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Granger non-causality between (non)renewable energy 

consumption and output in Italy since 1861: the (ir)relevance of 

structural breaks 

 

Abstract 

The present paper considers an Italian dataset with an annual 

frequency from 1861 to 2000. It implements Granger non-causality 

tests between energy consumption and output contrasting methods 

allowing for structural change with those imposing parameter 

stability throughout the sample. Though some econometric details 

can differ, results have clear policy implications. Energy 

conservation policies are likely to hasten an underlying tendency 

of the economy towards a more efficient use of fossil fuels. The 

abandonment of traditional energy carriers was a positive change.  

 

Keywords: renewable energy, non-renewable energy, real GDP, 

Granger-causality, cointegration, structural change. 

JEL Classification: C32, Q43. 



 2

Introduction 

 

The connection between energy consumption and output has been the topic of an extensive 

literature surveyed in Lee (2005, 2006), Yoo (2006), Chontanawat et al. (2006) and Payne (2009, 

2010a, 2010b). In particular Payne (2009, 2010a) synthesize the often conflicting results obtained 

by the literature into four hypothesis. According to the “growth hypothesis”, energy consumption is 

a complement of labour and capital in producing output and, as a consequence, it contributes to 

growth. The “conservation hypothesis” implies that real GDP might be boosted by a reduction of 

energy consumption possibly due to energy conservation policies, aiming at reducing greenhouse 

emissions, improving energy efficiency and curtailing energy consumption and waste. If the 

“neutrality” hypothesis holds, energy consumption and real output will not have a significant 

connection. Finally, the “feedback” hypothesis suggests that more (less) energy consumption results 

in increases (decreases) in real GDP, and vice versa. 

We follow a very recent stream of literature by distinguishing between renewable and non-

renewable energy consumption (Sari and Soytas, 2004, Ewing et al., 2007, Sari et al., 2008, 

Sadorsky, 2009a, Sadorsky, 2009b, Payne, 2009, Payne, 2010c, Apergis and Payne, 2010a, Apergis 

and Payne, 2010b, Apergis and Payne, 2010c and Bowden and Payne, 2010). More specifically, we 

deepen the research strategy proposed by Payne (2009), that focused on a single country, the US, 

rather than on a panel of countries and implemented Granger non-causality tests after Toda and 

Yamamoto (1995) over a data sample running from 1949 to 2006. A similar research strategy was 

followed by Tsani (2010) for a Greek sample running from 1960 to 2006, though not concerning 

the renewable/non-renewable energy consumption dichotomy. Both the studies warn that their 

results might be biased by a small sample problem.  

We overcome this limitation by analysing a dataset for Italy from 1861 to 2000. Though, according 

to Payne (2010a), eleven studies already used Italian data, none of them could rely on a sample with 
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more than 45 observations and none of them
2
 distinguished between renewable and non-renewable 

energy consumption. Furthermore, Italy is highly dependent from energy imports as many other 

European countries. Therefore, it well represents a situation where conservation energy policies are 

most needed.  

Furthermore, after Zachariadis (2007) – where merits and drawbacks of different econometric 

approaches are discussed - we do not stop here. We also resort to integration and cointegration 

analyses to shed further light on the energy-growth nexus and to assess the robustness of our 

results
3
.  

What is more we provide econometric evidence based on estimators allowing for structural break in 

the data, not only in unit root testing, but also while performing cointegration and Granger non-

causality tests. We do so by adopting the approach by Lütkepohl et al. (2004), that has found scant 

applications in the literature on output and energy consumption so far. 

The next section illustrates our data. The following one discusses our econometric methods. The 

fourth section is devoted to our results and the last one to our conclusions and to policy 

implications. 

Data description 

Our dataset was compiled by Malanima (2006), which also contains a thoughtful discussion 

regarding how the series were built and how the Italian energetic system moved over 140 years 

from traditional energy sources to modern fossil carriers. 

In the present study we consider four variables: the real GDP measured in 1911 prices, non-

renewable energy consumption and two measures of renewable energy consumption. We define 

                                                 
2 With the exception of Sadorsky (2009b), which, however, makes use of panel integration and 

cointegration techniques.  
3 One further popular approach in the literature relies on autoregressive distributed lag models after 

Pesaran et al. (2001). However, we do not believe this approach suits our setting, given that to test 

for long-run causality from energy consumption to output one would have to assume that there was 

no long-run feedback from output to energy consumption and vice versa (see Pesaran et al., 2001, p. 

293). We deem such a-priori assumptions as untenable and, in fact, their assessment should be the 

final goal of any research on the energy-output nexus more than its starting point.  



 4

non-renewable energy consumption (NRE) as the consumption of fossil fuels. On the other hand, 

our first measure of renewable energy consumption (RE1) is the one related to hydroelectric, 

geothermal, solar and wind power. Note that 96% of RE1 was on average composed by 

hydroelectric power. In the second measure of renewable energy consumption (RE2) we also 

include traditional energy sources (namely water, wind, animals and firewood). NRE, RE1 and RE2 

are all measured in tons of oil equivalent (hereafter toe) and they are set out in Figure 1, while 

Figure 2 shows the real GDP. Note that before 1887 RE1 was negligible. Figure 1 clearly 

documents the transition from traditional energy carriers to fossil fuels. 

To describe our data into some more detail and to allow comparability with other studies, we follow 

Tsani (2010) by considering various sub-periods. We take as reference dates the first and second 

world wars and the oil price shock of the mid-1970s (Table 1). To start with, it is worth noting that 

even in 1861 the consumption of non-renewable energy was rather relevant being above 800,000 

toe, especially when compared to hydroelectric power, which was equal to 23 toe in 1887. 

Traditional carriers were the main sources of energy, accounting for nearly 7,900,000 toe.  

In the period from 1861 to 1918 there was a clear surge of hydroelectric power, as an average real 

economic growth of about 2% was accompanied by a growth rate in non-renewable energy 

consumption of the order of 3%, by a steady consumption of energy from traditional sources and by 

a 32% average rise in consumption of renewable energy. At the same time, manufacturing activities 

were taking off, though they were not the first economic sector of the country by number of 

employees yet.  

Average growth rates from 1919 to 1946 were clearly affected by the 1929 crisis and the second 

world war, given that real GDP, NRE and RE2 all decreased. However, hydroelectric power 

continued its rise growing on average by approximately 4% a year. 

The following years - especially the 1950s - are renown as those of the “Italian miracle”, thanks to 

which Italy managed to catch up with the most developed countries. During this period Italy 

completed its industrialization and tertiarization processes as employees in manufacturing and 
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services eventually outnumbered those in agricultural activities and emigration progressively shrank 

(Zamagni, 1990, p. 50). The real GDP grew on average by more than 6% a year. This leap was 

achieved relying more on non-renewable energy consumption - which increased by nearly 13% a 

year – than on RE1 or RE2 – whose growth rates were much more muted.  

Finally after the oil price shock of the mid-seventies, the Italian economy was unable to grow as 

fast as before, notwithstanding its eventual membership to the European Monetary Union, and 

energy consumption indicators mirrored this slower trend, which was also accompanied by a 

ballooning public debt and by increasing difficulties to have a positive trade balance. The fact that 

energy consumption was growing at a slower pace, however, was accompanied by the increasing 

weight of energy imports: energy dependence, measured by net imports divided by the sum of gross 

inland energy consumption plus bunkers, passed from 0.4% in 1972 to 78.6% in 2000 and to 85% 

in 2004 – similar figures to those showed by Tsani (2010) for Belgium, Greece, Ireland, 

Luxembourg, Portugal and Spain. In 2004, fossil fuels were the sources of 87% of energy 

consumption in Italy, also as a result of a referendum against nuclear energy production in 1987. 

The country under analysis is, therefore, not only far from the condition of the UK, which is a net 

energy exporter, but also from those of Germany and France, that can rely on nuclear power and the 

former also on carbon (Bastianelli, 2006). 

These facts - together with the obligation of reducing CO2 emissions by 6.5% between 2008 and 

2012 following commitments to the Kyoto protocol (IEA, 2009), with shrinking oil reserves and 

increasing world population - give energy conservation a high priority in the Italian political 

agenda. As a consequence, better understanding the connection between energy consumption and 

economic growth has an ever growing importance. 
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Methodology 

Under a methodological point of view, we contrast the results of econometric tests and estimators 

allowing for structural breaks in the data with those imposing parameter stability across the whole 

sample.  

Methods allowing for structural breaks 
 

In the first case, we test for the presence of a unit root in the series under analysis following Perron 

(1989) and Zivot and Andrews (1992). More specifically we adopt Perron's model C  

( ) t

k
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τ

+++++++= Â
=

−−  

where 1 < Tk < T assigns the break point, D(Tk) = 1 if t = Tk + 1 and 0 otherwise, DUt = 1 for t > Tk 

and 0 otherwise, DT
*

t = t & Tk for t > Tk and 0 otherwise. yt is the t-th observation of the variable 

under analysis, µ, θ, β, γ, α, d, ci for i=1,…, k are parameters to be estimated, ∆ is the first 

difference operator and ε is a stochastic error. Following Zivot and Andrews (1992) we choose the 

date of the structural break as the point in time for which the null hypothesis of a random walk with 

drift is most likely not to be accepted. The test statistic is the Student t ratio 
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∈

=  

where Λ is [0.15, 0.85] and λ= (Tk/T). As it is possible to see this test can capture a change both in 

the mean and in the trend of a given series. Note that k was selected by means of a Schwarz 

criterion starting from a maximum lag number of 8. 

We run this test for variables both in levels and in first differences. Our final target is to run 

Granger non-causality tests on bivariate VARs or VECMs of real output and one energy 

consumption measure, so we consider real GDP and one energy consumption measure at a time. 

If we find that both these variables are I(1), we will move to a cointegration test. If not, we will 

check whether first differenced variables are all stationary. If it is so and if we do not find evidence 
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of cointegration, we will test for short run causality by adopting the Box and Jenkins (1970) 

approach. In other words, we will differentiate variables to estimate a stationary VAR and use 

customary Granger causality tests, without fear of incurring in possible omitted variable biases due 

to the omission of the error correction part of the model
4
, given that variables do not appear to be 

related in the long-run. On the other hand, if we find evidence of the existence of cointegration 

relationships we will estimate a vector error correction model (VECM). 

At this stage of our research we will take into consideration the possible impact of structural breaks 

on our estimates as well. Once adopting the Box and Jenkins approach, we will test for the presence 

of structural breaks by resorting both to Quandt and Andrews tests and to a CUSUM test. Once 

estimating a VECM, instead, we will follow the procedure proposed by Lütkepohl et al. (2004) as 

implemented by Pfaff (2008).  

Lütkepohl et al. (2004) consider a (K×1) vector process {yt} generated by a constant (µ0), a linear 

trend (t), and level shift terms 

yt = µ0 + µ1t + hdtk + xt 

where bold characters denote vectors, µ1 is the vector of coefficients of the time trend, dtk is a 

dummy variable with dtk = 0 for t < k and dtk = 1 for t œ k, h is the vector of coefficients of dtk. The 

shift point k is assumed to be unknown and it is expressed as a fixed fraction of the sample size, 

k = [Tそ] with 0 < そ0 ø そ ø そ1 < 1 

where そ0 and そ1 define real numbers and [·] defines the integer part. xt is assumed to be 

representable by a VAR of order p and to have components that are at most I(1) and cointegrated 

with rank r. Note that µ1 could be 0. After Trenkler (2003), the break point is selected on the basis 

of the estimation of a VAR(p) in levels for the variable yt, where it is possible to include or not to 

include a time trend or seasonal dummies. At this stage, the data are adjusted according to  

  −  − −= 10 tty  x dˆtˆˆˆ
t  

                                                 
4 On this point see for instance Davidson et al. (1978). 
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A Johansen-type test for determining the cointegration rank can be applied to these adjusted series. 

If the existence of cointegration is not rejected, we will conduct Granger non-causality tests on the 

VECM of the adjusted series. Note that as a first step we will test for the presence of a time trend in 

the VAR in levels for {yt}, to select the most suitable model specification.  

Methods imposing parameter stability throughout the sample 
 

Given that most of the literature on energy consumption and growth imposes stability of the 

estimated parameters, we are curious to see how the results obtained with the methods above 

compare with more traditional estimation techniques as this could lead to guidance for future 

research.  

Similarly to Payne (2009) and Tsani (2010) we follow the approach proposed by Toda and 

Yamamoto (1995) as popularized by Rambaldi and Doran (1996) and Zapata and Rambaldi (1997). 

This approach to Granger non-causality is as follows. Consider bivariate VAR models between the 

logs of the level of real GDP (Y) and each one of our three measures of energy consumption (E).  
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where E equals NRE or RE1 or RE2, a0, a1m, a2j, γ1m, γ2j, b0, b1m, b2j, δ1m, δ2j are parameters to be 

estimated and ε1t and εtj are disturbances. We choose k by resorting to the Schwarz information 

criterion and we set dmax equal to the maximum suspected order of integration of our data series. 

Similarly to Tsani (2010), we try to detect it by running a battery of unit root and stationarity tests, 

such as the Augemented Dickey Fuller test (after Dickey and Fuller, 1979), the Phillips and Perron 

(1988) test and the Kwiatkowski et al. (1992) test, hereafter labelled KPSS. We run all the tests 

both with and without a time trend.  

Afterwards, Granger non-causality is tested for by means of Wald tests focusing only on the 

coefficients γ1m and δ1m for m=1,…,k. Unidirectional Granger causality from real GDP to the energy 
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consumption measure cannot be rejected if γ1mŒ0 for all m. Conversely, unidirectional Granger 

causality from energy consumption to real GDP cannot be rejected if δ1mŒ0 for all m. Bidirectional 

Granger causality cannot be rejected if γ1mŒ0 and δ1mŒ0 for all m. Interpreting the result in the light 

of the “conservation”, “growth” or “feedback” hypotheses will necessitate to take into account also 

the sign of the estimated coefficients. Finally, if we can impose the restriction γ1m=0 and δ1m=0 for 

all m, we will interpret it as supporting the “neutrality” hypothesis. Note that this procedure has 

only asymptotic validity, therefore it is not properly suitable for testing for structural breaks, as one 

might wonder whether the results of such tests are due to finite sample distortions more than to the 

presence of real structural changes
5
.  

We complement our analysis above also adopting the cointegration tests after Johansen (1991, 

1995) without following the Lütkepohl et al. (2004) procedure. On the basis of unit root and 

stationarity tests not allowing for a structural break, we check whether the variables under scrutiny 

have the same order of integration. If there is convincing evidence that the variables are I(1), we 

will specify a vector error correction model (VECM) and test for cointegration. If we find evidence 

of cointegration, we will perform causality tests on the VECM. If we do not find evidence of either 

cointegration or of the same order of integration in the variables, but we find that first differenced 

variables are all stationary, we will resort to the Box and Jenkins (1970) approach.  

Results 

Methods allowing for structural breaks 
 

Table 2 shows the results of our unit root tests after Perron (1989) and Zivot and Andrews (1992). 

A clear pattern emerges. The logs of the real GDP and of NRE are I(1), while those of RE1 and 

RE2 are I(0). First differencing always produces stationary variables. 

                                                 
5 At any rate, for sake of completeness, we report in the Appendix our results obtained a rolling regression technique 

within a Toda-Yamamoto approach. 
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As a consequence, we proceed with cointegration testing between the former two variables. 

Regarding the other two, instead, we specify a VAR in first differences and test for Granger non-

causality within this setup. 

Regarding the logs of the real GDP and of NRE, we first specify a VAR in levels to choose by 

means of the Schwarz information criterion the most suitable number of lags, which turns out to be 

two. Furthermore a linear trend would not appear to have a significant coefficient once inserted in 

the model, having t-statistics equal to 1.07 and 1.81 in the equations for the log of the real GDP and 

the log of NRE respectively. As a consequence, we specify a VECM with one lag in the first 

differences and one lag in levels, without any trend.  

In this setting, the Lütkepohl et al. (2004) test for cointegration can reject the null of no 

cointegration, returning a statistic equal to 17.98 in face of a 1% critical value of 16.42. It can also 

reject the null that there does not exist one cointegration relation as it returns a statistic equal to 

5.55, larger than the 5% critical value of 4.12. The break point is found to be in 1947. 

As a consequence we can proceed with Granger non-causality tests on the data transformed à la 

Lütkepohl et al. (2004), that we denote tY
~

 and tER
~

N  for the logs of the real GDP and of non-

renewable energy consumption. Equations 1 and 2 show our VECM estimates. T-statistics are 

reported in brackets below the relevant coefficient.
6
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where u1t and u2t are disturbances. Short-run coefficients do not appear to be significantly different 

from zero. On the contrary it appears that there exists a negative long-run relationship between 

energy consumption and output. Short-run dynamics is dominated by adjustment towards the long 

run equilibrium, whereby if, for instance, there is a positive deviation of output from its long-run 

                                                 
6 Note that Quandt and Andrews tests as well as CUSUM test applied to equations (1) and (2) would not find any 

evidence of structural breaks. 
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relationship with non-renewable energy consumption the growth rates of both variables will 

decline, though tER
~

N∆  at a faster speed. This implies that there exists bidirectional Granger 

causality between the two variables under study. A greater non-renewable energy consumption 

boosts the growth rate of output, but an increase in output depresses the growth rate of non-

renewable energy consumption. The latter effect is stronger than the former one and it could be due 

to the fact that economic growth is accompanied by greater efficiency in energy use (on this point 

see for instance Huang et al., 2008).   

Let us now move to consider the link between the logs of the real GDP and renewable energy 

consumption measures, RE1 and RE2. As mentioned above we estimate bivariate VARs in 

differences, whose lag orders are set to two on the basis of the Schwarz criterion.  

Regarding the VAR model of real GDP and RE1 in logs, in the equation of RE1 a linear trend is 

found to have a coefficient significantly different from zero and, on the basis of Quandt and 

Andrews unknown breakpoint tests – after Andrews (1993) and Andrews and Ploberger (1994) - 

and of CUSUM tests, two mean shifts are found in the model, the former in 1956 and the latter 

1991. The first two rows of Table 3 show the results of Granger non-causality tests within this 

model, once adopting a seemingly unrelated estimator. The null cannot be rejected in either 

direction, which would favour the neutrality hypothesis between RE1 and real GDP.  

Regarding the VAR model of real GDP and RE2 in logs, instead, a linear trend is not found to have 

a coefficient significantly different from zero. Furthermore, Quandt and Andrews unknown 

breakpoint tests and CUSUM tests cannot find any evidence of structural breaks. On these grounds 

a simple VAR(2) model is estimated. The second two rows of Table 3 show the results of Granger 

non-causality tests within this model, once adopting a seemingly unrelated estimator. Unidirectional 

causality runs from RE2 to real GDP with a negative sign. The following section illustrates our 

results once adopting methods that do not allow for structural breaks. 
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Methods imposing parameter stability throughout the sample 
 

We start with the Toda and Yamamoto (1995) approach. Table 4 shows the results of our unit root 

and stationarity tests. As it is possible to see the maximum detected order of integration is one for 

real GDP, NRE and RE2, while for RE1 the KPSS test would point to two. On the basis of the 

results of the Schwarz information criteria mentioned above, we choose two lags for all the three 

VARs considered. So we estimate two bivariate VAR(3) models for the logs of real GDP and NRE 

and for those of real GDP and RE2 respectively. For real GDP and RE1, instead, we estimate a 

VAR(4). 

The results of Granger non-causality tests are set out in Table 5
7
. Granger non-causality is rejected 

from real GDP to NRE, from NRE to real GDP and from real GDP to RE2.  

It is worth noting that for non-renewable energy consumption 0ˆ
k

1m

m1 <Â
=

γ  and 0ˆ
k

1m

m1 >Â
=

δ , where 

m1γ̂  and m1δ̂  are the estimated counterparts of m1γ  and m1δ  respectively. So, similarly to the case 

for the VECM with structural breaks, greater non-renewable energy consumption boosts output, but 

an increase in output depresses non-renewable energy consumption. 

Once including in our renewable energy measure traditional sources of energy, instead, we find uni-

directional Granger causality from RE2 to real GDP. This is hardly surprising given that economic 

development in Italy, as elsewhere, was characterized by a transition from traditional energy 

sources to fossil fuels. Finally, we cannot reject Granger non-causality in either direction for RE1.  

Regarding integration and cointegration analyses, we first note that on the basis of the unit root and 

stationarity tests above it is not possible to understand whether RE1 is either I(0) or I(2). In either 

case, its integration order would appear to be different than the one of real GDP, for which there is 

rather clear evidence to be I(1). To estimate a stationary VAR one should, therefore, include 

                                                 
7
 Note that we carried out a Portmanteau autocorrelation test for the residuals of all the estimated 

VARs without finding any evidence of serial correlation. 
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variables with inhomogeneous difference orders, for which it is difficult to provide an economic 

intuition. We conclude that RE1 and real GDP are not connected without any further testing.  

Regarding NRE and RE2 - for which there is stronger evidence to be I(1) - we specify the following 

VECM on the basis of the Schwarz criteria mentioned above and similarly to Zachariadis (2007): 

( ) t1011t111t311t211t1101t vdYdEcYcEccE ++++++= −−−− ∆∆∆  

( ) t2011t111t321t221t1202t vdYdEcYcEccY ++++++= −−−− ∆∆∆  

where cij for i=0,…,3 and j=1,2 and dlj for l=0,1 and j=1,2 are parameters to be estimated, v1t and v2t 

are disturbances and E equals either NRE or RE2. In this framework, we implement the Johansen 

(1991, 1995) tests, which, however, do not find any evidence of cointegration as showed in Tables 

6 and 7. 

As a consequence we abandon the VEC model and we test for short-run Granger causality by 

specifying two bivariate VAR models in first differences for Y and NRE and for Y and RE2 

respectively. We choose a lag length of 2 resorting to the Schwarz information criterion
8
.  

For non-renewable energy consumption our results very closely resemble those obtained with the 

Toda and Yamamoto (1995) approach, as Granger non-causality can be rejected both from NRE to 

Y and viceversa. In the first case, the Wald statistic is equal to 7.62 with a p-value of 0.02 and the 

sum of the coefficients of the lags of NRE in logs is 0.11. In the second case, the Wald statistic is 

equal to 8.01 with a p-value of 0.01 and the sum of the coefficients of the lags of real GDP in logs 

is -0.88. 

For RE2, instead, the results coincide with those presented in Table 3, given that we did not find 

evidence of structural breaks. 

                                                 
8 Also in these models the Portmanteau autocorrelation test would not find any evidence of serial 

correlation in the residuals of the estimated VAR models. 
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Conclusions 

In this paper we contrasted econometric methods allowing for structural breaks with those imposing 

parameter stability regarding the issue of the energy consumption-output nexus, distinguishing 

between renewable and non-renewable energy sources and using Italian data since 1861. Table 8 

offers a summary of our results. 

Under an econometric point of view, using methods allowing for structural change can produce in 

some cases different results than using methods imposing parameter stability. For instance, the 

Lütkepohl et al. (2004) test finds a cointegrating relationship between NRE and real GDP, that 

standard Johansen (1991, 1995) tests cannot find. Other examples concern the maximum detected 

integration order of RE1 and RE2 in logs. The Zivot and Andrews (1992) test finds both variables 

to be I(0), while adopting tests imposing parameter stability one can find a maximum integration 

order of 2 and 1 respectively. 

When it comes, however, to Granger non-causality tests, results are stable across different 

methodologies. We find evidence pointing to bi-directional causality between non-renewable 

energy consumption and output, whereby a greater non-renewable energy consumption boosts 

output growth, but an increase in the level of output depresses the growth rate of non-renewable 

energy consumption to a larger extent, possibly due to greater efficiency in energy use. Granger 

non-causality could not be rejected from renewable energy consumption to output and viceversa. 

Once including in our renewable energy measure traditional energy sources, negative causality runs 

from energy consumption to output. 

These results have clear policy implications. Given the prevailing negative effect of output on non-

renewable energy consumption, one can think that the economy tends to make a more efficient use 

of this kind of energy as time passes. Conservation policies favouring energy saving in buildings, 

lighting and transportation can be thought to hasten an underlying tendency of the economy and 

they should be pursued notwithstanding a possible small negative impact on output. All the more 

that such an impact takes place only in the short run according to cointegration analysis. Our second 
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result points to a possible limitation to the research strategy inaugurated by Payne (2009) and that 

we adopted, as Granger non-causality tests can only give us a retrospective knowledge on the 

dynamics of renewable energy consumption and output. Given that in the past, renewable energy 

consumption in Italy was mostly connected to hydroelectric power, we might not be able to detect if 

we were on the eve of a transition from fossil fuels to geothermal, aeolian or solar power.  

This implies that our results cannot provide policy advice regarding more recent alternative energy 

sources. They only point to the fact that hydroelectric power cannot completely substitute for fossil 

fuels.  

Finally, it appears that policies favouring the abandonment of traditional energy carriers were well 

suited as their use is negatively associated with output. 

One further limitation of the present work, which is common to a great number of studies in the 

field, is that, though we adopted a much larger sample than the bulk of the literature, we could 

estimate only bivariate models due to historical data availability. 
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Appendix 

The present appendix illustrates our results obtained by a rolling regression technique applied to the 

three bivariate VARs between real GDP on one side and NRE, RE1, and RE2 on the other - as 

specified at p. 12. We discuss these results in an appendix because the Toda and Yamamoto (1995) 

approach has only asymptotic validity and reducing the number of observations might increase 

finite sample biases. 

For the VARs between real GDP and NRE and between real GDP and RE2 we use a window width 

of 100 observations. Instead, for the VAR between real GDP and RE1, having less observations, we 

use a window width of 90. These widths were chosen in the attempt to ward off the above 

mentioned risk of finite sample biases.  

The continuous lines in Figures A1 to A3 represent the sums of the lagged coefficients (similarly to 

the fifth column of Table 5), while the dotted lines the p-values of modified Wald statistics (like in 

the fourth column of Table 5).  

As it is possible to see results regarding non-renewable energy consumption are remarkably stable. 

Concerning renewable energy consumption 1, some Granger causality running from the real GDP 

to RE1 shows up in earlier samples. However, the magnitude of the sums of the coefficients is so 

small to be negligible under an economic point of view. Finally, Figure A3 confirms negative 

Granger causality running from RE2 to real GDP. In earlier samples, an increase in real GDP 

significantly Granger causes an increase in RE2. However, after the sample running from 1878 to 

1977, such effect vanishes, as the transition from traditional energy carriers to fossil fuels began to 

take place. 



 21

 

Figure 1 – Non-renewable and renewable energy consumption in Italy from 1861 to 2000 
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Notes: 

1. NRE is the consumption of fossil fuels. RE1 is energy consumption related to hydroelectric 

power, geothermal, solar and wind. RE2 includes RE1 and traditional energy sources (like 

water, wind, animals and firewood). Data for RE1 is from 1887. 

2. All data are in tons of oil equivalent.  

 

Figure 2 – Real GDP in Italy from 1861 to 2000 (in 1911 prices) 
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Figure A1 – Rolling regression Granger non-causality tests (Toda and Yamamoto approach) 
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Notes.  

1. For a definition of non-renewable energy consumption see Figure 1. 

2. The gray line in the lower panel denotes the 5% significance level. 
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Figure A2 – Rolling regression Granger non-causality tests (Toda and Yamamoto approach) 
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Notes.  

1. For a definition of renewable energy consumption 1 see Figure 1. 

2. The gray line in the lower panel denotes the 5% significance level. 
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Figure A3 – Rolling regression Granger non-causality tests (Toda and Yamamoto approach) 
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Notes.  

1. For a definition of renewable energy consumption 2 see Figure 1 

2. The gray line in the lower panel denotes the 5% significance level. 
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Table 1 – Energy consumption and economic growth in Italy, average of annual growth 

rates in percentages. 

 1861-1918 1919-1945 1946-1975 1976-2000 

Non-renewable energy consumption 2.05 -1.36 6.38 2.44 
Renewable energy consumption 3.30 -2.85 12.91 1.16 
Renewable and traditional energy 

consumption 32.03 4.07 3.98 1.25 
Real GDP 0.30 -0.46 0.57 0.39 

Note: Author’s calculation on data from Malanima (2006). Data for renewable energy 

consumption is from 1887. 
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Table 2 – Zivot and Andrews (1992) unit root tests 

Variable Statistic 
Break 

year 

Lags 

included 

in the 

model 

log(real GDP) -3.32 1953 2 

∆log(real GDP) -10.99*** 1946 1 

log(NRE) -3.76 1959 1 

∆log(NRE) -11.31*** 1946 0 

log(RE1) -8.56*** 1981 3 

∆log(RE1) -7.47*** 1915 3 

log(RE2) -5.60*** 1939 1 

∆log(RE2) -9.50*** 1943 2 

Notes 

The null of the test is that the series contain a unit root. The 5% critical value of the test is 5.08 

and the 1% one is 5.57. Lags were chosen on the basis of the Schwarz criterion.  

*** means that the statistic is significant at a 1% level. 
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Table 3 – Granger non-causality tests (Box and Jenkins approach) 

      

From  To  
Wald 

statistics 
p-values 

Sum of lagged 

coefficients 
Causality 

Renewable Energy 1 Real GDP 0.24 0.88 -0.02 None 

Real GDP Renewable Energy 1 0.32 0.85 -0.19 None 

Renewable Energy 2 Real GDP 19.50 0.00 -0.07 RE2sGDP

Real GDP Renewable Energy 2 0.8 0.96 -0.01 None 

Notes:      

1. We adopted a seemingly unrelated regressions model. 

2. For a definition of non-renewable energy, renewable energy 1 and renewable energy 2 see 

Figure 1 

3. In the VAR between renewable energy 1 and real GDP a trend and two mean shifts in 1956 

and in 1991 were inserted in the equation for the renewable energy consumption measure on the 

basis of specification and stability testing.  
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Table 4 – Unit root and stationarity tests 

       

  ADF test Phillips-Perron test KPSS test 

  I I+T I I+T I I+T 

Variable             

log(real 

GDP) 0.99(2) -1.63(2) 0.85 -1.68 0.78*** 0.15** 

∆log(real 

GDP) -8.96(1)*** -9.11(1)*** -8.27*** -8.25*** 0.26 0.05 

log(NRE) -0.64(2) -2.75(1) -0.53 -2.29 0.79*** 0.08 

∆log(NRE) -8.90(1)*** -8.87(1)*** -9.64*** -9.60*** 0.05 0.05 

log(RE1) -13.17(0)*** -8.40(0)*** -21.65*** -28.64*** 0.41* 0.15** 

∆log(RE1) -2.92(4)** -8.62(0)*** -6.95*** -8.89*** 1.07*** 0.45*** 

∆2
log(RE1) - - - - 0.21 0.06 

log(RE2) -1.80(2) -4.15(1)*** -1.62 -3.31* 0.39* 0.10 

∆log(RE2) -9.18(2)*** -9.14(2)*** -18.87*** -18.41*** 0.03 0.03 

Notes:       

1. I denotes intercept and I+T denotes intercept and trend   

2. ***, ** and * denote significance at 1%, 5% and 10%   

3. For the ADF test the number of optimum lags, chosen on the basis of the Schwarz 

information criteria, is denoted in parentheses 

4. The critical values of the KPSS test are from Kwiatkowski, Phillips, Schmidt and 

Shin (1992, Table 1) 

5. The critical values for the Phillips and Perron and the ADF tests are based on 

MacKinnon (1996) one-sided p-values 

6. The Phillips and Perron test is based on the Newey-West bandwidth using a Bartlett 

Kernel 

7. The KPSS test adopts an Andrews bandwidth using a Bartlett Kernel  

8. ∆伊is the first difference operator, while ∆2
 is the second difference operator 

9. For a definition of NRE, RE1 and RE2 see Figure 1 
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Table 5 – Granger non-causality tests (Toda and Yamamoto approach) 
      

From  To  

Modified 

Wald 

statistics 

p-values 

Sum of 

lagged 

coefficients 

Causality 

Non-renewable 

Energy 
Real GDP 10.78 0.00 0.05 NREsGDP

Real GDP 
Non-renewable 

Energy 
6.48 0.04 -0.76 GDPsNRE

Renewable Energy 1 Real GDP 0.33 0.84 0.02 None 

Real GDP 
Renewable Energy 

1 
4.72 0.09 0.17 None 

Renewable Energy 2 Real GDP 19.18 0.00 -0.38 RE2sGDP

Real GDP 
Renewable Energy 

2 
0.20 0.90 0.04 None 

Notes:      

1. Modified Wald chi-square statistics are displayed.    

2. We adopted a seemingly unrelated regressions model after Rambaldi and Doran (1996). 

3. For a definition of non-renewable energy, renewable energy 1 and renewable energy 2 see 

Figure 1 
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Table 6 – Johansen cointegration tests between the logs of real GDP and non-renewable 
energy consumption (138 observations). 
 

Unrestricted Cointegration Rank Test (Trace) 

Hypothesized   

No. of 

Cointegrating 

Equations Eigenvalue Trace Statistic

0.05 Critical 

Value Prob.** 

None 0.058991 8.436849 15.49471 0.4199 

At most 1 0.000334 0.046155 3.841466 0.8299 

Trace test indicates no cointegration at the 0.05 level 

     

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized   

No. of 

Cointegrating 

Equations Eigenvalue 

Max-Eigen 

Statistic 

0.05 

Critical Value Prob.** 

None 0.058991 8.390693 14.26460 0.3404 

At most 1 0.000334 0.046155 3.841466 0.8299 

Max-eigenvalue test indicates no cointegration at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 
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Table 7 – Johansen (1991, 1995) cointegration tests between the logs of real GDP and RE2 
consumption (138 observations). 
 

Unrestricted Cointegration Rank Test (Trace) 

Hypothesized   

No. of 

Cointegrating 

Equations Eigenvalue 

Trace 

Statistic 

0.05 

Critical Value Prob.** 

None 0.072530 11.24277 15.49471 0.1970 

At most 1 0.006156 0.852118 3.841466 0.3560 

Trace test indicates no cointegration at the 0.05 level 

     

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized   

No. of 

Cointegrating 

Equations Eigenvalue 

Max-Eigen 

Statistic 

0.05 

Critical Value Prob.** 

None 0.072530 10.39065 14.26460 0.1875 

At most 1 0.006156 0.852118 3.841466 0.3560 

Max-eigenvalue test indicates no cointegration at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 
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Table 8 – Summary of the results across different econometric methods. 
 

Variables 
under study Econometric method Results allowing for 

structural breaks 
Results imposing 
parameter stability 

Unit root and stationarity 
tests of NRE 

The maximum 

integration order is 1 

The maximum 

integration order is 1 

Cointegration tests Yes No 

VECM 

Bi-directional 

causality with 

prevailing negative 

effects from GDP to 

NRE 

- 

VAR in differences - 

Real GDP 
and NRE 

Toda and Yamamoto (1995) 
approach 

- 

Bi-directional 

causality with 

prevailing negative 

effects from GDP to 

NRE 

Unit root and stationarity 
tests of RE1 

The maximum 

integration order is 0 

The maximum 

integration order is 2 

Cointegration tests No No 

VECM - - 

VAR in differences Granger non-causality 

Cannot be estimated 

given the results of 

unit root and 

stationarity tests 

Real GDP 
and RE1 

Toda and Yamamoto (1995) 
approach 

- Granger non-causality 

Unit root and stationarity 
tests of RE2 

The maximum 

integration order is 0 

The maximum 

integration order is 1 

Cointegration tests No No 

VECM - - 

VAR in differences 
Negative Granger 

causality from RE2 to 

real GDP 

Real GDP 
and RE2 

Toda and Yamamoto (1995) 
approach 

- 

Negative Granger 

causality from RE2 to 

real GDP 

Notes 

Real GDP is always found to be I(1). 


