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1. Theory of programming 

 
The emphasis in open programming lies on two things: interaction, and being dynamic. For 

example, a Web browser supporting plug-ins to extend its functionality (for instance to handle new 
content types) at run-time is open, a Web server allowing new handlers for specific resources to be added 
and replaced dynamically is open, and a compute server that allows clients to submit arbitrary program 
fragments as compute requests is open.  

The following language and system features that we consider essential for open programming 
have emerged from Oz and Mozart. Alice implements these same features, although in the context of a 
statically typed programming language. 

Concurrency dramatically simplifies the handling of multiple simultaneous connections, such as 
to files, graphical windows, clients, servers, or peers. To make it possible for a number of concurrent 
threads to cooperate, programming systems have to provide synchronization primitives.  

Dynamic linking is the composition at run-time of program fragments known as components, and 
provides for configurability and extensibility. In Oz and Alice, dynamic linking is performed by module 
managers (resp. component managers). A single running system can have arbitrarily many module 
managers—in other words, it can link components in separate, configurable namespaces. This provides 
for sandboxing.  

Component names are represented as Uniform Resource Identifiers (URIs) [3], are available as 
first-class entities and can be computed at run-time. This enables, for instance, the realization of plug-ins 
and late registration of handlers. Components can automatically be downloaded from Web servers via 
HTTP.  

Persistence (or pickling, or serialization) of language entities provides a means to define file types 
(file formats) and communication protocols by means of expressive language level data structures, instead 
of just bits and bytes. In particular, Oz and Alice o_er persistence of graph-structured language data, 
maintaining co references and cycles. 
Mobile code denotes the ability to transfer first-class procedures, that is, closures together with their code, 
to other processes.  

A receiving process neither needs to know the code beforehand, nor does it need to be able to 
locate it upon reception of the closure. Mobile code makes it possible to define higher-order 
communication protocols and enables implementation of expressive mobile agents.  

In Oz and Alice, mobile code is obtained simply by defining pickling to operate on arbitrary 
higher-order data structures (data structures containing first-class procedures). Network-transparent 
distribution makes it irrelevant to inter-connected computations whether they operate on local or remote 
data.  

A distribution subsystem manages automatic establishment of connections and exchange of 
language data structures. The previously named language features already allow the implementation of 
simple distribution support at the language level. If we require network transparency on more data types 
than are supported by pickling, or other distribution behaviours than cloning (for example, stationary 
procedures with a remote procedure call), then this requires additional support of the virtual machine. We 
do not in this paper consider Mozart’s distribution layer in detail.  

Linguistic reflection gives a programming system the ability to generate new program fragments 
and incorporate them into the ongoing computation [7]. This requires a language level interface to the 
compiler. Linguistic reflection serves to accomodate user interaction and configuration using the high-
level language. Examples are evaluation of queries in a command shell, an interactive top-level, or a 
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source-level debugger, or implementation of PHP- or ASP-like Web server “pages” with dynamic 
recompilation. 
 



2. Architecture of programming systems 
 

A programming system for a (high-level) language comprises, besides a compiler and a run-time 
system for the language, libraries and tools for developing applications, as depicted in Figure 1.  
 

 
 

 
One central feature of open programming is dynamic exchange of data and code. For this reason, 

the user of the high-level language has no way to access the features of the underlying hardware and 
operating system but through abstractions. In other words, the programming system defines a virtual 
machine that provides a system independent view of the concrete machine, and programs targeting the 
virtual machine can run on any concrete machine for which an implementation of the virtual machine 
exists. 

The virtual machine needs to be implemented in a language that is close to the underlying 
concrete machine in order to implement the abstract interface. Using C or C++ allows to easily port the 
virtual machine to a variety of architectures.  

In the following, we will speak of the low-level language when we mean the language in which 
the virtual machine is implemented. Since the user-visible tools and libraries are often complex, they are 
usually implemented in part in the low-level language and in part in the high-level language.  

The interface between the high-level and low-level parts consists of a number of primitives. We 
call a service of the virtual machine the set of primitives required to implement a language-level feature. 
Only the virtual machine and its services need to be ported when targeting a new platform. It is therefore 
desirable to keep these as small as possible. Typically, only when a feature is well-understood can one 
define a good virtual machine service for it—one that is small while allowing an e_cient implementation 
of the feature. 
 
 

3. The core virtual machine 
 

The core virtual machine consists of a number of components. The store provides a model of data 
representation and memory management. The scheduler coordinates the execution of concurrent threads. 
The execution unit actually executes code. The I/O subsystem abstracts away the interface to the 
operating system’s input and output channels.  

Store. The data structures used by computations reside in the store. Conceptually, the store 
represents a graph of data nodes; the implementation of the store manages allocation of these nodes and 
their layout in computer memory. During program execution, a number of these nodes is directly 
referenced from the program’s environment. The set of these nodes called the root set. Since nodes in the 
store need not be explicitly deallocated, memory needs to be reclaimed periodically according to a given 
policy, by a process called garbage collection. Garbage collections can take place at specified points 
during program execution called synchronization points. The memory occupied by all nodes not reachable 
directly or indirectly through edges of the store graph is made available for allocation again. 



       Scheduler. Concurrency is supported through interleaved execution of several threads, each of which 
maintains its own task stack. The scheduler maintains a queue of threads which are passed to the 
execution unit for execution in a round-robin fashion. The threads in the queue are said to be runnable; 
while a thread is being executed by the execution unit, we say it is running. At each synchronization 
point, the execution unit will preempt execution of the current thread if a flag in the status register 
becomes set. The status register is a vector of flags, each of which signals an asynchronously raised 
condition which requires synchronous handling, that is, while no thread is being executed. 

One of the status register flags is periodically set by a timer to achieve time-slicing for fair 
preemptive scheduling of threads. Another status register flag is set by the store to signal the need for a 
garbage collection. 

Execution Unit. Programs are compiled to bytecode and are executed by an interpreter. A 
procedure call creates an activation record for the called procedure. Activation records are managed in a 
task stack.  

Concurrent I/O and Synchronization. An input/output subsystem abstracts the details of the 
handling of communication channels with the environment of the virtual machine process, which may be 
specific to the operating system. When a thread waits for an input/output channel to become ready, it is 
said to be blocked. Runnable threads continue to be executed while other threads are blocked. When 
input/ output channels become ready, the threads waiting for them become runnable again, that is, they 
are enqueued in the scheduler’s thread queue again. Communication between concurrent threads requires 
synchronization, and thus can also lead to blocking of threads. Specifically, Mozart provides for logic 
variables and futures for synchronization. 
 

4. Architecture of Services 
 

As outlined above, the virtual machine provides a number of services on top of its core 
components. We want to distinguish between two design principles for services that di_er in how a 
service relates to the core. We say a service is a stand-alone service if its realization is independent of the 
core virtual machine, and it provides its own infrastructure for memory management and execution 
control. Computation within the service is atomic from the scheduler’s point of view. Only the 
computation’s results are communicated to the store. In contrast, an integrated service reuses the core 
virtual machine as its infrastructure. In particular, the service allocates its data structures in the store and 
its computations execute under fine-grained control of the scheduler. The following paragraphs discuss 
advantages and disadvantages of using stand-alone vs. integrated services. 

 
Stand-alone Services. Designing a service to be standalone o_ers several advantages. The 

designer of a standalone service can use the data representation best suited for the service, instead of 
being constrained by the virtual machine’s store. This allows for optimal e_ciency and expressivity. 
Stand-alone services can use any external libraries, reducing design and implementation e_ort. Finally, it 
is easy to add new or experimental services to the virtual machine as stand-alone services, because they 
can be implemented independently (even when they are not yet deeply understood). On the other hand, it 
is di_cult for stand-alone services to interoperate with other services on the virtual machine in a fine-
grained way. For instance, stand-alone services are atomic, that is, they do not interoperate with the core 
virtual machine’s concurrency features. One way out is to split the service into a number of (atomic) sub-
services, so that each has a short runtime and does not interfere noticeably with preemptive scheduling. 
Such a partition may be hard to find, or increase complexity. 

Another disadvantage of stand-alone services is that they may increase total size of low-level 
code, because each carries a full implementation of its own infrastructure. This may result in maintenance 
and consistency problems.  

Integrated Services. Reusing the core infrastructure obviates the need of infrastructure duplication 
for each service. Most importantly, automatic memory management comes for free with reuse of the 
store. Integrated services interoperate with the core virtual machine’s concurrency model. The resulting 



implementation may be smaller (if the service had good potential for reuse) and may be perceived as 
more elegant, because it focuses on implementing the service itself and not some infrastructure. The 
difficulty with designing an integrated service is that the service’s data and control structures need to be 
modeled in terms of what the core virtual machine o_ers.  

For instance, data needs to be allocated as store nodes, possibly resulting in less e_cient 
representations because of the overhead inherent to store nodes. Resources need to be wrapped into store 
nodes and handled by finalization (we call any entity that is not fully managed by the store a resource, for 
example an area of heap-allocated memory outside the store). In particular, the implementor may su_er 
from wrapping overhead with any external libraries he may want to use, since any data managed by the 
external library are resources.  

Some libraries may even not be usable at all in the implementation of an integrated service, 
because they may be fundamentally incompatible with the core virtual machine (for instance, if a library 
function can block the process, then it is not compatible 
with the virtual machine’s idea of concurrency). 
 
 
 

 
 
5. Conclusions 
 
In this paper were presented some aspects regarding the programming systems. They were 

depicted a Programming System Architecture, the components of the core of virtual machine and the 
services offered by this one. 

 
It is good to know all these aspects in order to develop new programming systems to perform new 

and better software application with the best programming tools. 
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