 stock portfolios formed on
the basis of size and book-to-market equity. The explanatory variables are
the returns on a market portfolio and mimicking portfolios for size (ME, i.e.
market capitalization) and book-to-market equity (BE/ME, i.e. book value
relative to stock price). The market factor is proxied by the excess market
return, RM-RF, where RM is the return on the value-weighted portfolio of
the stocks in the six portfolios above. RF is the one-month Treasury bill rate.
The model is then used to explain the excess returns on the 25 portfolios
formed from the intersections of five size and five BE/ME quintiles in the
same way as the six portfolios above.

Size and book-to-market are related to profitability. It is a well known fact
(at least since Banz (1981)) that controlling for book-to-market equity, small
firms tend to have lower earnings on assets than big firms. On the other hand,
firms with high BE/ME tend to have low earnings on assets (e.g. Rosenberg
et al. (1985)). The interpretation of these facts by Fama and French (1993)
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is that size is associated with a common risk factor explaining the negative
relationship between size and average returns, and similarly that a common
risk factor in returns is the source of the positive relation between BE/ME
and average returns. To mimic the risk factor related to size, Fama and French
form each month the SMB-portfolio as the difference in the simple average of
monthly returns between small- and big-stock portfolios with approximatively
the same BE/ME. More specifically, SMB is the difference between returns
on the three small-stock portfolios (S/L, S/M, S/H) and the three big-stock
portfolios (B/L, B/M, B/H). Similarly, to proxy the risk factor related to
BE/ME, the HML factor is the difference, each month, between the average
of the returns on the two high-BE/ME portfolios S/H and B/H, and the
average of the returns on the two low-BE/ME portfolios S/L and B/L. This is
the “traditional” interpretation of SMB and HML, i.e. as proxy for sensitivity
to common (systematic, undiversifiable) risk factors. In this sense, e.g. the
HML factor is often interpreted as a measure of aggregate financial distress
(Fama and French (1995)).There is a continuing argument in the literature
over the status of the size and BE/ME factors. Alternatively, one can in fact
view the model as an arbitrage pricing theory in which the returns of the
three-factor mimicking portfolios aim at perfectly replicating the returns of
the 25 portfolios.

2.2 The US case: summary of results

We start by running the 25 times-series regressions for US CRSP and Com-
pustat data for different sub-sample periods. The data are publicly available
through Kenneth French’s internet page.We extend the two estimation peri-
ods of Fama and French (1993) and (1996) up to December 2002 (regression
1), and then split this last time period in 4 subperiods (regressions 2 to 5).
We start by reviewing the results of Fama and French (1993) and Fama and
French (1996) and compare them with our findings.

2.2.1 Fama and French (1993): July 1963-December 1991

Fama and French (1993) find that the three factors capture strong common
variation in the stock return data. All β’s are significant (the lowest t-value
is 38.61), and so are the SMB (all t-statistics but one above 4) and the HML
slopes (most t-values around 5, slope on the second BE/ME quintiles is not
significant). As expected, the slopes on SMB decrease monotonically in each
book-to-market quintile, from smaller- to bigger-size quintiles. Similarly, the
slopes on HML increase from negative to positive value within each BE/ME
quintile. Both SMB and HML seem to capture variation in stock returns that
are missed by the market factor. All regressions R2 are very high, with 20
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coefficients being higher than 0.9. The lowest R2 is found for the regression in
the largest-size and highest-BE/ME quintile, and amounts to 0.83. For simple
CAPM regressions using the same dataset and estimation period only two
R2 are bigger than 0.9.These high R2 show that stock returns have common
variation related to all the three factors. Fama and French (1993) interpret
this as evidence that stock market returns, SMB, HML and RM-RF proxy for
risk factors. With respect to the CAPM, the βs collapse towards one, with low
βs (smallest-size, lowest BE/ME) moving towards 1 and high βs (big size, big
BE/ME) moving down. As Fama and French (1993) point out, this result is
due to SMB and HML correlating with the market.

2.2.2 Fama and French (1996): July 1963-December 1993

For the sub-sample July 1963-December 1993 Fama and French (1996) find
similar results, albeit the model now produces large negative pricing errors
for the portfolio of largest size and lowest BE/ME. All other intercepts are
undistinguishable from zero, their average is 0.093 percent (about nine basis
points). Recall that if the model holds, the true intercepts equal zero. When
examining whether the risk factors explain the cross-section of mean returns,
we can focus on the intercept estimates of the multivariate regression system.
This can be performed by examining t-statistics or using the adjusted Wald
statistic proposed by Gibbons et al. (1989). The average R2 is 0.93 for this
sample period.

2.2.3 Regression 1: form July 1963 to December 2002

The average price error is now about 47 basis points, i.e. about five time
higher than in Fama and French (1996), and 24 pricing errors are significantly
different from zero. The average R2 is 0.9.

2.2.4 Regression 2: 1963-1972

For this sub-sample, the average pricing error is at 0.35 and the average R2 is
0.92. Interestingly, the HML coefficient is not significant for all low BE/ME
portfolios, i.e. for about one third of the portfolios.

2.2.5 Regression 3: 1973-1982

The average R2 is 0.93, whereby the average pricing error increases to 69 basis
points. The R2 for the largest size-largest BE/ME is now particularly low at
0.77.
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The model produces large significant pricing errors for all portfolios. Interest-
ingly, the largest size-largest BE/ME portfolio, which produces large pricing
errors in Fama and French (1993, 1996), is now the one with the smallest pric-
ing error. Again, the HML coefficient is not significant for most of the BE/ME
portfolios.

2.2.6 Regression 4: 1983-1992

The average pricing error for this subsamble is 0.58 and the average R2 is
0.94. The pricing errors are significantly different from zero. For 24 portfolios
the HML coefficients are significant and the P-values are higher than in the
preceding decade for every coefficient. Interestingly, the βs for low size-low
BE/ME are now sensibly lower, while they are higher for high size-low BE/ME
portfolios.

2.2.7 Regression 5: 1993-2002

FF-model produces an average pricing error of 35 basis points. All pricing
errors but nine are significantly different from zero. The average R2 is 0.87
with the lowest being 70% for the big companies with high BE/ME-ratio.
All coefficients are significant. All HML coefficient are at least 4 standard
deviations away from zero.

2.3 Implications

Giving rational pricing, the factors must contribute substantially to the risk of
well-diversified portfolios, in order to justify their use in an asset pricing model.
All R2 are in a reasonable range for all decades and across all 25 portfolios.
We find that the adjusted R2 declines when the two other factors are used
without the market factor. However, each factor contributes in explaining the
portfolio returns. For some portfolios, adding HML increases R2 more than
adding SMB, but there is no clear ranking of the factors in their explanatory
power. As expected, the estimated SMB exposures increase monotonically
with size ranking, and analogously for the HML exposure, for all sub-sample
periods.

The FF-model is rejected in each sub-sample period. This is to be expected.
The model does capture most of the variation in the average returns. However,
when we extend the regression period, the intercepts become larger and sig-
nificantly different from zero. Interestingly, there seem to be times when the
FF-model does a quite good job. On the contrary, and in particular in more
recent subperiods such as the seventies and the nineties, when average pricing
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errors are huge, about 0.5% monthly and the adjusted R2 drops to 70%. There
seem also to be times, in particular for some portfolios in the median range of
the size and BE/ME distribution, in which the market factor plays a central
role in explaining stock returns, precisely in periods when the HML factor
loading is smaller and/or lacks significance. In other subperiods, the HML is
strongly significant whereby SMB and β seem to have a limited explaining
power. The attempt to identify and characterize the market conditions under
which a particular factor better explains differences in stock returns, is one of
the motivations for our regime switching methodology.

3 A 3-factor model with regime switching

3.1 Methodology

In this section we extend the estimation technique inspired by Hamilton (1990)
for the case of a dynamic multifactor model. The dynamics stems from an
unobservable Markov chain with two regimes or states. In each period t =
1, . . . , T . We can be in one of the two regimes st = 1, 2 and the observable
excess return is described by the following multifactor relationship.

yi
t , Rt −RFt = αi + βi · [RMt −RFt] + γi · SMBt + δi ·HMLt + εt (1)

i = 1, 2 depending on the regime

Under the assumption of normal distributed outcomes of the dependent vari-
able

Y i
t ∼ N

(
xtβi, σ

2
)

we can write for the density of yt, conditional on the random variable St taking
the values st = i,

f
(
yt | st = i; β1, β2, σ

2,xt

)
=

1√
2πσi

· e− (yt−xtβi)
2σ2 (2)

β1 = (α1 β1 γ1 δ1)
′ , β2 = (α2 β2 γ2 δ2)

′

The probability of being in a particular state st = i, i = 1, 2 depends on the
past only through the last regime st−1.

P (st = j | st−1 = i, st−2 = k, . . .) = P (st = j | st−1 = i) = pij (3)

The transition probability pij is the probability that state i is followed by state
j. In a homogenous Markov chain {St}t=0,1,... this conditional probability is
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time-invariant. Using these transition probabilities one can define a stochastic
transition matrix

P =




p11 p21

p12 p22


 =




p11 1− p22

1− p11 p22


 (4)

with

i) pij ≥ 0, ∀i, j = 1, 2
ii)

∑2
j=1 pij = 1, ∀j = 1, 2

It follows
P′1 = 1

If the two-state Markov chain is irreducible and the second eigenvalue of the
matrix P lies in the unit circle, the Markov chain is called ergodic. The vector
of ergodic probabilities π associated with the unit eigenvalue is the vector of
unconditional probabilities, which are also the long-run forecast for an ergodic
Markov chain.

π =




π1

π2


 =




P (s = 1)

P (s = 2)


 , regardless of the date (5)

Thus the eigenvector π associated with the unit eigenvalue for a two-state
Markov chain is:

π =




1−p22

2−p11−p22

1−p11

2−p11−p22


 , π1 + π2 = 1 (6)

For estimation purposes one has to find the unconditional density of Yt de-
pending on the parameters θ = (β1, β2, σ

2,P)

f (yt; θ,xt) =
2∑

i=1

f (yt, st = i; θ,xt)

=
2∑

i=1


f (yt | st = i; θ,xt) ·

2∑

j=1

[P (st−1 = j, st = i)]




f (yt; θ,xt) =
2∑

i=1


 1√

2πσi

e
− (yt−xtβi)

2σ2
i

2∑

j=1

pji


 (7)

As the transition matrix is assumed to be time-invariant we can calculate
the log-likelihood function from the observed data conditional on the ergodic
probabilities that the world is in one of the two possible states at time t = 0 .
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L (θ | Y,X) =
T∑

t=1

log f (θ;yt,xt) (8)

=
T∑

t=1

2∑

i=1

2∑

j=1

(
∂ log f (yt | st = i; θ,xt)

∂θ
· P (st−1 = j, st = i)

)

The maximization of this likelihood function over θ subject to the constraints
pij ≥ 0, i = 1, 2 and

∑2
j=1 pij = 1 leads to the maximum-likelihood estimators

for the parameters in the multifactor model with two-regimes.

The estimated probabilities of being in a specific state based on observations
up to date t follow easily

P
(
st = i; θ̂,xt

)
=

∑2
j=1 f

(
yt, st−1 = j, st = i; θ̂,xt

)

f
(
yt; θ̂,xt

) , t = 1, . . . , T (9)

using the ergodic probabilities as starting values for the Markov chain.

The maximization of the log-likelihood function can be carried out via numer-
ical optimization or via the EM-algorithm, as Hamilton (1990) proposed. van
Norden and Vigfusson (1996) have shown, that these algorithms yield very
similar results.

We now present an implementation of the EM-algorithm for our model. The
maximum-likelihood estimator solves the following equations

∂ log f (yt, st = i; θ,xt)

∂βi

=





x′t(yt−xtβi)

σ2 , st = i

0 , otherwise
(10)

∂ log f (yt, st = i; θ,xt)

∂σ2
=

σ2

2
− (yt − xtβi)

2

2
(11)

If the probabilities P (st = i | θ,xT ) are known, we can estimate β and σ2

using the following equations:

T∑

t=1

x′t
(
yt − xtβ̂i

)
· P (st = i | θ,xt) = 0, i = 1, 2 (12)

σ̂2 =
1

T

T∑

t=1

2∑

i=1

(
yt − xtβ̂i

)2 · P (st = i | θ,xt) (13)

Each observation is weighted with the probability of being in regime 1 or
regime 2, i.e. the maximum-likelihood estimates are the estimates of a weighted
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least squares estimation with weights
√

P (st = i | θ,xt). We only need to esti-
mate the unconditional probabilities to carry out the regression. The estima-
tors for the unconditional probabilities P (st = i | θ,xt) can be obtained via
equation 9.

The EM algorithm is a robust, iterative method for finding a local ML-
optimum to the above optimization problem. Beginning with an initial guess θ̂0

we calculate using formula 9 the probability P
(
st = i | θ̂0, x

)
and maximum-

likelihood parameter estimates for β̂1

1
, β̂2

1
σ̂2

1
using equations 8 and 12.

The estimator for P̂1 is obtained using equations

p̂ij
1 =

∑T
t=2 P

(
st = j, st−1 = i | β̂1

1
, β̂2

1
, σ̂2

1
, P̂0,xt

)

∑T
t=2 P

(
st−1 = i | β̂1

1
, β̂2

1
, σ̂2

1
, P̂0,xt

) , i, j = 1, 2 (14)

This new estimate is used as input in the next iteration. The algorithm stops
when the changes in the parameters are below a predefined accuracy.

Having estimated the transition matrix P̂ , the transition probabilities conditional
on the observed vector xt and θ̂ we can form a forecast for being in state
st+1 = i.

P̂t =




P
(
st = 1, st−1 = 1 | θ̂, xt

)
P

(
st = 2, st−1 = 1 | θ̂, xt

)

P
(
st = 1, st−1 = 2 | θ̂, xt

)
P

(
st = 2, st−1 = 2 | θ̂, xt

)


 (15)

P̂=




p̂11 p̂21

p12 p̂22


 (16)

A useful representation of a Markov chain is the following

ξt =





(1, 0, . . . , 0)′ when st = 1

(1, 0, . . . , 0)′ when st = 2
(17)

and we can write for the one-period ahead forecast of the probabilities

E (ξt+1 | st = i) =




pi1

pi2


 (18)

Ê (ξt+1 | ξt) = P̂ξt (19)

The forecasted probabilities of being in state 1 or state 2 follow easily.
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3.2 Data description and estimation results

As above, we use the same the dataset as Fama and French (1993), extended
and provided by Kenneth French. The sample period starts on 1931/7 and
ends 2002/12. Portfolio returns are calculated monthly from 25 portfolios,
formed on quintiles of size and book-to-market equity. Each year NYSE quin-
tile breakpoints for size, measured at the end of June, are used to allocate
NYSE, Amex and NASDAQ stocks to five size quintiles. Using the same proce-
dure, NYSE breakpoints for book equity-to-market equity are used to classify
all the stocks into the right BE/ME quintile. Book equity (BE) is the Compu-
stat book value of stockholders’ equity, plus balance sheet deferred taxes and
investment tax credits minus the book value of preferred stock. Market equity
(ME) is price per share times shares outstanding. The risk-free rate is the rate
of the one-month Treasury bill observed at the beginning of each month. As
described above all NYSE stocks are ranked on size (market capitalization)
and then split into two groups: small (S, size below the NYSE median) and
big (B, above the median). NYSE, Amex and NASDAQ stock on CRSP are
also sorted into three BE/ME groups (L, bottom 30%, M, middle 40%, and H,
top 30%), excluding negative-BE stocks. From the intersections of the two size
groups and the three book-to-market equity groups, six portfolios (S/L, S/M,
S/H, B/L, B/M, B/H) are formed. As explanatory variables we use the value-
weighted monthly percent return on all the stock in excess of the risk-free rate
and two mimicking portfolio returns, SMB and HML. The SMB-factor (Small
Minus Big) is the average return on the three small portfolios minus the av-
erage return on the three big portfolios. The HML-factor (High Minus Low)
is the average return on the two value portfolios minus the average return on
the two growth portfolios.

In table 1 we report summary statistics for all 25 portfolios and in table 2
the mean and standard deviations of the explanatory variables. The average
monthly returns for the portfolios should exhibit cross-sectional variation in
expected returns. The mean return on the portfolios varies from 0.858% to
1.788% per month. Standard deviations vary from 5.457% to 12.55%. The
average value of the market premia per unit of β, RM − RF , is 0.647% per
month or 7.764% per year. The average SMB return, the average premia for
the size-related factor, is 2.52% per year and the HML return, the average
premia for the book-to-market related factor, is 3.276% per year.
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Mean

Low 2 3 4 High

Small 0,858 1,221 1,473 1,659 1,788

2 0,958 1,285 1,421 1,488 1,565

3 1,049 1,212 1,270 1,376 1,497

4 0,990 1,066 1,249 1,312 1,433

Big 0,913 0,890 1,016 1,107 1,338

Standard deviations

Low 2 3 4 High

Small 12,550 10,693 9,171 8,806 9,762

2 8,140 7,877 7,539 7,593 8,746

3 7,736 6,610 6,815 6,839 8,582

4 6,229 6,332 6,413 7,127 9,139

Big 5,457 5,212 5,795 6,898 8,561
Table 1
Summary statistics for the dependent returns in percent. Sample period July 1931
to December 2002, 918 observations.

Mean Standard deviations

RM-RF SMB HML RM-RF SMB HML

0,647 0,273 0,437 5,431 3,403 3,651
Table 2
Summary statistics for the explanatory returns in percent. Sample period July 1931
to December 2002, 918 observations.

4 Results and Interpretation

4.1 Time-series regressions

As reported in the last section, the pricing performance of the unconditional
FF-model seems to depend quite strongly on the sample period. Pricing ac-
curacy is particularly good for 1963/7-1991/12 as in Fama and French (1993)
and resp. 1963/7-1993/12 in Fama and French (1996).However, if the 25 re-
gression are carried out for 1963-2003, the model’s coefficients seem quite
instable and the adjusted R2 decreases massively. As expected, we find strong

12
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evidence for time-varying, regime-dependent risk compensations. Moreover,
most of the major negative shocks on the equity market over the last seventy
years correspond to times identified by our model as high-distress-probability
periods, i.e. times where the distressed (a regime characterised in particular by
a very high risk premia on the BE/ME factor) is highly probable. The distress-
interpretation of this regime (also suggested by Fama and French (1996)) is
reinforced by the fact that distressed companies, those with a high book-to-
market ratio or a small size, are more often than other companies in a state
where our model predicts abnormally high risk premia.

Tables 3, 4 and 5 present these results in detail. The estimated factor sen-
sitivities, their t-statistics and the regression variances for the 25 portfolios,
sorted in size- and BE/ME-quintiles, are reported for both the regime switch-
ing model (RS) and our benchmark FF model (1931-2002). The parameter
values for the two regimes differ and these differences are all statistically sig-
nificant. The regression variances of the RS model (Table 5) are for all the
25 portfolios smaller than for the FF model. In particular for portfolios 1
(smallest capitalization, lowest BE/ME) and 25 (biggest capitalization, high-
est BE/ME), which are notoriously problematic for most asset pricing models,
the variances are 53.12 for FF versus 22.69 for RS and 10.19 for FF versus
7.25 for RS respectively. The good performance in pricing portfolio 25 (the
α̂ is clearly not significantly different from zero in regime 2) is a remarkable
feature of our model. The conditional RS model therefore seems to fit the data
very well, sensibly better than the unconditional FF model.

Regarding the pricing errors α̂, the FF model produces an average mispricing
of 0.24. For the RS model, once we weight each α̂ with the ex-post regime
probabilities, we get an average mispricing of 0.25, i.e. 25 basis point monthly.
Looking at the t-values in Table 10, we observe that only five α̂s are not sig-
nificantly different from zero in the FF model. Similarly, only three portfolios’
α̂s are insignificant in regime 1 of the RS model, albeit as much as eleven α̂s
are not significant different from zero in regime two. The pricing performance
of the two models is thus comparable. However, the RS model appears to have
a much better pricing performance in regime 2.

Figures 4 to 6 and Table 3 report the values of the β̂s for the FF and the
RS model. The β̂s for both the FF and the RS model are of comparable
magnitude, i.e. about one, with the exception of small stocks, whose β̂s are
slightly higher (average β̂ of 1.74 ).

The pattern for γ̂ (the factor loading on SMB, see Figures 7 to 9 and Table 3) is
somewhat similar. Our benchmark FF model, in accordance with the findings
of Fama/French (1993, 1996) γ̂ > 1 for small stocks, γ̂ ≈ 0.5 for value (i.e.
high BE/ME) and growth (i.e. low BE/ME) stocks and γ̂ < 0 for big stocks.
The negative factor loading for big stocks implies lower average returns, which
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is a well documented fact. On the other hand, regime 2 presents a significantly
different picture. The γ̂s are larger for all portfolios in our sample. The increase
is largest for growth (0.56 → 0.79) and value stocks (0.56 → 0.86).

The factor loadings on the HML factor, δ̂, (Figures 10 to 12 and Table 3)
in our regime 1 are quite similar in magnitude and sign to those of the FF
model and of the rest of the literature, namely negative for growth stocks and
increasing in the BE/ME quintiles, approaching 1 for value stocks. Again, the
picture is very different in regime 2. The δ̂s are higher for all portfolios: 0.32
→ 1.22 for small stocks, 0.77 → 1.45 for value stocks , 0.23 → 0.79 for big
stocks and, strikingly, -0.26 → 0.20 for growth stocks.

To sum up the results from the time series analysis, we find that the pricing
accuracy of the RS-model is at least as good as that of the FF model. For
some portfolios it is clearly better. In regime 1 the factor loadings are similar
to those estimated for the FF model, and so is for the β̂s in regime 2. On
the other hand, regime two is a state characterised by higher covariation of all
portfolios with both the HML and SMB portfolios. Regime 2 are times in which
the market as a whole is not behaving very differently as in regime 1, however
the portfolios riskiness with respect to the risk factors proxied by HML and
SMB is considerably higher. In a recent contribution, Franzoni (2002) observes
that the beta of value and small stocks has decreased significantly over the
past sixty years. In particular, the value stocks beta has dropped by about
77%, from 2.2 in the early forties to below 0.50 in the late nineties. However,
Franzoni (2002) is really testing only a conditional version of the CAPM, thus
not including HML and SMB as additional sources of risk. Our results provide
evidence that the declining beta may be the consequence of this omission.
Regime 2 is in fact characterised by higher overall exposure to HML and SMB,
and this regime, as shown below, was more likely in the seventies, eighties and
in particular early nineties as in the forties. This may well partly account for
the observation by Franzoni (2002), since HML and SMB correlate positively
with the market.
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Fama French Regime switching

Low 2 3 4 High Low 2 3 4 High

Small -0.43 -0.11 0.16 0.30 0.24 Small -0.50 -0.13 0.19 0.23 0.26

2 -0.15 0.05 0.15 0.10 -0.06 2 -0.18 0.07 0.14 0.18 0.06

3 0.08 0.06 0.01 0.01 -0.11 3 0.01 0.08 0.08 0.15 -0.13

4 0.10 -0.06 0.00 -0.01 -0.17 4 0.06 -0.02 0.12 0.03 -0.14

Big 0.23 -0.05 0.05 -0.12 -0.09 Big 0.09 0.01 -0.07 -0.16 -0.14

Table 6
Pricing errors for all 25 portfolios based on Fama-MacBeth cross-sectional regres-
sions.

4.2 Fama/MacBeth cross sectional regressions

We further implement the Fama and MacBeth (1973) cross sectional test.
Again, the results for the RS model are quite encouraging. The average R2

over 858 cross sectional regressions, for July 1931 to December 2002, is 37.99%
for the RS model and 37.31% for the FF model. The average cross sectional
pricing error is 0.012 for the RS model and 0.006 for FF. The hypothesis
of zero mean alphas cannot be rejected for any of the models. We then test
the validity of the two RS regressions individually. The average pricing error
is 0.009 for regime 1 and 0.011 for regime 2. Again, the hypothesis or zero
mean alphas cannot be rejected for any of the two regressions. Validity of
both state-dependent regressions is of course necessary for the RS model to
be valid as a whole. Details on the pricing errors for single portfolios can be
found in Table 6, interestingly the RS model does a particularly good job at
pricing growth stocks, which are well known to present a particular challenge
to asset pricing models (e.g. Campbell and Vuoltenenaho (2002)). Again, and
in contrast to most of the early conditional multifactor models, the RS model
is not rejected. It provides a description of assets average excess returns which
is at least as good as the unconditional FF model and its pricing performance
is significantly better in state 2.

4.3 Economic interpretation of Regime probabilities

In the philosophy of Merton’s ICAPM, we now ask whether the alternance and
the characteristics of the two regimes are in some way linked to any underlying
economic state variable. This interpretation also permits to contribute in an
original way to the riks/non-risk debate, e.g. if we can show that a particular
state occurs when key economic series or economic events suggest a higher
compensation for risk by the market participants, then our model favors the
risk-based explanation.
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Simple visual inspection of the plot of aggregate regime probabilities (Figure
13) yields very interesting insights. In particular, our interpretation of regime
1 as a normal and regime 2 as a distressed regime is again supported. A
sharp drop in the probability ofl regime 1 is an indicator that the regime 2
could follow. As regimes are unobservable, we can only infer on the regime
by looking at these transition probabilities. Figure 13 depicts the average
probability of regime 1 over all 25 portfolios, plotted together with the end-
of-month default spread. Interestingly, the regime 1 probability sharply falls
precisely at historically known times of financial distress, i.e. changes of the
investors perceptions of risk on the market.

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

��� 


��� �

�

�

���
�

�

� ��
�

�

� ��
�

�
 �
��
�

�
 �
��
�

�
 �
��
�

�
 �

�
�

�

���
�

�

���
�

�

���
�

�

���
�

�

� ��
�

�

� ��
�

�

���
�

�

���
�

�

���
�

�

�
�
�

�

���
�

�

� ��
�

�

���
�

�


��
�

�


��
�

�


��
�

���
��
�

�

�

�

�

�

��������� � ! " #%$ ! #'& #��)( !*" $ ! $ + + ( #�&-, $ " ( #%.%+ + / � / $ � ,%" #�0 � 0'( 1 ( / 2 .%$ 3 � 4%1 /5+ ,%" $ � .

Fig. 13. NBER macroeconomic recession periods, estimated probability being in
regime 1, averaged over all 25 portfolios, and default spread. The default spread is
the end-of-month difference between annualized yields an Aaa and Baa corporate
bonds. The probability is measured on the right vertical axis and the default spread
on the left vertical axis.

Finally, it is interesting to notice the difference in regime probabilities for
small and large caps and for growth and value stocks. Figure 14 presents the
probability of being in regime 1 for small and large caps together with the
default spread. By financial distress, we mean here times of high aggregate,
nondiversifiable, liquidity and credit risk, rather than overall equity market
contractions. Regime 1 probability displays in fact a strong correlation with
the US default spread but quite little correlation with the main equity mar-
ket indices. Consider for example fall 1987: regime 1 probability is very high
despite the market crash. On other hand, in 1991 and 1997 the equity market
was trending upwards, but regime 1 probabilities suddenly collapsed, a few
month ahead of sharp increases in the credit spread due to well known finan-
cial episodes. Regime 2 seems therefore to characterise times when investors
are particularly concerned with financial, and in particular credit distress, even
though the market as a whole does not fall.
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Fig. 14. Estimated probability being in regime 1 for small and large caps and default
spread. The default spread is the end-of-month difference between annualized yields
an Aaa and Baa corporate bonds. The probability is measured on the right vertical
axis and the default spread on the left vertical axis.

Market perception of distress risk seems to be much more volatile for large
than for small caps. Small caps were perceived as more likely to be in a distress
regime than large caps during the 30s and 40s. From the mid 40s onwards,
large caps always had a larger probability of regime 2, with small caps only
reaching below the 80%-probability of regime 1 in one occasion in half a cen-
tury, namely in 2000. While small caps were generally more risky than large
caps in both regimes (explaining their higher historical average returns), risk
perception for large caps increased very sharply during the oil crises, the 1987
crash, the Asian crisis and the IT bubble. Figure 15 presents the results for
growth versus value portfolios. Growth stocks constantly had, over the last 70
years, a higher regime 2-probability. Since the seventies, however, this prob-
ability seems to have stabilized to a lower level, with the exception of a new
historical high of 60% at the beginning of 2000. We discuss the possibility to
exploit regime switches through dynamic style-rotation investment strategies
in a forthcoming paper.

5 Conclusions

We have presented a simple state-dependent version of the Fama and French
three-factor model. Testing for its validity using both a time series and a
cross sectional approach, we find that the model improves pricing performance
over the unconditional Fama and French model. The magnitude of the esti-
mated factor loadings on the HML and the SMB factors differ dramatically

24



�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

��� 


��� �

�

�

���
�

�

� ��
�

�

� ��
�

�
 �
��
�

�
 �
��
�

�
 �
��
�

�
 �

�
�

�

���
�

�

���
�

�

���
�

�

���
�

�

� ��
�

�

� ��
�

�

���
�

�

���
�

�

���
�

�

�
�
�

�

���
�

�

� ��
�

�

���
�

�


��
�

�


��
�

�


��
�

���
��
�

�

�

�

�

�

��� � ��� � ���� ! " #�" $ � !� �&% '�� " � #

Fig. 15. Estimated probability being in regime 1 for value and growth stocks and
default spread. The default spread is the end-of-month difference between annualized
yields an Aaa and Baa corporate bonds. The probability is measured on the right
vertical axis and the default spread on the left vertical axis.

across regimes, thus leading the unconditional model to massive overpricing of
some portfolios (in particular value stocks) and underpricing of others (growth
stocks), relative to the state-dependent model. On the other hand, the factor
loading on the excess return of the market portfolio, is quite homogeneous
across states and portfolios in both the conditional and unconditional model.

Fama and French (1993) interpret the average HML return as a risk premia
related to relative financial distress. They refer to Fama and French (1995),
providing evidence that low BE/ME is typical of firms that have persistently
high earnings, while high BE/ME is associated with persistently low earnings
and is now near financial distress. However, associating a common factor in
returns to an economic state variable does not yet necessarily imply that the
state variable is of special hedging concern to investors, hence producing a
risk premia. The question why relative distress should be of special concern
to investor still remains unexplained. A possible explanation is that in times
of credit or liquidity distress, a typical value stock, which has a price that
has been driven down by repeated financial difficulties and is near financial
distress, will perform very badly. This is precisely what investors least want
in hard times.

Our estimation results provide some support to this interpretation. In the last
part of this paper, we endogenously estimate the transition probabilities of
both regimes and find the average probability of regime 2 to have a particularly
high predictive power with respect to the major times of aggregate financial
distress over the last 70 years. This probability is quite strongly correlated
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with the default spread over the time period considered. The link between
HML, SMB and macroeconomic variables is currently a very active subject
of research. Further results and some international evidence will be presented
shortly in a companion paper.
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