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Università di Modena e Reggio Emilia

CEPR and RECent

Luca Gambetti†

Universitat Autonoma de Barcelona

Luca Sala‡
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Abstract

This paper uses a structural, large dimensional factor model to evaluate the role of ‘news’

shocks (shocks with a delayed effect on productivity) in generating the business cycle.

We find that (i) existing small-scale VECM models are affected by ‘non-fundamentalness’

and therefore fail to recover the correct shock and impulse response functions; (ii) news

shocks have a limited role in explaining the business cycle; (iii) their effects are in line

with what predicted by standard neoclassical theory; (iv) the bulk of business cycle fluc-

tuations is explained by shocks unrelated to technology.
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1 Introduction

In recent years there has been a renewed interest in the idea that business cycles could be

generated by changes in expectations (this idea dates back to Pigou, 1927). The literature

has focused on shocks having delayed effects on technology, the so-called ‘news shocks’.

The seminal paper by Beaudry and Portier (2006) finds that positive news shocks have a

positive impact on stock prices, consumption, investment and hours worked and account

for more than half of output fluctuations (see Figure 10 in Beaudry and Portier, 2006).1

These results do not square with standard neoclassical one-sector models, in which good

news about future technology trigger a wealth effect that affects positively consumption

but negatively hours, output and investment on impact. Beaudry and Portier (2007),

Jaimovich and Rebelo (2009), Schmitt-Grohe and Uribe (2008) propose models that can

reconcile the theory with the above results.

Existing evidence has been obtained by using small-scale VAR or VECM models.

This is problematic, because when structural shocks have delayed effects on macroeco-

nomic variables, VAR models using such variables may be affected by non-fundamentalness

(Lippi and Reichlin, 1994, Leeper, Walker and Yang, 2008, Forni and Gambetti, 2010b,

Feve, Matheron and Sahuc, 2009). Non-fundamentalness means that the variables used

by the econometrician do not contain enough information to recover the structural shocks

and the related impulse response functions. The question is essentially whether the struc-

tural MA representation of such variables can be inverted or not. If not, the variables

do not have a VAR representation in the structural shocks, implying that such shocks

cannot be obtained by estimating a VAR with these variables.2

To get an intuition of the problem, assume that the news shock affects total factor

productivity (TFP) with a one-period delay. Clearly, by observing TFP at time t we get

information about news arrived in t − 1, but do not learn anything about the current

shock. Coupling TFP with a series affected by the shock on impact (like stock prices)

does not necessarily solve the problem, as shown in Section 2.

In this paper we present new evidence on the effects of news shocks by estimating a

large-dimensional factor model with US quarterly data. Large factor models, including

Factor Augmented VARs (FAVARs), can be used for structural economic analysis just

like VAR models, as in Giannone, Reichlin and Sala (2004), Bernanke, Boivin and Eliasz

(2005), Stock and Watson (2005), Forni, Giannone, Lippi and Reichlin (2009), Forni

1Beaudry and Lucke (2009) and Beaudry, Portier and Dupaigne (2008) confirm the same empirical

findings.
2A partial list of references on non-fundamentalness includes Lippi and Reichlin (1993), Hansen and

Sargent (1991), Chari, Kehoe and McGrattan (2005), Fernandez-Villaverde, Rubio-Ramirez, Sargent and

Watson (2005), Giannone, Reichlin and Sala (2006).
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and Gambetti (2010a).3 Their advantage in the present context is that they are not

affected by the non-fundamentalness problem, as shown in Forni, Giannone, Lippi and

Reichlin (2009).4 The intuition is that large factor models, unlike VARs, include a large

amount of information (virtually all available macroeconomic series), so that insufficient

information is unlikely. As a matter of fact, factor models have been successful in

explaining well known VAR puzzles like the ‘price’ puzzle and the ‘exchange rate’ puzzle

(Bernanke, Boivin and Eliasz, 2005, Forni and Gambetti, 2010a). In addition, the factor

model enables us to verify whether a given VAR information set is affected by non-

fundamentalness or not. Our testing procedure is explained in Section 3.5.

Our results are the following.

First, we estimate a two-shock factor model and apply the above test to the two

variables in the benchmark model of Beaudry and Portier (TFP and stock prices). We

find that the structural MA representation of TFP and stock prices is non-fundamental.

Then we identify the news shock as in Beaudry and Portier (2006), by assuming a zero

impact effect on TFP and find that the impulse responses and variance decompositions

obtained with the factor model are completely different from those obtained by imposing

the same identification scheme to a bivariate VECM. In particular, the effects on stock

prices are much smaller.

Then we focus on our preferred factor model specification (a six-shock specification).

We identify the news shock by imposing both a zero impact effect and a maximal long-

run effect on TFP. The latter condition corresponds to the idea that news shocks should

explain the main bulk of technology in the long-run. We find that: (i) hours worked,

investment and output have negative impact responses, whereas consumption and stock

prices are essentially unaffected on impact; (ii) investment, consumption, output and

stock prices increase gradually as TFP increases; (iii) news shocks account for about

20-25% of business-cycle fluctuations in investment, consumption and GDP. Such effects

are essentially in line with what predicted by a standard neoclassical model.

Finally, we identify a standard technology shock, having non-zero impact effect on

productivity, by imposing that no other shock affects TFP contemporaneously. We find

that the news and the technology shocks explain together almost all of TFP volatility at

all frequencies, but only 25-35% of business-cycle fluctuations in investment, consump-

tion and GDP, leaving substantial room for sources of volatility unrelated to technology.

3Large ‘generalized’ or ‘approximate’ dynamic factor models are specifically designed to handle a large

amount of information. Early references are Forni and Reichlin (1998), Forni, Hallin, Lippi and Reichlin

(2000), Forni and Lippi (2001), Stock and Watson (2002a, 2002b), Bai and Ng (2002).
4This result holds true provided that economic agents can see the structural shocks, as assumed in

most of the current theoretical literature. A recent noticeable exception is Lorenzoni (2009), where

agents can only observe technology ‘news’ disturbed by an aggregate ‘noise’. We are not concerned with

this interesting case in the present paper.
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Overall, our results are fairly similar to those obtained by Barsky and Sims (2009)

with a six-variable VAR including inflation, a short term interest rate, consumption and

a consumer sentiment index, in addition to TFP and stock prices. Consistently with

this, our test is not able to reject fundamentalness for such variables.

The paper is structured as follows. In Section 2 we provide a simple analytical exam-

ple that shows how non-fundamentalness can arise in the presence of news shocks. In Sec-

tion 3 we present the factor model, argue why it is not subject to the non-fundamentalness

problem, and describe our fundamentalness test. Section 4 presents empirical results.

Section 5 concludes.

2 Non-fundamentalness and News Shocks

In this Section we present a simple example, in which non-fundamentalness appears as

a consequence of the presence of news shocks. Measured TFP, θt, is assumed to follow

the non-stationary process:

θt = θt−1 + εt−2 + ut (1)

where εt is the news shock and ut is the ‘standard’ technology shock, affecting TFP on

impact. Agents observe the shock εt at time t and react to it immediately, while the

shock will affect TFP only at time t+ 2. Therefore the econometrician will not be able

to identify εt by observing θt .

The representative consumer maximizes

Et

∞∑
t=0

βtCt,

where Ct is consumption and β is a discount factor, subject to the constraint

Ct + PtSt+1 = (Pt + θt)St,

where Pt is the price of a share, St is the number of shares and (Pt + θt)St is the total

amount of resources available at time t. The equilibrium value for asset prices is given

by:

Pt = Et

∞∑
j=1

βjθt+j

Considering (1), the above equation can be solved to get the following structural MA

representation (
∆θt

∆Pt

)
=

(
L2 1

β2

1−β + βL β
1−β

)(
εt

ut

)
. (2)

4



The determinant is

− β2

1− β
− βz +

β

1− β
z2

which vanishes for z = 1 and z = −β. As β < 1, the moving average is non invertible and

the two shocks ut and εt are non-fundamental for the variables ∆Pt and ∆θt. Not even

a very forward-looking variable like stock prices conveys enough information to recover

the shock.

3 The structural factor model

In this paper we use the factor model presented in Forni, Giannone, Lippi and Reichlin

(2009, FGLR henceforth).5 Here we provide a short presentation of the model, discuss

the relation with non-fundamentalness and explain our fundamentalness test.

3.1 Representation

We assume that each macroeconomic variable xit is the sum of two mutually orthogonal

unobservable components, the common component χit and the idiosyncratic component

ξit:

xit = χit + ξit. (3)

The idiosyncratic components are poorly correlated in the cross-sectional dimension.6

They arise from shocks or sources of variation which considerably affect only a single

variable or a small group of variables. For variables related to particular sectors, like

industrial production indexes or production prices, the idiosyncratic component may

reflect sector specific variations; for strictly macroeconomic variables, like GDP, invest-

ment or consumption, the idiosyncratic component can be interpreted as a measurement

error.7

The common components account for the bulk of the co-movements between macroe-

conomic variables, being linear combinations of a relatively small number r of factors

5FGLR is a special case of the generalized dynamic factor model proposed by Forni, et al. (2000,

2004, 2005) and Forni and Lippi (2001, 2010). This model differs from the traditional dynamic factor

model of Sargent and Sims (1977) and Geweke (1977) in that the number of cross-sectional variables is

infinite and the idiosyncratic components are allowed to be mutually correlated to some extent, along

the lines of Chamberlain (1983), Chamberlain and Rothschild (1983) and Connor and Korajczyk (1988).

Closely related models have been studied by Forni and Reichlin (1998), Stock and Watson (2002a, 2002b,

2005), Bai and Ng (2002, 2007), Bai (2003) and Bernanke et al. (2005).
6See FGLR, Assumption 5 for a precise statement.
7Altug, (1989), Sargent, (1989), and Ireland (2004) show that the model can be interpreted as the

linear solution of a DSGE model with measurement error.
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f1t, f2t, · · · , frt, not depending on i:

χit = a1if1t + a2if2t + · · ·+ arifrt = aift. (4)

The dynamic relations between the macroeconomic variables arise from the fact that

the vector ft follows the relation

ft = N(L)ut, (5)

where N(L) is a r × q matrix of rational functions in the lag operator L and ut =

(u1t u2t · · · uqt)′ is a q-dimensional vector of orthonormal white noises, with q ≤ r.

Such white noises are the structural macroeconomic shocks.8

The discussion in Section 3.4 motivates the assumption that N(z) is zeroless, i.e.

rank(N(z)) = q for any z, which implies fundamentalness. This ensures that ft has the

finite order VAR representation (Anderson and Deistler, 2008)

D(L)ft = εt = Rut, (6)

where D(L) is a r× r matrix of polynomials such that D(L)−1R = N(L) and R = N(0).

Combining equations (3) to (6), the model can be written in dynamic form

xit = bi(L)ut + ξit, (7)

where

bi(L) = aiD(L)−1R. (8)

The entries of the q-dimensional vector bi(L) are the impulse response functions.

3.2 Identification

Representation (7) is not unique, since the impulse response functions and the related

primitive shocks are not identified. In particular, if H is any orthogonal q × q matrix,

then

χit = ci(L)vt

where ci(L) = bi(L)H ′ and vt = Hut. However, assuming mutually orthogonal structural

shocks, post-multiplication by H ′ is the only admissible transformation, i.e. the impulse

response functions are unique up to orthogonal transformations, just like in structural

VAR models (FGLR, Proposition 2).

8In the large dynamic factor model literature they are sometimes called the “common” or “primitive”

shocks or “dynamic factors” (whereas the entries of ft are the “static factors”). Equations (3) to (5)

need further qualification to ensure that all of the factors are loaded, so to speak, by enough variables

with large enough loadings (see FGLR, Assumption 4); this “pervasiveness” condition is necessary to

have uniqueness of the common and the idiosyncratic components, as well as the number of static factors

r and dynamic factors q.
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As a consequence, structural analysis in factor models can be carried on along lines

very similar to those of standard structural VAR analysis. Specifically q(q − 1)/2 re-

strictions have to be imposed on the matrix of impulse response functions Bn(L) =

(b1(L)′b2(L)′ · · · bn(L)′)′, with n the number of variables, to pin down all the elements of

H.

If the researcher is interested in identifying just a single shock, the target is to

determine the entries of a single column of the matrix H, say H1, which is enough to

obtain the first column of Bn(L), say Bn1(L).

3.3 Estimation

Estimation proceeds through the following steps.

1. Starting with an estimate r̂, the static factors are estimated by means of the first

r̂ principal components of the variables in the dataset, and the factor loadings by

means of the associated eigenvectors. Precisely, let Γ̂x be the sample variance-

covariance matrix of the data: the estimated loading matrix Ân = (â′1â
′
2 · · · â′n)′

is the n × r matrix having on the columns the normalized eigenvectors corre-

sponding to the first largest r̂ eigenvalues of Γ̂x, and the estimated factors are

f̂t = Â′n(x1tx2t · · ·xnt)′. 9

2. D̂(L) and ε̂t are obtained by running a VAR(p̂) with f̂t where the number of lags

p̂ is chosen according to some criterion.

3. Let Γ̂ε be the sample variance-covariance matrix of ε̂t. Having an estimate q̂ of

the number of dynamic factors, an estimate of a non-structural representation of

the common components is obtained by using the spectral decomposition of Γ̂ε.

Precisely, let µ̂εj , j = 1, . . . , q̂, be the j-th eigenvalue of Γ̂ε, in decreasing order, M̂
the q× q diagonal matrix with

√
µ̂εj as its (j, j) entry, and K̂ the r× q matrix with

the corresponding normalized eigenvectors on the columns. The estimated matrix

of non-structural impulse response functions is

Ĉn(L) = ÂnD̂(L)−1K̂M̂. (9)

To account for estimation uncertainty, the following non-overlapping block bootstrap

technique is adopted. Let X = [xit] be the T × n matrix of data. Such matrix is par-

titioned into S sub-matrices Xs (blocks), s = 1, . . . , S, of dimension τ × n, τ being the

9The factors are identified only up to linear transformations. What is estimated is a basis of the

factor space.
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integer part of T/S.10 An integer hs between 1 and S is drawn randomly with reintro-

duction S times to obtain the sequence h1, . . . , hS . A new artificial sample of dimension

τS × n is then generated as X∗ =
[
X ′h1X

′
h2
· · ·X ′hS

]′
and the corresponding impulse

response functions, Ĉn(L), are estimated and the identifying assumptions are imposed

to get H1 and the corresponding impulse response functions B̂n1(L) = Ĉn(L)H1. A set

of structural impulse response functions is obtained by repeating drawing, estimation

and identification. Confidence bands are obtained by taking the relevant percentiles of

the point-wise distributions.

3.4 Tall systems and fundamentalness

Here we discuss why the assumption of fundamentalness is justified in the factor model.

Let us go back to equation (5)

ft = N(L)ut,

where N(L) is a (r × q) matrix of rational functions in the lag operator L, with r ≥ q.

Under what conditions are the shocks ut fundamental for ft? A necessary and sufficient

condition is that the rank of N(z) be q for all z such that |z| < 1 (see e.g. Rozanov,

1967, Ch. 1, Section 10, and Ch. 2, p. 76).

Let us first focus on the particular case r = q, and interpret ft as a vector of observable

variables to be used in a VAR. The above fundamentalness condition reduces to the

requirement that the determinant of N(z) does not vanish within the unit circle in the

complex plane. If this condition holds, then the shock ut can be found using a VAR

for ft. In general, however, there is no guarantee that the condition holds, as shown in

Section 2.

Now let us turn to the case r > q, which is the normal case in the factor model. In

such case N(z) is a “tall”, rectangular matrix. Its rank is less than q for some z, i.e. the

shock is non-fundamental, only if all of the (q × q) sub-matrices of N(z) are singular.

Clearly this is a very special case, since it requires

(
r

q

)
− 1 equalities to be satisfied.

Therefore, in general, when r > q, N(z) has rank q for all z and the representation can

be assumed fundamental.

As a very elementary example, consider the case q = 1, r = 2, f1t = ut + 2ut−1,

f2t = 2ut−1. Here ut is non-fundamental for both f1t and f2t, and cannot be found

as a linear combination of present and past values of a single factor. However, ut is

fundamental for the vector ft, since ut = f1t − f2t.

Observe that fundamentalness of representation (5) implies fundamentalness of the

10Note that τ has to be large enough to retain relevant lagged auto- and cross-covariances.
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system

χt = Bn(L)ut,

where χt = (χ1t · · ·χnt)′ and Bn(L) = AnD(L)−1R, An = (a′1 a
′
2 · · · a′n)′ (provided that

An has full column rank).

3.5 Testing for fundamentalness

While the whole system Bn(L) is fundamental, the q-dimensional square submatrices

of Bn(L) corresponding to selected subsets of variables can be singular for values of z

within the unit circle (without hurting consistency of estimation). Precisely, considering

a q-dimensional vector of integers I, with elements Ii, i = 1, . . . , q, ut is fundamental

for the subvector χIt = (χI1t · · ·χIqt)′ = BI(L)ut if detBI(z) does not vanish within the

unit circle.

A test for fundamentalness of a particular square subsystem can then be performed by

looking at the estimated distribution of the modulus ρ of the smallest root. We reject the

null of fundamentalness (ρ ≥ 1) against the alternative of non-fundamentalness (ρ < 1)

at the significance level α as long as the frequency of values larger than 1 is smaller than

α.

Rejection of fundamentalness implies that an hypothetical VAR model using χIt

would be misspecified. In principle, such an implication cannot be directly extended to

the true VAR setting, where xIt is used in place of χIt. In practice however the idiosyn-

cratic components are usually very small, so that rejection (acceptance) of fundamental-

ness provides a useful indication against (in favor of) a particular VAR specification.

4 Empirics

4.1 Data and model specification

Our data set is composed of 116 US quarterly series, covering the period 1959-I to 2007-

IV. Most series are taken from the FRED database. A few stock market and leading

indicators are taken from Datastream. Some series have been constructed by ourselves as

transformations of the original FRED series. The series include both national account-

ing data like GDP, investment, consumption and the GDP deflator, TFP and consumers

sentiment which are available only at quarterly frequency, and series like industrial pro-

duction indices, CPI, PPI and employment, which are produced monthly. Monthly data

have been temporally aggregated to get quarterly figures.

As required by the model, the data are transformed to obtain stationarity. Following

Stock and Watson (2005), prices and nominal variables are taken in second differences of

logs, rather than in first differences of logs, and interest rates in first differences, rather

9



than in levels. With these transformations all variables are stationary according to both

the ADF and the KPSS tests.11

The full list of variables along with the corresponding transformations is reported in

the Appendix.

Before estimation we need to specify the number of static factor, r̂, the number of

shocks, q̂, and the number of lags, p̂. To determine r̂ we use the ICp2 criterion of Bai

and Ng (2002), which gives r̂ = 13. We fix p̂ = 2 based on the AIC criterion. The

number of shocks is determined by a few consistent information criteria. Here we use

three groups of criteria, proposed by Amengual and Watson (2007), Bai and Ng (2007)

and Hallin and Liska (2007). The criterion B̂N
ICP

(ŷA) by Amengual and Watson gives

6 primitive factors in the ICp1 version and 4 primitive factors in the ICp2 version. The

four criteria of Bai and Ng (2007), namely q1, q2, q3 and q4, give 5, 6, 5 and 4 shocks

respectively.12 Finally, the log criterion proposed by Hallin and Liska gives 2 shocks for

all of the proposed penalty functions (independently of the initial random permutation).

In summary, information criteria do not provide a unique result, the number of shocks

being between 2 and 6. In the following Sections we provide evidence for the two extreme

cases, q = 2 and q = 6 and robustness checks.

4.2 The two-shock model

In this subsection we investigate the properties of a two-shock model. We begin our

analysis from a two-shock model for two reasons. First, q = 2 is the lower bound for

the number of shocks identified by information criteria and therefore it is an empirically

relevant choice; second, we want to compare our results to those in Beaudry and Portier

(2006) in which the benchmark specification is a bivariate VECM.

We start by testing along the lines explained in Section 3.5 whether the two variables

used by Beaudry and Portier (stock prices and TFP) have a fundamental representation

in terms of our estimated shocks. We compute the modulus of the smallest root of

the determinant of selected sub-blocks Bj
I(L) of our ‘tall’ system of impulse-response

functions. The roots are computed for the point estimate as well as all the bootstrap

repetitions, so that the whole distribution is available. As shown in the upper part of

Table 1, we consider two specifications that differ for the definition of TFP; the first uses

a measure of TFP not corrected for capital utilization (indexed as variable 103 in our

data set), the second uses a measure of TFP that controls for variable capital utilization

11Outliers were detected as values differing from the median more than 6 times the interquartile

difference and replaced with the median of the five previous observations.
12The Bai and Ng criteria have two parameters. We set δ = .1 for all criteria and m(q1) = 1.1,

m(q2) = 1.9, m(q3) = 1.8, m(q4) = 4. Such values produced good results in our simulations (not shown

here).
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(indexed as variable 104 in our dataset) (see Basu, Fernald and Kimball, 2006).

Table 2 shows the mean, the median, some selected percentiles of the distribution

and the point estimate. For both specifications, the point estimate, the mean and the

median are all much smaller than one. Since confidence bands are rather large, in all this

paper we adopt the 68% convention. At this confidence level, the null of fundamentalness

can be rejected in both cases. We conclude that the bivariate VECM model in Beaudry

and Portier is unable to properly recover the effects of news shocks.

We then identify the news shock in the factor model assuming that it has no contem-

poraneous effect on TFP, as in Beaudry and Portier (2006). The shock with a non-zero

impact effect on TFP can be regarded as a ’traditional’ technology shock. For compar-

ison, we compute impulse responses from a VECM model estimated by using the com-

mon components of TFP and stock prices, in which shocks are identified as in the factor

model.13 We use the common components instead of the variables themselves to be sure

that the differences with respect to the factor model are due to non-fundamentalness,

rather than the idiosyncratic components. However, estimation of the VECM using

actual data obtains very similar results.

The left column of Figure 1 shows impulse responses to the technology shock in the

factor model (solid) and in the VECM (dashed) together with 68% confidence bands

(dotted) from the factor model. The top panel shows the responses of TFP; the bottom

panel the responses of stock prices. The right column shows impulse responses to the

news shock. It is seen that impulse responses from the factor model and the VECM are

substantially different. The VECM, not surprisingly, produces results similar to the ones

of Beaudry and Portier (2006). In particular, news have a huge impact effect on stock

prices. The factor model response of stock prices is much smaller at all horizons and not

significant on impact.

Let us turn to variance decompositions, reported in Table 3. While in the bivariate

VECM news shocks explain a considerable fraction of the volatility of TFP (34% at 40

periods horizon) and almost all of the volatility of stock prices (93% at the 40 quarters

horizon), in the factor model these figures are much smaller, 7% and 63%, respectively.

The conclusions we draw from this section are the following. The two variables consid-

ered in Beaudry and Portier have a non-fundamental representation. Non-fundamentalness,

far from being a statistical detail, has important consequences in terms of the estimated

impulse responses and variance decompositions.

13The VECM is estimated with 3 lags and 1 cointegration relation.
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4.3 The six-shock model

We now extend our analysis by considering a factor model driven by six common shocks.

Such specification is in line with the criteria proposed by Bai and Ng (2007) and Amen-

gual and Watson (2007).

We identify the news shocks as a shock that (i) does not have a contemporaneous

impact on TFP and (ii) has a maximal effect on the level of TFP in the long run (at the

40 quarters horizon).14 In addition, we identify a ‘standard’ technology shock is as the

only one shock having a non-zero impact effect on TFP.

Condition (i) is obvious. Condition (ii) corresponds to the idea that the news shock

should explain an important fraction of TFP in the long-run. Maximizing the effect may

seem arbitrary to some extent. Observe however that, by reducing the long-run effect

on TFP, the effects on the business cycle would be further reduced, and our conclusions

would be strengthened.

In Figure 2 we report the impulse responses of selected variables to the news shock.

Let us comment first the last row. The index of consumer sentiment about current

economic conditions does not move on impact, while the consumer sentiment on expected

conditions has a large positive and significant jump. We think that this is a convincing

confirmation that the shock that we have identified is in fact related to good news about

the future.

Turning to the first panel, TFP grows monotonically, without reaching a maximum

in the first 6 years after the impact. This is consistent with the idea that the diffusion

of technical progress may take much time. Investment and GDP drop significantly on

impact and then gradually grow to a new long run level. Consumption, on the other side,

does not move on impact and only after the first quarter starts to significantly increase.

Hours fall in the short run with a significant impact effect. Overall, such results are

fairly consistent with what predicted by a standard neoclassical model: in response to

a news shock that is expected to move TFP in the future, agents feel richer, consume

more and work less. Given the level of technology, the reduction in hours worked implies

a fall in output. As output is falling and consumption is growing, investment has to go

down.

Figure 3 presents the responses of the ’traditional’, non anticipated technology shock.

TFP, GDP, consumption and investment move up significantly on impact and then con-

verge to their higher long run level. These impulse responses are in line with existing

evidence on the effect of a technology shocks and with the predictions of standard neo-

classical models.

Table 4 shows the variance decompositions for selected variables. The top part of the

14Maximization is obtained numerically by using the matlab routine fminsearch.
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Table pertains to the news shocks. The bottom part reports results for the technology

shock. The first four columns, labeled with the letter (a), report forecast error variance

decompositions for the variables in levels. Column (b) shows the fraction of the uncon-

ditional variance of the variable transformed to get stationarity. Column (c) shows the

fraction of the unconditional variance located at business cycle frequencies (periodicity

within 2 and 8 years) explained by the two shocks.

Results show that the news shock, despite being obtained by maximizing the long

run effect on TFP, explains only 30% of the forecast error variance of TFP at a 10-year

horizon. Focusing on (b) it is seen the news shock explains only 8% of the unconditional

variance of the growth rate of TFP, 15% of the variance of the growth rate of GDP and

around 20-25% of the volatility of consumption and investment. The technology shock

explains a larger fraction of volatility of TFP and GDP, namely 80% and 38%, 18% of

the variance of consumption and only 6% of the variance of investment.

If one considers the volatility at business cycle frequencies, the two shocks together

account for almost all the variance of TFP (90.9%), while accounting for only 31%,

34% and 23% of the business cycle volatility of GDP, consumption and investment,

respectively. This leaves the door open to other shocks not related to TFP in generating

the business cycle.

Overall, our results are fairly similar to those obtained by Barsky and Sims (2009)

with a six-variable VAR. This raises the question whether the variables used in such

work have a fundamental representation or not, and, more generally, whether our re-

sults can be obtained within a VAR approach. We address these question by using the

fundamentalness test.

We consider five different sub-blocks (listed in the bottom part of Table 1) corre-

sponding to five different information sets I (see Section 3.4), denoted Ij j = 1, ..., 5.

The specifications include the variables typically used in the empirical literature on news

shocks. Table 2 reports the modulus of the smallest root of the determinant of the im-

pulse response matrix. For each modulus are reported the point estimate, the mean, the

median and some selected percentiles of the bootstrap distribution.

For the first four information sets, the mean, the median, the point estimate and the

68th percentile are all smaller than one, implying non-fundamentalness. On the other

hand, for Specification 5 the point estimate is about 1.1, and also the 68th percentile is

larger than one, so that fundamentalness cannot be rejected. Such specification is the

one used in Barsky and Sims (2009). The difference with respect to other specifications

is given by the inclusion of the Consumer Sentiment Index about expected economic

conditions, a forward-looking variable which seems to provide important additional in-

formation and solves the invertibility problem.
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4.4 Robustness

In this section we analyze the robustness of our results to different specification choices.

We first estimate the model by setting the number of static factors to 8 and 18 (±5

with respect to the benchmark). We also estimate the model by setting the number of lags

in the VAR for the static factors to 1 and 3 (±1 with respect to the benchmark). Figures

4 and 5 shows that impulse responses are almost unaffected by such modifications.

In Figure 6 we display the impulse responses obtained from both the two-shock model

discussed in Section 4.2 and the six-shock model. Results change somewhat but the main

conclusions are the same. Finally, we estimated the model with 4 shocks and get impulse

responses almost identical to those of the six-shock model (not shown).

5 Conclusions

In this paper we use a large dimensional, structural factor model to analyze the effect

of news shocks on the business cycle. We find that existing VARs suffer from non-

fundamentalness and therefore produce misleading results. By using the factor model we

solve the non-fundamentalness problem. We find that news shocks behave as predicted

by standard neoclassical theory and have a limited role in generating the business cycle.

The bulk of cyclical fluctuations is explained by shock unrelated to TFP.
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Appendix: Data

Transformations: 1=levels, 2= first differences of the original series, 5= first differences
of logs of the original series, 6= second differences of logs of the original series.

no.series Transf. Mnemonic Long Label

1 5 GDPC1 Real Gross Domestic Product, 1 Decimal

2 5 GNPC96 Real Gross National Product

3 5 NICUR/GDPDEF National Income/GDPDEF

4 5 DPIC96 Real Disposable Personal Income

5 5 OUTNFB Nonfarm Business Sector: Output

6 5 FINSLC1 Real Final Sales of Domestic Product, 1 Decimal

7 5 FPIC1 Real Private Fixed Investment, 1 Decimal

8 5 PRFIC1 Real Private Residential Fixed Investment, 1 Decimal

9 5 PNFIC1 Real Private Nonresidential Fixed Investment, 1 Decimal

10 5 GPDIC1 Real Gross Private Domestic Investment, 1 Decimal

11 5 PCECC96 Real Personal Consumption Expenditures

12 5 PCNDGC96 Real Personal Consumption Expenditures: Nondurable Goods

13 5 PCDGCC96 Real Personal Consumption Expenditures: Durable Goods

14 5 PCESVC96 Real Personal Consumption Expenditures: Services

15 5 GPSAVE/GDPDEF Gross Private Saving/GDP Deflator

16 5 FGCEC1 Real Federal Consumption Expenditures & Gross Investment, 1 Decimal

17 5 FGEXPND/GDPDEF Federal Government: Current Expenditures/ GDP deflator

18 5 FGRECPT/GDPDEF Federal Government Current Receipts/ GDP deflator

19 2 FGDEF Federal Real Expend-Real Receipts

20 1 CBIC1 Real Change in Private Inventories, 1 Decimal

21 5 EXPGSC1 Real Exports of Goods & Services, 1 Decimal

22 5 IMPGSC1 Real Imports of Goods & Services, 1 Decimal

23 5 CP/GDPDEF Corporate Profits After Tax/GDP deflator

24 5 NFCPATAX/GDPDEF Nonfinancial Corporate Business: Profits After Tax/GDP deflator

25 5 CNCF/GDPDEF Corporate Net Cash Flow/GDP deflator

26 5 DIVIDEND/GDPDEF Net Corporate Dividends/GDP deflator

27 5 HOANBS Nonfarm Business Sector: Hours of All Persons

28 5 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons

29 5 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments

30 5 ULCNFB Nonfarm Business Sector: Unit Labor Cost

31 5 WASCUR/CPI Compensation of Employees: Wages & Salary Accruals/CPI

32 6 COMPNFB Nonfarm Business Sector: Compensation Per Hour

33 5 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour

34 6 GDPCTPI Gross Domestic Product: Chain-type Price Index

35 6 GNPCTPI Gross National Product: Chain-type Price Index

36 6 GDPDEF Gross Domestic Product: Implicit Price Deflator

37 6 GNPDEF Gross National Product: Implicit Price Deflator

38 5 INDPRO Industrial Production Index

39 5 IPBUSEQ Industrial Production: Business Equipment

40 5 IPCONGD Industrial Production: Consumer Goods

41 5 IPDCONGD Industrial Production: Durable Consumer Goods

42 5 IPFINAL Industrial Production: Final Products (Market Group)

43 5 IPMAT Industrial Production: Materials

44 5 IPNCONGD Industrial Production: Nondurable Consumer Goods

45 2 AWHMAN Average Weekly Hours: Manufacturing
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no.series Transf. Mnemonic Long Label

46 2 AWOTMAN Average Weekly Hours: Overtime: Manufacturing

47 2 CIVPART Civilian Participation Rate

48 5 CLF16OV Civilian Labor Force

49 5 CE16OV Civilian Employment

50 5 USPRIV All Employees: Total Private Industries

51 5 USGOOD All Employees: Goods-Producing Industries

52 5 SRVPRD All Employees: Service-Providing Industries

53 5 UNEMPLOY Unemployed

54 5 UEMPMEAN Average (Mean) Duration of Unemployment

55 2 UNRATE Civilian Unemployment Rate

56 5 HOUST Housing Starts: Total: New Privately Owned Housing Units Started

57 2 FEDFUNDS Effective Federal Funds Rate

58 2 TB3MS 3-Month Treasury Bill: Secondary Market Rate

59 2 GS1 1-Year Treasury Constant Maturity Rate

60 2 GS10 10-Year Treasury Constant Maturity Rate

61 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield

62 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

63 2 MPRIME Bank Prime Loan Rate

64 6 BOGNONBR Non-Borrowed Reserves of Depository Institutions

65 6 TRARR Board of Governors Total Reserves, Adjusted for Changes in Reserve

66 6 BOGAMBSL Board of Governors Monetary Base, Adjusted for Changes in Reserve

67 6 M1SL M1 Money Stock

68 6 M2MSL M2 Minus

69 6 M2SL M2 Money Stock

70 6 BUSLOANS Commercial and Industrial Loans at All Commercial Banks

71 6 CONSUMER Consumer (Individual) Loans at All Commercial Banks

72 6 LOANINV Total Loans and Investments at All Commercial Banks

73 6 REALLN Real Estate Loans at All Commercial Banks

74 6 TOTALSL Total Consumer Credit Outstanding

75 6 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items

76 6 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food

77 6 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy

78 6 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy

79 6 CPIENGSL Consumer Price Index for All Urban Consumers: Energy

80 6 CPIUFDSL Consumer Price Index for All Urban Consumers: Food

81 6 PPICPE Producer Price Index Finished Goods: Capital Equipment

82 6 PPICRM Producer Price Index: Crude Materials for Further Processing

83 6 PPIFCG Producer Price Index: Finished Consumer Goods

84 6 PPIFGS Producer Price Index: Finished Goods

85 6 OILPRICE Spot Oil Price: West Texas Intermediate

86 5 USSHRPRCF US Dow Jones Industrials Share Price Index (EP) NADJ

87 5 US500STK US Standard & Poor’s Index if 500 Common Stocks

88 5 USI62...F US Share Price Index NADJ

89 5 USNOIDN.D US Manufacturers New Orders for Non Defense Capital Goods (BCI 27)

90 5 USCNORCGD US New Orders of Consumer Goods & Materials (BCI 8) CONA
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no.series Transf. Mnemonic Long Label

91 1 USNAPMNO US ISM Manufacturers Survey: New Orders Index SADJ

92 5 USVACTOTO US Index of Help Wanted Advertising VOLA

93 5 USCYLEAD US The Conference Board Leading Economic Indicators Index SADJ

94 5 USECRIWLH US Economic Cycle Research Institute Weekly Leading Index

95 2 GS10-FEDFUNDS

96 2 GS1-FEDFUNDS

97 2 BAA-FEDFUNDS

98 5 GEXPND/GDPDEF Government Current Expenditures/ GDP deflator

99 5 GRECPT/GDPDEF Government Current Receipts/ GDP deflator

100 2 GDEF Governnent Real Expend-Real Receipts

101 5 GCEC1 Real Government Consumption Expenditures & Gross Investment, 1 Decimal

102 1 Fernald’s TFP growth CU adjusted

103 1 Fernald’s TFP growth

104 5 DOW JOONES/GDP DEFL

105 5 S&P500/GDP DEFL

106 1 Fernald’s TFP growth - Investment

107 1 Fernald’s TFP growth - Consumption

108 1 Fernald’s TFP growth CU - Investment

109 1 Fernald’s TFP growth CU - Consumption

110 1 Personal Finance Current

111 1 Personal Finance Expected

112 1 Business Condition 12 Months

113 1 Business Condition 5 Years

114 1 Buying Conditions

115 1 Consumer’s sentiment: Current Index

116 1 Consumer’s sentiment: Expected Index
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Tables

j Variables (Ij)

Two Shocks

1 TFP (102) Stock P (105)

2 TFP (103) Stock P (105)

Six Shocks

1 TFP (102) Stock P (105) Non Dur. C (12) Inv. (7) Hours (27) GDP (1)

2 TFP (103) Stock P (105) Non Dur. C (12) Inv. (7) Hours (27) GDP (1)

3 TFP (102) Stock P (105) Non Dur. C (12) GDP (1) CPI (75) 3M T-Bill (58)

4 TFP (102) Stock P (105) Non Dur. C (12) Hours (27) CPI (75) 3M T-Bill (58)

5 TFP (102) Stock P (105) Non Dur. C (12) Sentiment (116) CPI (75) 3M T-Bill (58)

Table 1: Subsets of variables (I) used in the test described in Section 3.5. The numbers

in brackets correspond to those in the Appendix.

j Mean Median 68% 90% 95% Point est.

Two Shocks

1 0.531 0.515 0.768 1.060 1.086 0.481

2 0.711 0.812 0.940 1.102 1.128 0.861

Six Shocks

1 0.692 0.763 0.934 1.084 1.125 0.459

2 0.636 0.665 0.878 1.023 1.066 0.279

3 0.645 0.666 0.835 1.051 1.083 0.755

4 0.557 0.546 0.712 0.966 1.041 0.294

5 0.856 0.952 1.072 1.161 1.192 1.099

Table 2: Moduli of the smallest root of the submatrices BI(L) defined in Table 1.
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Variables Horizons

0 4 8 40

Factor model

TFP (102) 0.0 6.5 7.2 7.4

Stock Prices (105) 16.1 55.2 61.2 63.4

VECM

TFP (102) 0 0.7 0.6 33.9

Stock Prices (105) 99.7 97.6 96.5 93.4

Table 3: Explained forecast error variance (percentages) at various horizons in the

two-shock factor model and the bivariate VAR for the common components using the

Cholesky identification (levels). The numbers in brackets correspond to those in the

Appendix.
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Variables Horizons (a) % Total Variance % Variance 2-8 Years

0 4 8 40 (b) (c)

News shock

TFP (102) 0.0 11.1 17.6 29.9 7.8 14.6

GDP (1) 6.2 11.0 11.3 15.3 15.2 19.9

Consumption (11) 2.9 17.0 27.0 40.2 25.0 25.0

Investment (7) 8.0 14.1 12.3 12.5 20.0 20.3

Hours (27) 26.1 14.4 17.5 15.7 21.9 19.9

Stock Prices (105) 6.9 7.0 8.1 9.8 10.0 10.1

Sentiment current (115) 7.0 14.7 21.5 24.4 24.4 22.1

Sentiment expected (116) 26.4 31.1 36.0 37.9 37.9 32.3

Prices (75) 19.5 23.9 20.6 15.5 23.7 27.1

3M T-Bill (58) 28.5 25.5 20.5 18.4 25.4 25.6

Technology shock

TFP (102) 100.0 85.7 79.2 69.2 80.4 76.3

GDP (1) 64.2 22.4 20.8 23.6 38.1 12.0

Consumption (11) 30.7 16.2 16.0 16.5 17.8 9.2

Investment (7) 8.7 2.6 2.4 3.8 6.1 2.9

Hours (27) 0.7 0.9 1.0 0.9 2.2 1.6

Stock Prices (105) 0.5 0.8 1.0 1.3 2.7 1.4

Sentiment current (115) 3.3 3.0 3.6 4.0 4.0 3.0

Sentiment expected (116) 13.8 8.0 7.8 7.9 7.9 6.1

Prices (75) 1.0 1.1 1.4 1.6 2.9 1.4

3M T-Bill (58) 2.6 1.5 1.4 1.3 4.0 1.7

Table 4: Variance decomposition. (a) Fraction of the variance of the forecast error for

the levels of the variables at different horizon (b) Percentage of variance of the variables

transformed to get stationarity explained by the shock (c) Percentage of cyclical variance

(of periodicity between 2 to 8 years) explained by the shock. The numbers in brackets

correspond to those in the Appendix.

24



Figures

Figure 1: Impulse response functions in the two-shocks model. Left column: technology

shock, right column: news shock. Upper row: response of TFP; Lower row: rsponses of

stock prices. Solid: factor model (median). Dotted: factor model 68% confidence bands.

Dashed: VECM for the common components.
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Figure 2: Impulse response functions to a news shock in the six-shocks model. Solid:

factor model (median). Dotted: factor model 68% confidence bands.
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Figure 3: Impulse response functions to a technology shock in the six-shocks model.

Solid: factor model (median). Dotted: factor model 68% confidence bands.
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Figure 4: Impulse response functions with different values of r̂. Solid: benchmark, r̂ = 13

- dashed: r̂ = 8 - dash-dotted: r̂ = 18.
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Figure 5: Impulse response functions with different values of p̂. Solid: benchmark, p̂ = 2

- dashed: p̂ = 1 - dash-dotted: p̂ = 3.
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Figure 6: Impulse response functions to news shocks in factor models with q̂ = 6 (solid)

and q̂ = 2 (dashed). The two shocks model is identified with a zero contemporaneous

restriction on TFP (as in Section 4.2).
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