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1. Introduction

Autoregressive models are used extensively in forecasting throughout economics

and finance and have proved so successful and difficult to outperform that they are

frequently used as benchmarks in forecast competitions. Due in large part to their

parsimonious form, autoregressive models are frequently found to produce smaller

forecast errors than those associated with models allowing for more complicated

nonlinear dynamics or additional predictor variables, c.f. Stock and Watson (1999)

and Giacomini (2002).

Despite their relative success, there is now mounting evidence that the parame-

ters of autoregressive (AR) models fitted to many economic time series are unstable

and subject to structural breaks. For example, Stock and Watson (1996) under-

take a systematic study of a wide variety of economic time series and find that

the majority of these are subject to structural breaks. Alogoskoufis and Smith

(1991), Garcia and Perron (1996) and Pesaran and Timmermann (2003a) are other

examples of studies that document instability related to the autoregressive terms

in forecasting models used routinely throughout economics and finance. Clements

and Hendry (1998) view structural instability as a key determinant of forecasting

performance.

This suggests a need to study the behaviour of the parameter estimates of

AR models as well as their forecasting performance when these models undergo

breaks. Despite this flurry of interest in econometric models subject to structural

breaks, little is known about the small sample properties of ARmodels that undergo

discrete changes. In view of the widespread use of AR models in forecasting, this is

clearly an important area to investigate. The presence of breaks makes the focus on

small sample properties more relevant: even if the combined pre- and post-break

sample is very large, the occurrence of a structural break means that the post-break

sample will typically be much smaller so that asymptotic approximations may not

be nearly as accurate as is normally the case.

A key question that arises in the presence of breaks is how much data to use to

estimate the forecasting model that minimizes a loss function such as root mean

squared forecast error (RMSFE). We show that the RMSFE-minimizing estimation

window crucially depends on the size of the break as well as its direction (i.e. does

the break lead to higher or lower persistence) and which parameters it affects.

In some situations the optimal estimation window trades off an increased bias
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introduced by using pre-break data against a reduction in forecast error variance

resulting from using a longer window of the data. However, in other situations the

small sample bias in the autoregressive coefficients may in fact be reduced after

introducing pre-break data if the size of the break is small or even when the break

is large provided that it is in the right direction (e.g., when persistence declines).

The main contributions of this paper are as follows. First, we present a new

procedure for computing the exact small sample properties of the parameters of AR

models of arbitrary order, thus extending the existing literature that has focused

on the AR(1) model. Our approach allows for fixed or random starting points and

both considers stationary AR models as well as models with unit root dynamics.

In addition to considering properties such as bias in the parameters, we also con-

sider the RMSFE in finite samples. Second, we extend existing results on exact

small sample properties of AR models to allow for a break in the underlying data

generating process. We also extend Fuller (1996)’s result on the absence of a bias

in the forecast in the presence of an intercept in the AR model to cover breaks in

autoregressive coefficients. Third, we present extensive numerical results quantify-

ing the effect of the size of the pre-break and post-break data window on parameter

bias and RMSFE.

The outline of the paper is as follows. Section 2 provides a brief overview of

the small sample properties of the first-order autoregressive model that has been

extensively studied in the extant literature. Theoretical results allowing us to

characterize the small sample distribution of the parameters and forecast errors of

autoregressive models are introduced in Section 3. Section 4 presents numerical

results for AR models subject to breaks and Section 5 concludes with a discussion

of possible extensions to our work.

2. Small Sample Properties of Forecasts from Autoregressive Models

A large literature has studied small sample properties of estimates of the parame-

ters of autoregressive models. The majority of studies has concentrated on deriving

either exact or approximate small sample results for the distribution of α̂T , β̂T , the

Ordinary Least Squares (OLS) estimators of α and β, in the first-order autoregres-

sive (AR(1)) model

yt = α+ βyt−1 + σεt, t = 1, 2, ..., T, (1)
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where εt ∼ iid(0, 1). Early analysis of the small sample bias of β̂T include Bartlett
(1946), Hurwicz (1950), Kendall (1954), Marriott and Pope (1954) and White

(1961). These studies focus on the case where a = 0 and |β| < 1, namely a station-
ary AR(1) model without an intercept. Extensions to higher order models with

intercepts have been proposed by Orcutt and Winoker (1969), Sawa (1978), Hoque

(1985), and Bao and Ullah (2002). Hoque and Peters (1986), Grubb and Symons

(1987), Kiviet and Phillips (1993, 2003a) further included exogenous regressors in

the model and consider the so-called ARX(1) specification. Assuming stationarity

(|β| < 1), β̂T has been shown to have an asymptotic normal distribution and its
finite-sample distribution has been further studied by Phillips (1977, 1978) and

Evans and Savin (1981). The case with a unit root, β = 1, has been studied by,

inter alia, Bannerjee, Dolado, Hendry and Smith (1986), Phillips (1987), Stock

(1987), Abadir (1993) and Kiviet and Phillips (2003b).

To a forecaster, the bias in α̂T and β̂T is of direct interest only to the extent

that it might adversely influence the forecasting performance. Based on the sample

observations, (y0, y1, ..., yT ), the one-step-ahead forecast of yT+1, ŷT+1 = α̂T + β̂TyT

and the associated forecast error, yT+1 − ŷT+1, have also received considerable

attention. Box and Jenkins (1970) characterized the asymptotic mean squared

forecast error (MSFE) for a stationary first-order autoregressive process considering

both the single-period and multi-period horizon. Assuming a stationary process,

Copas (1966) used Monte Carlo methods to study the MSFE of least-squares and

maximum likelihood estimators under Gaussian innovations.

In practice, the conditional forecast error is of more interest than the uncon-

ditional error since the data needed to compute conditional forecasts is always

available. A comprehensive asymptotic analysis for the stationary AR(p) model

is provided in Fuller and Hasza (1981) and Fuller (1996). Using Theorem 8.5.3 in

Fuller (1996) it is easily seen that conditional on yT , we have

MSFE(ŷT+1 |yT ) = E
£
(yT+1 − ŷT+1)

2 |yT
¤

= σ2(1 +
1

T
) +

1− β2

T

µ
yT − α

1− β
¶2

+O(T−3/2),
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which yields the more familiar unconditional result1

MSFE(ŷT+1) = E (yT+1 − ŷT+1)
2 = σ2(1 +

2

T
) +O(T−3/2).

Generalizations to AR(p) and multi-step ahead forecasts are also provided in Fuller

(1996, pp. 443-449), where it is established that the forecast error, yT+1 − ŷT+1,

is in fact unbiased in small samples assuming εt has a symmetric distribution and

E (|ŷT+1|) < ∞. This is particularly interesting considering the often large small
sample bias associated with the estimates of the autoregressive parameters.

3. AR(p) Model in the Presence of Structural Breaks

In parallel with the work on the small sample properties of estimates of autore-

gressive models, important progress has been made in testing for and estimating

both the time and the size of breakpoints, as witnessed by the recent work of An-

drews (1993), Andrews and Ploberger (1996), Bai and Perron (1998, 2003), Chu,

Stinchcombe and White (1996), Chong (2001), Elliott and Muller (2002), Hansen

(1992), Inclan and Tiao (1994) and Ploberger, Kramer and Kontrus (1989).

Building on these pioneering literatures we now consider the small sample prob-

lem of estimation and forecasting with AR(p) models in the presence of structural

breaks. For this purpose, we consider the following AR(p) model defined over the

period t = 1, 2, ..., T ; and assumed to have been subject to a single structural break

at the end of time T1 :

yt =

(
α1 + β11yt−1 + β12yt−2 + ...+ β1pyt−p + σ1εt, , for t ≤ T1,

α2 + β21yt−1 + β22yt−2 + ...+ β2pyt−p + σ2εt, , for t > T1,
, (2)

where as before εt ∼ iid(0, 1) for all t. For the analysis of the unit root case it is
also convenient to consider the following parameterization of the intercept terms,

αi, i = 1, 2:

αi = µi(1− β∗i ), (3)

where −(1− β∗i ) represents the coefficient of yt−1 in the error correction represen-

1Ullah (2003) provides an extensive discussion and survey of the properties of forecasts from

the AR(1) model.
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tation of (2). In particular

β∗i =
pX
j=1

βij . (4)

This specification is quite general and allows for intercept and slope shifts, as

well as a change in error variances immediately after t = T1. It is also possible for

the yt process to contain a unit root (or be integrated of order 1) in one or both of

the regimes. The integration property of yt under the two regimes is governed by

whether β∗i = 1 or β
∗
i < 1. More specifically, we shall assume that the roots of

pX
j=1

λjβij − 1 = 0, for i = 1, 2, (5)

lie on or outside the unit circle.2 The intercepts αi = (1 − β∗i ) are therefore
unrestricted when the underlying AR processes are stationary and are set to zero

in the presence of unit roots to avoid the possibility of generating linear trends in

the yt process. In the stationary case µi represents the unconditional mean of yt

under regime i. In the unit root case µi is not identified and we have E(∆yt) = 0.

Suppose yt is observed over the period t = 1, 2, ..., T , and the object of interest is

the point (or probability) forecast of yT+1, conditional on yT (1) = (y1, y2, ..., yT )
0,

and the above autoregressive specification, equation (2), subject to the regime

switch at the end of time t = T1. In the case where the post-break window size, v2 =

T −T1 is sufficiently large (v2 →∞), the structural break is relatively unimportant
and the forecast of yT+1 can be based exclusively on the post break observations.

However, when v2 is small it might be worthwhile to base the forecasting exercise

on pre-break as well as the post-break observations. The number of pre-break

observations, which we denote by v1, will become a choice parameter. In what

follows we assume T1 is known but consider forecasting yT+1 using the observations

yT (m−p) = (ym−p, ym−p+1, ..., yT1 , yT1+1..., yT )
0, with ym−p, ym−p+1, ..., ym−1 treated

as given initial values.3 The pre-break number of time periods is then given by

v1 = T1 −m + 1, and the number of time periods used in estimation is therefore
v = v1 + v2 = T − m + 1. To simplify the notations we shall consider values of
v1 ≥ p.

2Our analysis can also allow for the possibility of yt being integrated of order two in one or

both of the two regimes. But in this paper we shall only consider the unit root case explicitly.
3Throughout the paper we shall use the notation yT (k) = (yk, ..., yT )

0.
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The point forecast of yT+1 conditional on yT (m− p) is given by

ŷT+1(m) = α̂T (m) + x
0
T β̂T (m),

where xT = (yT , yT−1, ..., yT−p+1)
0, β̂T (m) =

³
β̂1T (m), β̂2T (m), ..., β̂pT (m)

´0
β̂T (m) = [X

0
T (m)MτXT (m)]

−1
X0
T (m)MτyT (m), (6)

α̂T (m) =
τ 0vyT (m)− τ 0vXT (m) β̂T (m)

v
, (7)

XT (m) = (yT−1(m− 1),yT−2(m− 2), ...,yT−p(m− p)) ,
Mτ = Iν − τ v(τ 0vτ v)−1τ 0v,

and τ v= (1, 1, ..., 1)
0. The one-step ahead forecast error is

eT+1(m) = yT+1 − ŷT+1(m) = σ2εT+1 − ξT (m), (8)

where

ξT (m) = [âT (m)− α2] + x
0
T

³
β̂T (m)− β2

´
. (9)

β2 = (β21, β22, ..., β2p)
0 and α2 = µ2 (1− β2). The size of the forecast error varies

with m, and the aim is to choose m such that E
¡
e2
T+1(m) |xT

¢
is minimized:

m∗ = argmin
m=1,..,T1+1

©
E
£
e2
T+1(m)|XT

¤ª
. (10)

To this end we first note that εT+1 and ξT (m) are independently distributed and

E
¡
e2
T+1(m) |xT

¢
= σ2

2 + Eε
¡
ξ2
T (m) |xT

¢
.

The expectations operator Eε (·) is defined with respect to the distribution of the
innovations εt. Therefore, to carry out the necessary computations an explicit

expression for ξT (m) in terms of the ε
0
ts is required. This is complicated and

depends on the state of the process just before the first observation is used for

estimation.

For a given choice of m > p and a finite sample size T , the joint distribution

of β̂T (m) and α̂T (m) depends on the distribution of the initial values ym−1(m −
p)= (ym−p, ym−p+1, ..., ym−1)

0. In the case where the pre-break regime is stationary
the distribution of ym−1(m− p) is given by

ym−1(m− p) ∼ N(µ1τ p, σ
2
1Vp), (12)
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where τ p is a p × 1 unit vector, and Vp is defined in terms of the pre-break

parameters. For example, for p = 1, V1 = 1/(1− β2
11), and for p = 2

V2 =
1

(1 + β12)
£
(1− β12)

2 − β2
11

¤ Ã 1− β12 β11

β11 1− β12

!
.

A similar assumption concerning the initial values can be made if the pre-break

process contains a unit root. However, the covariance of ym−1(m− p) is no longer
given by σ2

1Vp. In this case β
∗
1 = 1 and the pre-break process is given by

∆yt =

p−1X
j=1

δ1j∆yt−j + σ1εt, for t ≤ T1, (13)

where δ1j = −
Pp

`=j+1 β1`. The distribution of initial values can now be specified

in terms of the stationary distribution of the first differences, (∆y2,∆y3, ...,∆yp),

using (13), and assuming that y1 is distributed as N(ȳ0,ω
2), where ȳ0 and ω are

treated as free parameters. For example, in the AR(1) case

ym−1 ∼ N
£
ȳ0,ω

2 + (m− 2)σ2
1

¤
. (14)

For the AR(2) case we first note that

ym−2 = y1 +∆y2 + ...+∆ym−2,

ym−1 = y1 +∆y2 + ...+∆ym−2 +∆ym−1, (15)

which provide a decomposition in terms of the non-stationary level component, y1,

and stationary first differences, ∆y2,∆y3, .... Also using (13) we have

∆yt = δ11∆yt−1 + σ1εt, t = 2, 3, ..., T1

where |δ11| < 1, thus ensuring that yt ∼ I(1). The distribution of (ym−2, ym−1)

can now be derived for given assumptions concerning y1 and ∆y1. There are many

possibilities. Here as a simple example we consider the situation where as in the

AR(1) case y1 ∼ N(ȳ0,ω
2), distributed independently of ∆yt, t = 2, 3, .., and

assume that the stationary components of ym−2 and ym−1 are started with ∆y1 = 0.
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Under the latter we have

∆y2 = σ1ε2

∆y3 = δ11σ1ε2 + σ1ε3

...

∆ym−2 = δm−4
11 σ1ε2 + δ

m−5
11 σ1ε3 + ...+ δ11σ1εm−3 + σ1εm−2

∆ym−1 = δm−3
11 σ1ε2 + δ

m−4
11 σ1ε3 + ...+ δ

2
11σ1εm−3 + δ11σ1εm−2 + σ1εm−1

Substituting these in (15) we now have

ym−2 = y1 +
σ1ε2

¡
1− δm−3

11

¢
1− δ11

+
σ1ε3

¡
1− δm−4

11

¢
1− δ11

+ ...+
σ1εm−2 (1− δ11)

1− δ11

ym−1 = y1 +
σ1ε2

¡
1− δm−2

11

¢
1− δ11

+
σ1ε3

¡
1− δm−3

11

¢
1− δ11

+ ...
σ1εm−2

¡
1− δ2

11

¢
1− δ11

+
σ1εm−1 (1− δ11)

1− δ11
,

Hence

V ar(ym−1) = ω2+
σ2

1

Pm−2
j=1

¡
1− δj11

¢2

(1− δ11)
2

= ω2+
σ2

1

³
(m− 2)(1− δ2

11) + δ
2
11(1− δ2(m−2)

11 )− 2δ11(1 + δ11)(1− δm−2
11 )

´
(1− δ11)

2 (1− δ2
11)

,

V ar(ym−2) = ω2+
σ2

1

³
(m− 3)(1− δ2

11) + δ
2
11(1− δ2(m−3)

11 )− 2δ11(1 + δ11)(1− δm−3
11 )

´
(1− δ11)

2 (1− δ2
11)

,

Cov(ym−1, ym−2) = ω2+
σ2

1

³
(m− 3)(1− δ2

11) + δ
3
11(1− δ2(m−3)

11 )− δ11(1 + δ11)
2(1− δm−3

11 )
´

(1− δ11)
2 (1− δ2

11)
,

(16)

so that Ã
ym−2

ym−1

!
∼ N (ȳ0τ 2,V2) ,

where the elements in the 2× 2 matrix V2 are given in (16).

Fixed (non-stochastic) starting values can also be accomodated by setting ω =

0. In what follows we focus on the case where the pre-break regime is stationary

initialized stochastically according to the initial value distribution defined by (12),

but allow the post-break regime to switch into (possibly) a process with a single

unit root.
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Using (12) in conjunction with (2) for t = m,m + 1, ..., T , in matrix notations

we have

B yT (m− p) = d+D ε,

where

D = σ1

 ψp 0 0

0 Iν1 0

0 0 (σ2/σ1) Iν2

 , d =
 µ1τ p

µ1(1− β∗1)τ v1

µ2(1− β∗2)τ v2

 ,

B =

 Ip 0 0

B21 B22 0

0 B32 B33

 ,
Iν1 and Iν2 are identity matrices of order ν1 and ν2, respectively,

ε = (εm−p, εm−p+1, ..., εT )
0 ∼ N(0, Iν+p),

ψp is a lower triangular Cholesky factor of Vp, namely Vp = ψpψ
0
p, and the sub-

matrices Bij are defined by

B21
v1×p

=



−β1p −β1,p−1 · · · −β11

0 −β1p · · · −β12
...

...
. . .

...

−β1p −β1,p−1

0 0 · · · 0 −β1p

0 0 · · · 0

0 0 · · · 0


,

B22
v1×v1

=



1 0 · · · · · · · · · · · · 0 0

−β11 1 · · · · · · 0 0
...

...
. . . · · · ...

...
... 0 0

−β1p −β1,p−1 · · · · · · −β11 1 · · · · · · 0 0

0 −β1p · · · · · · −β12 −β11 1 · · · 0 · · · 0 0
...

... · · · ...
...

...
...

. . .
...

...
...

...

0 0 · · · 0 0 0 0 · · · −β1,p−1 · · · 1 0

0 0 · · · 0 0 0 0 · · · −β1p · · · −β11 1


,
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B32
v2×v1

=



0 0 · · · 0 −β2p −β2,p−1 · · · −β22 −β21

0 0 · · · 0 −β2p · · · −β23 −β22
...
...
. . .

... 0 0 · · · ...
...

0 0 · · · 0 · · · −β2p −β2,p−1

0 0 · · · 0 · · · 0 −β2p

0 0 · · · 0 · · · 0 0
...
...

... · · · ...
...

0 0 · · · 0 · · · 0 0


,

and

B33
v2×v2

=



1 0 · · · · · · · · · · · · 0 0

−β21 1 · · · · · · 0 0
...

...
. . . · · · ... 0 0

−β2p −β2,p−1 · · · · · · −β21 1 · · · · · · 0 0

0 −β2p · · · · · · −β22 −β21 1 0 · · · 0 0
...

... · · · ...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 0 · · · −β2,p−1 · · · 1 0

0 0 · · · 0 0 0 0 · · · −β2p · · · −β21 1


.

Matrix B is lower triangular with diagonal elements equal to unity and is there-

fore non-singular, and we have

yT (m− p) = c+Hε,

where

c = B−1d, and H = B−1D.

It is now easily seen that

yT−i(m− i) = GiyT (m− p) = Gic+GiHε, (17)

for i = 0, 1, ..., p, where Gi are v × (v + p) selection matrices defined by

Gi = (0v×p−i
...Iν
...0v×i), for i = 0, 1, 2, ..., p.

Note that 0v×p−i is a v × (p − i) matrix of zeros. In particular G0 = (0v×p
...Iν),

and Gp =

µ
Iν
...0v×p

¶
.
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The deterministic components, Gic, in the expressions for yT−i(m− i) simplify
if there is no mean shift in the model, i.e., if µ1 = µ2 = µ.

4 First, it is easily verified

that

Bτ v+p =

 τ p

(1− β∗1) τ v1

(1− β∗2) τ v2

 . (18a)

Also

d =

 µ1τ p

µ1(1− β∗1)τ v1

µ2(1− β∗2)τ v2

 = µ1

 τ p

(1− β∗1) τ v1

(1− β∗2) τ v2

+
 0p×1

0v1×1

(1− β∗2) (µ2 − µ1) τ v2

 ,
and using (18a)

d =µ1Bτ v+p + g,

where

g =

 0p×1

0v1×1

(1− β∗2) (µ2 − µ1) τ v2

 .
Hence

c = B−1d =µ1τ v+p +B
−1g,

and when µ1 = µ2 = µ (or if β
∗
2 = 1) we have (noting that Giτ v+p = τ v)

Gic = GiB
−1d =µGiτ v+p = ατ v.

Therefore

yT−i(m− i) = µτ v +GiHε, for i = 0, 1, ..., p. (19)

Using these results the (i, j) element of the product moment matrix,X0
T (m)MτXT (m) ,

is given by ε0H0G0
iMτGjHε, for i, j = 1, 2, ..., p, and the j

th element ofX0
T (m)MτyT (m)

is given by ε0H0G0
jMτG0Hε, for j = 1, 2, ..., p. Hence, β̂T (m) is a non-linear func-

tion of the quadratic forms ε0H0G0
iMτGjHε, for i = 1, 2, ...p, and j = 0, 1, ..., p,

with known matrices H and Gi, and ε ∼ N(0, Iν+p). For example, for p = 1 we

4Notice that a break in the slopes induces a change in the intercepts even if the mean of the

process remains unchanged.
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have5

β̂T (m) =
ε0H0G0

1MτG0Hε

ε0H0G0
1MτG1Hε

, (20)

and for p = 2

β̂1T (m) =
(ε0H0G0

2MτG2Hε) (ε
0H0G0

1MτG0Hε)− (ε0H0G0
1MτG2Hε) (ε

0H0G0
2MτG0Hε)

(ε0H0G0
1MτG1Hε) (ε0H0G0

2MτG2Hε)− (ε0H0G0
1MτG2Hε)

2 ,

(21)

and

β̂2T (m) =
(ε0H0G0

1MτG1Hε) (ε
0H0G0

2MτG0Hε)− (ε0H0G0
2MτG1Hε) (ε

0H0G0
1MτG0Hε)

(ε0H0G0
1MτG1Hε) (ε0H0G0

2MτG2Hε)− (ε0H0G0
1MτG2Hε)

2 .

(22)

From the above results it is now clear that (i) the probability distribution of

β̂T (m) will depend only on the ratio of the error variances, σ
2
1/σ

2
2, and does not

depend on their scale. Therefore, in the case where σ2
1 = σ

2
2 = σ

2, the distribution

of β̂T (m) will be invariant to σ
2. (ii) In the absence of a mean shift or if β∗1 < 1

but β∗2 = 1, β̂T (m) will not depend on the unconditional mean(s) of the underlying
autoregressive process. (iii) Finally, in the case where µ1 = µ2, β̂T (m) is an even

function of ε and this property is unaffected by whether the slope coefficients

and/or the error variances are subject to structural breaks.

Consider now the distribution of α̂T (m) given by (7), and to simplify the expo-

sition assume that µ1 = µ2 (or β
∗
2 = 1). Using (19) we first note that

τ 0vyT (m) = vµ+ τ
0
vG0Hε,

Similarly

τ 0vXT (m) β̂T (m) =

pX
j=1

β̂jT (m) [vµ+ τ
0
vGjHε] .

Using these results we have

α̂T (m) = µ
³
1− β̂∗T (m)

´
+ v−1

"
(τ 0vG0Hε)−

pX
j=1

(τ 0vGjHε) β̂jT (m)

#
, (23)

5Allowing for a mean shift and setting p = 1, the expressions for β̂T (m) and α̂T (m) become

β̂T (m) =
(ε0H0 + c0)G0

1MτG0(c+Hε)

(ε0H0 + c0)G0
1MτG1(c+Hε)

,

α̂T (m) = v−1τ 0v[G0(c+Hε)−G1(c+Hε)β̂T (m)].
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where β̂
∗
T (m) =

Pp
j=1 β̂jT (m). Therefore, unlike β̂T (m) and perhaps not surpris-

ingly the distribution of α̂T (m) does depend on the unconditional mean of the

process even under µ1 = µ2 = µ.

3.1. An Unconditional Expression for e2
T+1(m)

To obtain the unconditional form of ξT (m), we first note that xT can be written

as SpyT (m), where Sp = (0p×(v−p)
...Jp), where Jp is the p× p matrix

Jp =


0 0 · · · 1

0 0 · · · 1 0
...
... · · · ...

...

0 1 · · · 0 0

1 · · · 0 0

 .

Therefore, using (19) we have (noting that Spτ v = τ p)

xT = SpyT (m) = Sp (µτ v +G0Hε) ,

or

xT − µτ p = SpG0Hε.

Hence unconditionally we have

ξT (m) =
³
β̂T (m)− β2

´0
SpG0Hε+v

−1

"
(τ 0vG0Hε)−

pX
j=1

(τ 0vGjHε) β̂jT (m)

#
.

(24)

Since under µ1 = µ2 = µ (or β2 = 1), β̂T (m) does not depend on α (or α1) it

also follows that unconditionally ξT (m), and hence E
£
e2
T+1(m)

¤
, will not depend

on the unconditional mean of the autoregressive process.

In the case with a break in the mean, µ1 6= µ2, we have

ξT (m) =
³
β̂T (m)− β2

´0
SpG0(c+Hε) (25)

+v−1

"
τ 0vG0(c+Hε)−

pX
j=1

τ 0vGj(c+Hε)β̂jT (m)

#
− µ2.

The computation of E
£
e2
T+1(m)

¤
can be carried out by stochastic simulations.

We have

ÊR
£
e2
T+1(m)

¤
= σ2

2 +
1

R

RX
r=1

h
ξ

(r)
T (m)

i2

,

13



where ξ
(r)
T (m) is given by

ξ
(r)
T (m) =

³
β̂

(r)

T (m)− β2

´0
SpG0Hε

(r)

+v−1

"³
τ 0vG0Hε

(r)
´
−

pX
j=1

³
τ 0vGjHε

(r)
´
β̂

(r)

jT (m)

#
.

Due to the independence of ε(r) across r, and the fact that ξ
(r)
T (m) are independently

and identically distributed across r, by a standard law of large numbers we have

ÊR
£
e2
T+1(m)

¤ p→ E
£
e2
T+1(m)

¤
,

so long as E
£
e2
T+1(m)

¤
does in fact exist. This clearly requires restrictions on the

size of v, the estimation window. We can provide exact conditions in the simple

case where p = 1, but there appears to be no results for the existence of moment

conditions in the more general case of p ≥ 2.
The following proposition generalizes Theorem 8.5.2 in Fuller (1996, page 445)

to the case with a break in the slope coefficient:

Proposition: The unconditional expectation of the forecast errors from the AR(p)

model (2) subject to a break in the AR coefficients (β1 6= β2) or a break in the in-

novation variance ( σ2
1 6= σ2

2) are unbiased provided that

(i) the probability distribution of ε∗ = (ε0, εT+1)
0 is symmetrically distributed

around E(ε∗) = 0, and its first and second order moments exist;
(ii) E |eT+1(m)| <∞; and
(iii) there is no break in the mean of the process, µ1 = µ2.

Proof: It has already been established that when µ1 = µ2, β̂T (m) can be written

as a non-linear function of quadratic forms in ε, and is therefore an even function

of ε. In the case where µ1 = µ2, using (8) and (24), the prediction error can be

written as

eT+1(m) = σ2εT+1 −
³
β̂T (m)− β2

´0
SpG0Hε

−v−1

"
(τ 0vG0Hε)−

pX
j=1

(τ 0vGjHε) β̂jT (m)

#
.
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Hence

E [eT+1(m)] = −E
h
β̂
0
T (m)SpG0Hε

i
+ v−1

(
pX
j=1

E
h
(τ 0vGjHε) β̂jT (m)

i)
.

Since β̂jT (m), j = 1, 2, ..., p are even functions of ε, and (τ
0
vGjHε) and β̂

0
T (m)SpG0Hε

are odd functions of ε all the terms inside the above expectations are odd functions

of eT+1(m) and (by assumptions (i) and (ii)) exist, we must have

E [eT+1(m)] = 0.

In the case where µ1 6= µ2 the expression for the prediction error is given by (25)

and is no longer an odd function of ε, so it will, in general, not have mean zero.

One important implication of the above result is for the trade off that exists in

the estimation bias of the slope and intercept coefficients in the AR models even

in the presence of breaks so long as µ1 = µ2. To see this using (23) we have

E [α̂T (m)] = µ
n
1−E

h
β̂
∗
T (m)

io
,

which can equivalently be written as

E [α̂T (m)− µ(1− β∗2)] = −µ E
h
β̂
∗
T (m)− β∗2

i
.

This provides an interesting relationship between the small sample bias of the

estimator of the intercept term, E [âT (m)− µ(1− β∗2)], and the small sample bias
of the long-run coefficient, E

h
β̂
∗
T (m)− β∗2

i
. The estimator of the intercept term,

âT (m), is unbiased only if the sample mean is zero. But, in general there is an

spill-over effect from the bias of the slope coefficient to that of the intercept term.

In the case of the AR(1) model the results simplify further and we have

E [α̂T (m)− α2] = −µ E
h
β̂T (m)− β2

i
. (26)

Since E
h
β̂T (m)− β2

i
< 0, it therefore follows that

E [α̂T (m)− α2] > 0 if µ > 0,

E [α̂T (m)− α2] ≤ 0 if µ ≤ 0.

Once again these results hold irrespective of whether β1 = β2 or not.
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3.2. A Conditional Expression for e2
T+1(m)

As before we have

eT+1(m) = σ2εT+1 − ξT (m).
Using (23) in (9) and after some algebra we have (under µ1 = µ2 = µ)

6

ξT (m) = (xT − µτ p)0
³
β̂T (m)− β2

´
+ v−1

"
(τ 0vG0Hε)−

pX
j=1

(τ 0vGjHε) β̂jT (m)

#
.

(27)

Suppose p = 1 so that it is easy to characterize when xT is above or below the

mean and assume that the distribution of ε is symmetric. Then

E [eT+1(m) | yT ] = (yT − µ)E
³
β̂T (m)− β2

´
.

Since, E
³
β̂T (m)− β2

´
< 0,

E[eT+1(m)|yT ] =
(
< 0 if yT > µ

≥ 0 if yT ≤ µ
,

and the estimated model underpredicts if the last observation is above the uncon-

ditional mean (yT > µ), while conversely it overpredicts if the last observation is

below the unconditional mean (yT < µ). In general we have

E[eT+1(m)|yT ] = (xT − µτ p)0E
³
β̂T (m)− β2

´
To compute conditional MSFE, we note that conditional on xT , ξT (m) depends

on µ, σ1, σ2, β1, β2 and can be simulated for given values of µ, σ1, σ2, β1, β2, and xT

and draws from ε ∼ N(0, Iν+p). Denoting the r
th draw of ε by ε(r), r = 1, 2, ..., R,

the conditional MSFE can be computed by

ÊR
¡
e2
T+1(m) |xT

¢
= σ2

2 + ÊR
¡
ξ2
T (m) |xT

¢
,

6Allowing for a break in the intercept, the corresponding expression becomes

ξT (m) = x0T
³
β̂T (m)− β2

´0
+v−1τ 0v

G0(c+Hε)−
pX
j=1

Gj(c+Hε)β̂jT (m)

− µ2(1− β∗2).
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where

ÊR
¡
ξ2
T (m) |xT

¢
=
1

R

RX
r=1

h
ξ

(r)
T (m)

i2

,

ξ
(r)
T (m) = (xT − µτ p)0

³
β̂

(r)

T (m)− β2

´
+v−1

"³
τ 0vG0Hε

(r)
´
−

pX
j=1

³
τ 0vGjHε

(r)
´
β̂

(r)

jT (m)

#
,

and β̂
(r)

T (m) is given by expressions such as (20), or (21) and (22) with ε, replaced

by ε(r).

4. Numerical Results

Our approach is quite general and allows us to study the small sample properties

of the AR model in some detail. The existing literature has focused on the AR(1)

model without a break, where the key parameters affecting the properties of the

OLS estimators, α̂ and β̂, are the sample size and the persistence parameter, β1.

In our setting, there are many more parameters to consider. In the absence of

a break there are now p autoregressive parameters plus the intercept, α, and the

innovation variance, σ2. Under a break, we need to consider both the pre- and post-

break parameters - i.e. the AR coefficients (β1,β2), the intercepts (α1,α2) and the

innovation variances (σ2
1,σ

2
2). Furthermore, how the total sample divides into pre-

and post-break periods (v1 and v2) is now crucial to the bias in the post-break

parameter estimates and to the bias and variance of the forecast error.

To ensure that our results are comparable to the existing literature, our bench-

mark model is the AR(1) specification without a break (experiment 1a in Table

1a). We next introduce breaks in this model and extend the results to cover the

AR(2) specification. This allows us to consider the effect of higher order dynamics.

In all cases we present results for 50,000 Monte Carlo simulations and draw inno-

vations from an IID Gaussian distribution. We study breaks in the autoregressive

parameters in the form of both moderately sized (0.3) and large (0.6) breaks in

either direction (experiments 2a-4a) as well as a shift to a unit root process in

the post-break period (experiment 5a). We also consider pure breaks in the inno-

vation variance (experiments 6a and 7a), where σ changes between values of 1/2

and 2, and in the mean (experiments 8a and 9a), where µ changes between 1 and
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2. For convenience the parameter values assumed in each of the experiments are

summarized in Table 1a. Since our focus is on the effect of breaks on the bias and

forecasting performance of AR models, results are presented as a function of the

pre-break window size (v1) and the post-break window size (v2). We vary v1 from

zero (no pre-break information) through 1, 2, 3, 4, 5, 10, 20, 30, 50 and 100, while

the post-break window, v2, is set at 10, 20, 30, 50 and 100.

4.1. Results for the AR(1) Model

Results for the AR(1) model are presented in Tables 2-5. As a measure of bias in

the parameter estimates and in the resulting forecast, Table 2 shows the bias in β̂1

while Table 3 shows the conditional bias in the forecast for a situation where yT

is above its mean, i.e., yT = α2 + σ2.
7 To measure forecasting performance, Table

4 reports the unconditional RMSFE while Table 5 shows the conditional RMSFE

when yT = α2 + σ2 as a function of the pre-break (v1) and post-break window size

(v2).

4.1.1. Bias Results

First consider the bias in β̂1. In the absence of a break β̂1 is downward biased

with a bias that disappears as v1 and v2 increase and becomes quite small when

the combined sample v = v1+v2 is large.
8 Notice the symmetry of the results in v1

and v2 which follows since (under no break) only v1+v2 matters to the bias.
9 Once

a break is introduced in the AR parameter, the bias in β̂1 continues to decline in v2

but need no longer decline monotonically as a function of v1. The reason for this is

simple: including pre-break data generated by a different (less persistent) process

introduces a new bias term in β̂1. It is only to the extent that this term is offset by

7Values are computed as averages across Monte Carlo simulations relative to the true post-

break values.
8The bias estimates are in line with the well known Kendall (1954) approximation given by

β̂1 − β1 =
−(1+ 3β1)

v
+O(v−3/2),

where v = v1 + v2.
9Recall from (26) that in the case of Gaussian errors the bias in α̂T (m) can be exactly inferred

from the bias of β̂T (m) when there is no break in the mean. For this reason we focus our analysis

on the bias in β̂T (m).
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a reduction in the small sample bias of the AR estimate that inclusion of pre-break

data will lead to a bias reduction. Thus, when v2 is very large (e.g., 50 or 100

post-break observations) the small sample bias in β̂1 based purely on post-break

observations is already quite small. In this situation, inclusion of pre-break data

will not lower the bias in β̂1. Conversely, when the post-break sample is small (i.e.,

v2 = 10 − 20 observations), the small sample bias in β̂1 is very large and hence

including up to 30 pre-break observations will actually reduce the bias under a

moderately sized break. Naturally, if the break size is large (experiment 4a), this

effect is reduced since the true bias due to including pre-break observations in the

estimation window dominates any reduction in the small sample bias in β̂1 based

solely on post-break data for all but the smallest post-break window sizes.

Interestingly, when the break is in the reverse direction (experiment 3a) so that

the true value of β1 declines, including a small number of pre-break data points

leads to a reduction in the bias in β̂1 even for the very large post-break windows

considered here. For example, the bias in β̂1 is minimized by including 3 pre-break

observations even when v2 = 100. The reason is again related to the direction of

the small sample bias in β̂1. As β̂1 is downward biased, when the break is from high

to low persistence, the (upward) bias introduced by inclusion of the more persistent

pre-break data works in the opposite direction of the small sample (downward) bias

in β̂1. For this reason the biases under a decline in β1 tend to be smaller than the

biases observed when β1 increases at the time of the break.

Under a post-break unit root (experiment 5a) the bias-minimizing pre-break

window size is quite constant around 20 observations. When a break occurs in the

innovation variance (experiments 6a and 7a), the smallest bias is always achieved by

the longest pre- and post-break windows. The only difference to the case without

a break is that the bias is no longer a symmetric function of v1 and v2. Allowing

for a break in the mean in either direction (experiments 8a and 9a), the forecast

error is no longer unbiased unconditionally and the optimal window size rises to

100 in both experiments irrespective of the value of v2.

Turning next to the conditional bias in the forecast, Table 3 shows that, in the

absence of a break, the bias is negative when the prediction is made conditional on

a value above the mean of the process, yT = α2 + σ2. This is, of course, consistent

with the sign of the bias in β̂1. In general, the results for the conditional bias in the

forecast error mirror those of the bias in β̂1 except for in the case with breaks in

19



the mean. Whereas the bias in β̂1 was reduced the larger the value of v1, when the

mean increases at the time of the break, the bias in the forecast error is smallest

when v1 = 0 and the mean increases assuming a large post-break sample (v2 = 50

or 100) or for a pre-break window size around 10-20 observations under a decrease

in the mean.

4.1.2. Forecasting Performance

To measure forecasting performance under the AR(1) model, unconditional and

conditional RMSFE values are shown in Tables 4 and 5. Under no break the

unconditional RMSFE is 1.15 for the smallest combined sample (v1 = 0, v2 = 10)

and it again declines symmetrically as a function of v1 and v2. In the presence of

a moderate break in the AR coefficient, the unconditional RMSFE continues to

decline as a function of v2 but it no longer declines monotonically in the pre-break

window, v1. Furthermore, the unconditional RMSFE no longer converges to one -

its theoretical value in the absence of parameter estimation uncertainty - whenever

the pre-break window, v1, measured as a proportion of the post-break window, v2,

does not go to zero. For example, when v1 = v2 = 100, the unconditional RMSFE

under a moderate break in β1 is close to 1.02 as opposed to a value of 1.006 observed

in the case without a break. This difference is due to the squared bias in the AR

parameters introduced by including pre-break data points. Generally, the windows

that minimize the unconditional RMSFE tend to be smaller than the windows that

minimize the bias. Increasing the window size beyond the point that produces the

smallest bias may be acceptable if it reduces the forecast error variance by more

than the associated increase in the squared bias.

The presence of a moderately sized break in β1 implies that the optimal pre-

break window size declines to 10-20 observations under the unconditional RMSFE

criterion although it remains much longer under the conditional RMSFE criterion.

In both cases, the optimal value of v1 is smaller, the higher the value of v2 and the

larger the size of the break in β1 as can be seen by comparing experiments 2a and

4a.

Somewhat different patterns emerge under a post-break unit root where the

conditional RMSFE is minimized for the largest values of v1, whereas the uncon-

ditional RMSFE is minimized at much smaller values of v1, typically below 10

observations.
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When the innovation variance is higher post-break, it is optimal to set the pre-

break window as large as possible since this maximizes the length of the less noisy

data and thus brings down the forecast error variance without introducing a bias

in the forecast. In contrast, when the innovation variance declines at the time of

the break, the optimal pre-break window size is only long provided the post-break

window, v2, is rather short and it declines to zero for larger values of v2. Under

breaks to the mean, the lowest conditional and unconditional RMSFE values are

observed for the longer pre-break windows. This is an interesting finding. When

breaks occur in practice, they are likely to affect the mean. In such situations our

results suggest that, at least for breaks of similar size to those assumed here, it is

difficult to outperform the forecasting performance generated by a model based on

an expanding window of the data.

4.2. Results for the AR(2) Model

Results for the AR(2) model are presented in Tables 6-10, while Panel b in Table

1 shows the parameter configurations used in the experiments labelled 1b to 9b.

It is no longer so straightforward to summarize the results as there are now more

parameters. With two AR parameters we report the bias separately for β̂1 and for

β̂
∗
= β̂1 + β̂2, the latter providing a measure of persistence. Our baseline scenario

assumes autoregressive roots of 0.95 and -0.20 so that β1 = 0.75 and β2 = −0.19.
A large break occurs when these coefficients shift to 0.45 and 0, while a moderate

break assumes that β1 = 0.65, β2 = −0.29. Breaks to the mean or to the innovation
variance are identical to those assumed for the AR(1) model.

4.2.1. Bias in AR coefficients

Many findings are qualitatively similar to those reported above for the AR(1) model

so we simply summarize the main results here. Table 6 shows that under no break

or a break in σ (experiments 1b, 6b and 7b) the larger the pre-break window,

v1, the smaller the bias in β̂1. A moderate increase in β1 (experiment 4b) now

means that the smallest bias in β̂1 is observed when no pre-break observations are

included, i.e. for v1 = 0, while under a moderate or large decline in β the bias is

generally smallest for small (but non-zero) pre-break windows. Under a break in

the mean, the smallest bias in β̂1 is observed for v1 = 100 only when v2 = 10, while
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the optimal value of the pre-break window, v1, is around 10-20 observations and

declines for larger values of v2.

Turning to the bias in β̂
∗
, Table 7 shows that the results are qualitatively very

similar to those reported for the AR(1) case. The main exceptions are that the

bias-minimizing value of the pre-break window, v1, is now quite large even under

the large break in β. Conversely, it is no longer the case that the largest value of

v1 minimizes the bias in β̂
∗
in the case with a break in the mean.

Table 8 shows that the conditional forecast error bias continues to be negative

in the absence of a break or under a break in the innovation variance. For these

experiments, the forecast error bias is generally smaller the larger the value of the

pre-break window, v1. Upon introducing breaks, the bias-minimizing pre-break

window continues to decline as v2 gets larger and in some cases (experiments 2b

and 3b), equals zero when the post-break window, v2 ≥ 50.

4.2.2. Forecasting performance

The forecasting performance results reported in Tables 9 and 10 are qualitatively

similar to those obtained for the AR(1) model. Long pre-break windows, v1, are

generally optimal in the absence of a break, under higher post-break volatility and

for increases as well as decreases in β1 at the time of the break. Smaller pre-break

windows minimize the RMSFE as v2 gets larger. A smaller pre-break window

continues to be called for as the size of the break increases irrespective of whether

the break occurs in the AR coefficients or in the mean. However, the optimal

window length continues to be quite long in many experiments even when v2 is

large.

5. Conclusion

This paper studied the small sample properties of forecasts from autoregressive

models subject to breaks. It is insightful to compare our results for the AR(p) model

to those reported derived by Pesaran and Timmermann (2003b) under strictly

exogenous regressors. Assuming strictly exogenous regressors, the OLS estimates

based on post-break data are unbiased. Including pre-break data will therefore

always increase the bias so that there will always be a trade-off between a larger

squared bias and a smaller variance of the parameter estimates as more pre-break
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information is used. This trade-off can then be used to optimally determine the

optimal window size.

As we have shown in this paper, the situation can be very different for AR

models due to the inherent small-sample bias in the estimates of the parameters of

these models. In situations where the true AR coefficient(s) declines after a break,

both the bias and the forecast error variance can in fact decline as a result of using

pre-break data in the estimation. This is likely to be an important reason why,

empirically, it is often quite difficult to improve forecasting performance over the

expanding window method by only using post-break data.

More generally, we find that there are many scenarios where the inclusion of

some pre-break data for purposes of estimation of the parameters of autoregres-

sive models leads to lower biases and lower mean squared forecast errors than if

only post-break data is used. This can hold even when the post-break window is

large, particularly when the post-break data generating process is highly persistent

and/or has a break in the mean.

Several extensions to our results would be interesting to consider in future work.

We have focused on the case with Gaussian innovations. Ullah (2003) observes that

the bias in the forecast error is reasonably robust to skewness and kurtosis in the

innovations of the AR model while, in contrast, the MSE can be sensitive to higher

order moments that arise in the non-Gaussian case. Our results could easily be

extended to cover the non-normal case, for example by drawing the innovations

from a mixture of normals. Another possibility would be to consider the effect

of adding additional predictors beyond autoregressive lags as well as extensions to

cases with multiple breaks.
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Table 1a: Breakpoint Specifications by Experiments

AR(1) Model

Experiments µ1 µ2 β11 β12 σ1 σ2

1a: No break 1 1 0.9 0.9 1 1

2a: Moderate break in β1 1 1 0.6 0.9 1 1

3a: Moderate break in β1 (decline) 1 1 0.9 0.6 1 1

4a: Large break in β1 1 1 0.3 0.9 1 1

5a: Post-break unit root 1 1 0.6 1 1 1

6a: Higher post-break volatility 1 1 0.9 0.9 0.5 2

7a: Lower post-break volatility 1 1 0.9 0.9 2 0.5

8a: Break in mean (increase) 1 2 0.9 0.9 1 1

9a: Break in mean (decrease) 2 1 0.9 0.9 1 1

Table 1b: AR(2) Model

Experiments µ1 µ2 β11 β12 β21 β22 σ1 σ2

1b: No break 1 1 0.75 -0.19 0.75 -0.19 1 1

2b: Moderate break in β 1 1 0.65 -0.29 0.75 -0.19 1 1

3b: Large increase in β1 1 1 0.45 0.00 0.75 -0.19 1 1

4b: Large decrease in β1 1 1 0.75 -0.19 0.45 0.00 1 1

5b: Post-break unit root 1 1 0.60 0.20 0.80 0.20 1 1

6b: Higher post-break volatility 1 1 0.75 -0.19 0.75 -0.19 0.5 2

7b: Lower post-break volatility 1 1 0.75 -0.19 0.75 -0.19 2 0.5

8b: Break in mean (increase) 1 2 0.75 -0.19 0.75 -0.19 1 1

9b: Break in mean (decrease) 2 1 0.75 -0.19 0.75 -0.19 1 1

27



Table 2: Small sample bias of the OLS estimate of ββββ as a function of pre-break (v1) and post-break (v2) windows - (AR(1) model). 
                    
Experiment no. 1a : No break  Experiment no. 4a : Large break in β  Experiment no. 7a : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.370 -0.200 -0.135 -0.081 -0.039  0 -0.396 -0.214 -0.145 -0.086 -0.041  0 -0.224 -0.118 -0.080 -0.052 -0.028 
1 -0.344 -0.193 -0.132 -0.080 -0.039  1 -0.386 -0.221 -0.150 -0.089 -0.042  1 -0.326 -0.176 -0.118 -0.072 -0.037 
2 -0.315 -0.184 -0.129 -0.078 -0.039  2 -0.371 -0.218 -0.151 -0.091 -0.044  2 -0.338 -0.188 -0.134 -0.082 -0.042 
3 -0.297 -0.175 -0.125 -0.076 -0.038  3 -0.362 -0.219 -0.151 -0.093 -0.045  3 -0.330 -0.190 -0.134 -0.086 -0.046 
4 -0.278 -0.170 -0.119 -0.076 -0.038  4 -0.358 -0.221 -0.154 -0.095 -0.046  4 -0.316 -0.188 -0.135 -0.089 -0.048 
5 -0.262 -0.162 -0.116 -0.074 -0.037  5 -0.357 -0.222 -0.156 -0.096 -0.048  5 -0.299 -0.185 -0.135 -0.091 -0.050 

10 -0.202 -0.136 -0.102 -0.068 -0.035  10 -0.363 -0.233 -0.170 -0.107 -0.054  10 -0.226 -0.157 -0.121 -0.087 -0.051 
20 -0.136 -0.102 -0.081 -0.057 -0.032  20 -0.392 -0.262 -0.195 -0.127 -0.066  20 -0.150 -0.116 -0.095 -0.073 -0.048 
30 -0.102 -0.082 -0.066 -0.050 -0.030  30 -0.418 -0.292 -0.220 -0.147 -0.078  30 -0.110 -0.090 -0.078 -0.061 -0.043 
50 -0.067 -0.058 -0.049 -0.040 -0.026  50 -0.453 -0.334 -0.262 -0.181 -0.100  50 -0.070 -0.063 -0.057 -0.048 -0.036 

100 -0.036 -0.033 -0.030 -0.026 -0.020  100 -0.499 -0.401 -0.332 -0.246 -0.145  100 -0.037 -0.035 -0.033 -0.029 -0.024 
                    
Experiment no. 2a : Moderate break in β  Experiment no. 5a : Post-break unit root  Experiment no. 8a : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.392 -0.214 -0.144 -0.085 -0.041  0 -0.413 -0.233 -0.163 -0.101 -0.052  0 -0.366 -0.198 -0.134 -0.080 -0.038 
1 -0.375 -0.214 -0.146 -0.087 -0.042  1 -0.391 -0.227 -0.159 -0.100 -0.052  1 -0.333 -0.189 -0.131 -0.078 -0.039 
2 -0.354 -0.209 -0.144 -0.087 -0.043  2 -0.367 -0.220 -0.157 -0.098 -0.051  2 -0.311 -0.177 -0.126 -0.075 -0.038 
3 -0.337 -0.204 -0.144 -0.088 -0.044  3 -0.351 -0.211 -0.152 -0.096 -0.051  3 -0.289 -0.169 -0.120 -0.075 -0.037 
4 -0.324 -0.200 -0.145 -0.089 -0.044  4 -0.338 -0.207 -0.149 -0.095 -0.051  4 -0.270 -0.164 -0.115 -0.071 -0.037 
5 -0.317 -0.200 -0.143 -0.091 -0.045  5 -0.325 -0.199 -0.146 -0.094 -0.050  5 -0.257 -0.156 -0.113 -0.071 -0.036 

10 -0.286 -0.190 -0.144 -0.094 -0.048  10 -0.303 -0.190 -0.138 -0.089 -0.048  10 -0.196 -0.130 -0.097 -0.063 -0.033 
20 -0.269 -0.191 -0.149 -0.102 -0.055  20 -0.295 -0.190 -0.138 -0.088 -0.046  20 -0.133 -0.097 -0.076 -0.053 -0.029 
30 -0.268 -0.200 -0.158 -0.111 -0.062  30 -0.301 -0.197 -0.143 -0.091 -0.047  30 -0.100 -0.077 -0.062 -0.045 -0.027 
50 -0.269 -0.213 -0.174 -0.126 -0.074  50 -0.313 -0.215 -0.158 -0.098 -0.048  50 -0.066 -0.054 -0.045 -0.034 -0.022 

100 -0.276 -0.233 -0.200 -0.156 -0.100  100 -0.337 -0.247 -0.188 -0.119 -0.056  100 -0.035 -0.031 -0.028 -0.022 -0.015 
                    
Experiment no. 3a : Break in β (decline)  Experiment no. 6a : Higher post-break volatility  Experiment no. 9a : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.226 -0.125 -0.087 -0.053 -0.028  0 -0.399 -0.219 -0.147 -0.087 -0.041  0 -0.365 -0.197 -0.134 -0.081 -0.039 
1 -0.156 -0.084 -0.057 -0.036 -0.017  1 -0.340 -0.202 -0.140 -0.083 -0.041  1 -0.334 -0.187 -0.128 -0.079 -0.038 
2 -0.113 -0.057 -0.036 -0.022 -0.010  2 -0.301 -0.188 -0.134 -0.083 -0.041  2 -0.312 -0.178 -0.123 -0.075 -0.038 
3 -0.084 -0.037 -0.021 -0.010 -0.003  3 -0.278 -0.177 -0.129 -0.080 -0.040  3 -0.289 -0.171 -0.120 -0.074 -0.037 
4 -0.059 -0.020 -0.007 0.001 0.004  4 -0.263 -0.170 -0.125 -0.080 -0.039  4 -0.271 -0.164 -0.115 -0.072 -0.036 
5 -0.036 -0.003 0.005 0.010 0.011  5 -0.244 -0.161 -0.118 -0.077 -0.039  5 -0.255 -0.156 -0.111 -0.070 -0.037 

10 0.040 0.051 0.052 0.048 0.036  10 -0.196 -0.134 -0.105 -0.071 -0.038  10 -0.195 -0.130 -0.097 -0.064 -0.034 
20 0.117 0.117 0.112 0.098 0.076  20 -0.148 -0.111 -0.089 -0.062 -0.035  20 -0.133 -0.096 -0.076 -0.053 -0.029 
30 0.161 0.156 0.147 0.133 0.106  30 -0.122 -0.095 -0.077 -0.057 -0.033  30 -0.100 -0.077 -0.063 -0.045 -0.027 
50 0.208 0.200 0.190 0.177 0.147  50 -0.085 -0.074 -0.063 -0.048 -0.029  50 -0.066 -0.054 -0.045 -0.035 -0.021 

100 0.250 0.243 0.237 0.225 0.200  100 -0.049 -0.050 -0.045 -0.037 -0.025  100 -0.035 -0.031 -0.028 -0.022 -0.015 
 
Note: Experiments 1a to 9a are defined in Table 1a. 



 
Table 3: Bias of forecast error conditional on y = αααα2222 + σσσσ2222 - (AR(1) model) 

                    
Experiment no. 1a : No break  Experiment no. 4a : Large break in β  Experiment no. 7a : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.370 -0.200 -0.135 -0.081 -0.039  0 -0.396 -0.214 -0.145 -0.086 -0.041  0 -0.112 -0.059 -0.040 -0.026 -0.014 
1 -0.344 -0.193 -0.132 -0.080 -0.039  1 -0.386 -0.221 -0.150 -0.089 -0.042  1 -0.163 -0.088 -0.059 -0.036 -0.018 
2 -0.315 -0.184 -0.129 -0.078 -0.039  2 -0.371 -0.218 -0.151 -0.091 -0.044  2 -0.169 -0.094 -0.067 -0.041 -0.021 
3 -0.297 -0.175 -0.125 -0.076 -0.038  3 -0.362 -0.219 -0.151 -0.093 -0.045  3 -0.165 -0.095 -0.067 -0.043 -0.023 
4 -0.278 -0.170 -0.119 -0.076 -0.038  4 -0.358 -0.221 -0.154 -0.095 -0.046  4 -0.158 -0.094 -0.068 -0.045 -0.024 
5 -0.262 -0.162 -0.116 -0.074 -0.037  5 -0.357 -0.222 -0.156 -0.096 -0.048  5 -0.149 -0.092 -0.068 -0.045 -0.025 

10 -0.202 -0.136 -0.102 -0.068 -0.035  10 -0.363 -0.233 -0.170 -0.107 -0.054  10 -0.113 -0.078 -0.061 -0.044 -0.026 
20 -0.136 -0.102 -0.081 -0.057 -0.032  20 -0.392 -0.262 -0.195 -0.127 -0.066  20 -0.075 -0.058 -0.048 -0.036 -0.024 
30 -0.102 -0.082 -0.066 -0.050 -0.030  30 -0.418 -0.292 -0.220 -0.147 -0.078  30 -0.055 -0.045 -0.039 -0.031 -0.021 
50 -0.067 -0.058 -0.049 -0.040 -0.026  50 -0.453 -0.334 -0.262 -0.181 -0.100  50 -0.035 -0.031 -0.028 -0.024 -0.018 

100 -0.036 -0.033 -0.030 -0.026 -0.020  100 -0.499 -0.401 -0.332 -0.246 -0.145  100 -0.018 -0.017 -0.016 -0.015 -0.012 
                    
Experiment no. 2a : Moderate break in β  Experiment no. 5a : Post-break unit root  Experiment no. 8a : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.392 -0.214 -0.144 -0.085 -0.041  0 -0.413 -0.233 -0.163 -0.101 -0.052  0 -0.607 -0.288 -0.178 -0.096 -0.042 
1 -0.375 -0.214 -0.146 -0.087 -0.042  1 -0.391 -0.227 -0.159 -0.100 -0.052  1 -0.576 -0.285 -0.181 -0.098 -0.044 
2 -0.354 -0.209 -0.144 -0.087 -0.043  2 -0.367 -0.220 -0.157 -0.098 -0.051  2 -0.556 -0.280 -0.181 -0.098 -0.045 
3 -0.337 -0.204 -0.144 -0.088 -0.044  3 -0.351 -0.211 -0.152 -0.096 -0.051  3 -0.527 -0.276 -0.180 -0.101 -0.046 
4 -0.324 -0.200 -0.145 -0.089 -0.044  4 -0.338 -0.207 -0.149 -0.095 -0.051  4 -0.505 -0.274 -0.178 -0.100 -0.046 
5 -0.317 -0.200 -0.143 -0.091 -0.045  5 -0.325 -0.199 -0.146 -0.094 -0.050  5 -0.488 -0.267 -0.179 -0.103 -0.047 

10 -0.286 -0.190 -0.144 -0.094 -0.048  10 -0.303 -0.190 -0.138 -0.089 -0.048  10 -0.402 -0.247 -0.173 -0.105 -0.050 
20 -0.269 -0.191 -0.149 -0.102 -0.055  20 -0.295 -0.190 -0.138 -0.088 -0.046  20 -0.310 -0.213 -0.161 -0.105 -0.055 
30 -0.268 -0.200 -0.158 -0.111 -0.062  30 -0.301 -0.197 -0.143 -0.091 -0.047  30 -0.261 -0.194 -0.152 -0.105 -0.059 
50 -0.269 -0.213 -0.174 -0.126 -0.074  50 -0.313 -0.215 -0.158 -0.098 -0.048  50 -0.208 -0.168 -0.140 -0.104 -0.064 

100 -0.276 -0.233 -0.200 -0.156 -0.100  100 -0.337 -0.247 -0.188 -0.119 -0.056  100 -0.158 -0.141 -0.126 -0.104 -0.073 
                    
Experiment no. 3a : Break in β (decline)  Experiment no. 6a : Higher post-break volatility  Experiment no. 9a : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.226 -0.125 -0.087 -0.053 -0.028  0 -0.798 -0.438 -0.295 -0.174 -0.083  0 -0.124 -0.109 -0.091 -0.064 -0.035 
1 -0.156 -0.084 -0.057 -0.036 -0.017  1 -0.681 -0.403 -0.279 -0.167 -0.082  1 -0.091 -0.092 -0.079 -0.058 -0.032 
2 -0.113 -0.057 -0.036 -0.022 -0.010  2 -0.602 -0.377 -0.268 -0.165 -0.082  2 -0.067 -0.076 -0.069 -0.052 -0.031 
3 -0.084 -0.037 -0.021 -0.010 -0.003  3 -0.556 -0.354 -0.259 -0.161 -0.080  3 -0.051 -0.064 -0.060 -0.048 -0.029 
4 -0.059 -0.020 -0.007 0.001 0.004  4 -0.526 -0.340 -0.250 -0.160 -0.079  4 -0.037 -0.053 -0.052 -0.043 -0.027 
5 -0.036 -0.003 0.005 0.010 0.011  5 -0.488 -0.322 -0.236 -0.154 -0.079  5 -0.026 -0.044 -0.045 -0.038 -0.025 

10 0.040 0.051 0.052 0.048 0.036  10 -0.393 -0.269 -0.211 -0.143 -0.076  10 0.011 -0.014 -0.021 -0.023 -0.017 
20 0.117 0.117 0.112 0.098 0.076  20 -0.295 -0.223 -0.177 -0.123 -0.070  20 0.044 0.021 0.009 0.000 -0.004 
30 0.161 0.156 0.147 0.133 0.106  30 -0.244 -0.190 -0.153 -0.113 -0.066  30 0.060 0.039 0.027 0.015 0.005 
50 0.208 0.200 0.190 0.177 0.147  50 -0.171 -0.148 -0.126 -0.096 -0.058  50 0.076 0.060 0.049 0.036 0.021 

100 0.250 0.243 0.237 0.225 0.200  100 -0.098 -0.100 -0.090 -0.075 -0.051  100 0.089 0.079 0.071 0.060 0.043 

 
See the note to Table 2. 
 



Table 4: Unconditional RMSFE as a function of pre-break (v1) and post-break window (v2) - (AR(1) model) 
                    
Experiment no. 1a : No break  Experiment no. 4a : large break in β  Experiment no. 7a : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.149 1.078 1.051 1.028 1.012  0 1.129 1.070 1.048 1.028 1.013  0 0.648 0.567 0.535 0.515 0.506
1 1.140 1.075 1.048 1.027 1.012  1 1.123 1.070 1.049 1.028 1.013  1 0.769 0.630 0.568 0.526 0.509
2 1.127 1.072 1.047 1.026 1.012  2 1.112 1.070 1.049 1.028 1.013  2 0.797 0.656 0.585 0.535 0.510
3 1.120 1.070 1.046 1.026 1.012  3 1.107 1.068 1.048 1.029 1.013  3 0.796 0.661 0.593 0.539 0.512
4 1.112 1.066 1.044 1.025 1.011  4 1.101 1.066 1.046 1.028 1.013  4 0.795 0.666 0.595 0.542 0.513
5 1.104 1.063 1.043 1.025 1.012  5 1.101 1.065 1.046 1.028 1.013  5 0.789 0.668 0.600 0.544 0.514

10 1.075 1.051 1.037 1.023 1.011  10 1.101 1.066 1.046 1.028 1.013  10 0.739 0.648 0.595 0.549 0.516
20 1.047 1.035 1.028 1.019 1.010  20 1.132 1.079 1.056 1.033 1.015  20 0.678 0.615 0.580 0.544 0.517
30 1.034 1.027 1.021 1.015 1.009  30 1.163 1.100 1.068 1.040 1.017  30 0.642 0.595 0.569 0.540 0.517
50 1.022 1.018 1.016 1.012 1.008  50 1.217 1.138 1.096 1.057 1.024  50 0.598 0.571 0.555 0.534 0.516

100 1.011 1.010 1.009 1.008 1.006  100 1.303 1.216 1.163 1.103 1.045  100 0.552 0.543 0.537 0.527 0.515
                    
Experiment no. 2a : Moderate break in β  Experiment no. 5a : Post-break unit root  Experiment no. 8a : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.135 1.073 1.048 1.028 1.013  0 1.116 1.064 1.044 1.028 1.014  0 1.152 1.078 1.050 1.028 1.012
1 1.120 1.070 1.047 1.028 1.013  1 1.109 1.063 1.043 1.027 1.014  1 1.139 1.075 1.048 1.027 1.012
2 1.109 1.067 1.046 1.027 1.013  2 1.101 1.061 1.042 1.027 1.014  2 1.129 1.071 1.046 1.026 1.012
3 1.100 1.063 1.045 1.027 1.013  3 1.101 1.058 1.041 1.026 1.014  3 1.122 1.069 1.045 1.025 1.011
4 1.092 1.061 1.044 1.026 1.013  4 1.103 1.058 1.041 1.026 1.014  4 1.114 1.068 1.043 1.025 1.012
5 1.087 1.059 1.043 1.026 1.012  5 1.104 1.057 1.040 1.026 1.014  5 1.108 1.064 1.043 1.024 1.011

10 1.072 1.051 1.039 1.024 1.012  10 1.116 1.062 1.042 1.026 1.013  10 1.078 1.053 1.038 1.022 1.011
20 1.070 1.048 1.037 1.025 1.012  20 1.145 1.079 1.052 1.029 1.013  20 1.051 1.038 1.030 1.019 1.010
30 1.075 1.051 1.039 1.026 1.013  30 1.177 1.100 1.064 1.034 1.015  30 1.039 1.030 1.024 1.017 1.009
50 1.084 1.060 1.046 1.030 1.015  50 1.223 1.140 1.094 1.047 1.018  50 1.027 1.021 1.018 1.014 1.008

100 1.110 1.081 1.063 1.045 1.023  100 1.306 1.228 1.162 1.087 1.030  100 1.017 1.014 1.012 1.010 1.007
                    
Experiment no. 3a : Break in β (decline)  Experiment no. 6a : Higher post-break volatility  Experiment no. 9a : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.118 1.054 1.035 1.020 1.010  0 2.263 2.145 2.096 2.055 2.025  0 1.154 1.079 1.050 1.027 1.012
1 1.113 1.053 1.032 1.020 1.010  1 2.217 2.125 2.088 2.052 2.024  1 1.142 1.074 1.048 1.027 1.012
2 1.112 1.050 1.033 1.020 1.010  2 2.194 2.113 2.081 2.050 2.024  2 1.132 1.071 1.047 1.026 1.012
3 1.113 1.051 1.034 1.020 1.010  3 2.185 2.107 2.077 2.049 2.024  3 1.122 1.069 1.045 1.026 1.012
4 1.111 1.052 1.035 1.021 1.010  4 2.172 2.100 2.073 2.048 2.024  4 1.114 1.066 1.044 1.025 1.011
5 1.112 1.053 1.036 1.022 1.011  5 2.167 2.097 2.070 2.045 2.022  5 1.106 1.064 1.042 1.024 1.011

10 1.098 1.056 1.039 1.026 1.013  10 2.145 2.080 2.059 2.040 2.022  10 1.079 1.052 1.037 1.022 1.011
20 1.079 1.055 1.043 1.030 1.018  20 2.117 2.065 2.050 2.033 2.019  20 1.051 1.038 1.030 1.019 1.010
30 1.070 1.054 1.045 1.034 1.021  30 2.097 2.059 2.044 2.030 2.017  30 1.039 1.029 1.024 1.017 1.009
50 1.064 1.056 1.049 1.041 1.028  50 2.073 2.050 2.036 2.026 2.015  50 1.027 1.021 1.018 1.013 1.008

100 1.060 1.057 1.054 1.049 1.038  100 2.043 2.034 2.028 2.019 2.012  100 1.017 1.014 1.012 1.010 1.007

 
See the note to Table 2. 



 
Table 5. RMSFE conditional on y = αααα2222 + σσσσ2222  - (AR(1) model) 

                    
Experiment no. 1a : No break  Experiment no. 4a : Large break in β  Experiment no. 7a : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.421 1.164 1.088 1.038 1.013  0 1.344 1.152 1.086 1.039 1.013  0 0.922 0.619 0.551 0.519 0.506
1 1.375 1.153 1.085 1.037 1.012  1 1.293 1.146 1.085 1.039 1.013  1 1.177 0.710 0.591 0.530 0.508
2 1.329 1.142 1.079 1.036 1.012  2 1.254 1.128 1.078 1.037 1.013  2 1.208 0.742 0.609 0.539 0.509
3 1.301 1.130 1.075 1.034 1.012  3 1.220 1.118 1.073 1.037 1.013  3 1.178 0.745 0.618 0.542 0.510
4 1.274 1.123 1.069 1.033 1.012  4 1.197 1.109 1.070 1.035 1.013  4 1.156 0.746 0.620 0.545 0.511
5 1.248 1.115 1.067 1.032 1.011  5 1.182 1.102 1.066 1.034 1.013  5 1.118 0.744 0.623 0.547 0.512

10 1.165 1.085 1.053 1.028 1.011  10 1.141 1.084 1.057 1.032 1.013  10 0.959 0.709 0.614 0.550 0.514
20 1.086 1.054 1.037 1.021 1.009  20 1.120 1.074 1.051 1.030 1.013  20 0.786 0.651 0.593 0.545 0.515
30 1.053 1.037 1.027 1.017 1.008  30 1.118 1.074 1.051 1.030 1.013  30 0.701 0.618 0.577 0.541 0.515
50 1.027 1.021 1.017 1.012 1.007  50 1.119 1.078 1.055 1.033 1.014  50 0.618 0.581 0.560 0.535 0.515

100 1.011 1.009 1.008 1.007 1.005  100 1.129 1.091 1.068 1.043 1.019  100 0.555 0.545 0.538 0.526 0.514
                    
Experiment no. 2a : Moderate break in β  Experiment no. 5a : Post-break unit root    Experiment no. 8a : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.352 1.158 1.087 1.039 1.013  0 1.458 1.263 1.188 1.119 1.063  0 1.514 1.190 1.098 1.041 1.013
1 1.303 1.145 1.083 1.038 1.013  1 1.372 1.229 1.167 1.110 1.060  1 1.460 1.180 1.095 1.040 1.013
2 1.260 1.129 1.076 1.037 1.013  2 1.321 1.200 1.148 1.097 1.056  2 1.419 1.169 1.092 1.039 1.013
3 1.228 1.117 1.073 1.035 1.012  3 1.276 1.172 1.130 1.087 1.052  3 1.379 1.159 1.087 1.038 1.013
4 1.197 1.106 1.068 1.034 1.012  4 1.242 1.157 1.119 1.081 1.048  4 1.348 1.152 1.083 1.037 1.013
5 1.180 1.098 1.063 1.034 1.012  5 1.214 1.141 1.106 1.075 1.046  5 1.326 1.143 1.081 1.037 1.012

10 1.118 1.073 1.050 1.029 1.012  10 1.140 1.098 1.076 1.054 1.035  10 1.221 1.113 1.068 1.033 1.012
20 1.079 1.053 1.039 1.024 1.011  20 1.095 1.068 1.052 1.038 1.025  20 1.129 1.077 1.051 1.027 1.011
30 1.065 1.046 1.034 1.022 1.011  30 1.080 1.056 1.043 1.030 1.020  30 1.089 1.058 1.040 1.023 1.010
50 1.053 1.039 1.031 1.020 1.010  50 1.069 1.048 1.036 1.025 1.015  50 1.051 1.037 1.029 1.018 1.009

100 1.046 1.036 1.029 1.020 1.011  100 1.066 1.045 1.033 1.021 1.011  100 1.025 1.021 1.018 1.013 1.008
                    
Experiment no. 3a : Break in β (decline)  Experiment no. 6a : Higher post-break volatility  Experiment no. 9a : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 1.161 1.066 1.039 1.021 1.010  0 2.634 2.295 2.173 2.077 2.025  0 1.372 1.143 1.080 1.036 1.012
1 1.136 1.057 1.034 1.019 1.009  1 2.443 2.238 2.146 2.071 2.025  1 1.329 1.132 1.074 1.033 1.012
2 1.126 1.053 1.033 1.018 1.009  2 2.344 2.199 2.130 2.067 2.024  2 1.290 1.120 1.068 1.031 1.011
3 1.121 1.052 1.032 1.018 1.009  3 2.286 2.172 2.116 2.062 2.023  3 1.257 1.110 1.063 1.030 1.011
4 1.114 1.050 1.032 1.018 1.009  4 2.250 2.151 2.106 2.059 2.023  4 1.231 1.103 1.058 1.029 1.010
5 1.111 1.049 1.032 1.019 1.009  5 2.218 2.135 2.095 2.055 2.022  5 1.211 1.096 1.056 1.027 1.010

10 1.087 1.047 1.032 1.020 1.010  10 2.143 2.088 2.067 2.043 2.020  10 1.139 1.070 1.043 1.023 1.009
20 1.062 1.041 1.032 1.022 1.012  20 2.085 2.055 2.043 2.030 2.016  20 1.073 1.043 1.030 1.017 1.008
30 1.051 1.038 1.031 1.024 1.015  30 2.060 2.040 2.031 2.023 2.013  30 1.045 1.030 1.022 1.014 1.007
50 1.044 1.037 1.033 1.027 1.019  50 2.034 2.026 2.021 2.016 2.010  50 1.025 1.019 1.015 1.010 1.006

100 1.040 1.038 1.036 1.032 1.025  100 2.014 2.013 2.011 2.009 2.006  100 1.013 1.011 1.009 1.007 1.005

 
See the note to Table 2. 



 
 

Table 6: Small sample bias of the OLS estimate of β1  - (AR(2) Model) 
                    
Experiment no. 1b : No break  Experiment no.4b : Large decrease in ββββ  Experiment no. 7b : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.193 -0.088 -0.058 -0.034 -0.015  0 -0.168 -0.080 -0.052 -0.030 -0.015  0 -0.136 -0.068 -0.046 -0.029 -0.015
1 -0.165 -0.081 -0.052 -0.032 -0.017  1 -0.134 -0.061 -0.038 -0.023 -0.011  1 -0.144 -0.084 -0.058 -0.037 -0.019
2 -0.157 -0.080 -0.055 -0.033 -0.016  2 -0.097 -0.046 -0.031 -0.018 -0.008  2 -0.148 -0.090 -0.066 -0.043 -0.021
3 -0.145 -0.076 -0.050 -0.031 -0.015  3 -0.062 -0.031 -0.018 -0.010 -0.003  3 -0.138 -0.088 -0.064 -0.045 -0.025
4 -0.129 -0.072 -0.049 -0.031 -0.015  4 -0.037 -0.015 -0.010 -0.006 -0.001  4 -0.125 -0.089 -0.064 -0.049 -0.025
5 -0.118 -0.069 -0.048 -0.030 -0.016  5 -0.015 -0.006 -0.001 0.002 0.002  5 -0.122 -0.085 -0.064 -0.046 -0.027

10 -0.087 -0.054 -0.042 -0.027 -0.013  10 0.063 0.046 0.036 0.026 0.015  10 -0.091 -0.068 -0.058 -0.043 -0.027
20 -0.059 -0.039 -0.034 -0.022 -0.013  20 0.145 0.112 0.091 0.064 0.039  20 -0.059 -0.051 -0.044 -0.034 -0.026
30 -0.042 -0.034 -0.028 -0.020 -0.013  30 0.183 0.148 0.125 0.094 0.059  30 -0.043 -0.038 -0.035 -0.028 -0.021
50 -0.027 -0.024 -0.020 -0.016 -0.010  50 0.224 0.193 0.168 0.135 0.091  50 -0.030 -0.026 -0.023 -0.021 -0.015

100 -0.014 -0.014 -0.012 -0.011 -0.008  100 0.258 0.236 0.218 0.189 0.142  100 -0.016 -0.014 -0.013 -0.011 -0.010
                    
Experiment no. 2b : Small break in ββββ  Experiment no. 5b : Break in ββββ (post-break unit root)  Experiment no. 8b : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.193 -0.087 -0.057 -0.033 -0.017  0 -0.353 -0.179 -0.126 -0.077 -0.038  0 -0.186 -0.087 -0.055 -0.033 -0.016
1 -0.185 -0.088 -0.058 -0.035 -0.017  1 -0.325 -0.182 -0.124 -0.078 -0.038  1 -0.148 -0.074 -0.047 -0.028 -0.014
2 -0.170 -0.087 -0.057 -0.035 -0.018  2 -0.306 -0.174 -0.122 -0.076 -0.041  2 -0.125 -0.062 -0.042 -0.025 -0.013
3 -0.158 -0.087 -0.059 -0.036 -0.018  3 -0.292 -0.172 -0.121 -0.077 -0.041  3 -0.105 -0.053 -0.037 -0.022 -0.012
4 -0.154 -0.087 -0.061 -0.037 -0.019  4 -0.275 -0.168 -0.122 -0.078 -0.040  4 -0.092 -0.047 -0.031 -0.019 -0.009
5 -0.146 -0.087 -0.061 -0.037 -0.020  5 -0.267 -0.167 -0.122 -0.077 -0.042  5 -0.081 -0.041 -0.027 -0.017 -0.008

10 -0.129 -0.085 -0.063 -0.041 -0.022  10 -0.228 -0.154 -0.117 -0.079 -0.043  10 -0.046 -0.020 -0.011 -0.005 -0.001
20 -0.114 -0.086 -0.067 -0.048 -0.027  20 -0.202 -0.148 -0.118 -0.083 -0.048  20 -0.021 -0.002 0.004 0.007 0.007
30 -0.108 -0.087 -0.071 -0.053 -0.031  30 -0.193 -0.147 -0.121 -0.087 -0.053  30 -0.013 0.003 0.008 0.013 0.014
50 -0.104 -0.090 -0.076 -0.060 -0.039  50 -0.188 -0.153 -0.128 -0.098 -0.063  50 -0.006 0.008 0.014 0.020 0.020

100 -0.102 -0.091 -0.083 -0.071 -0.052  100 -0.190 -0.163 -0.142 -0.115 -0.079  100 -0.001 0.008 0.014 0.020 0.026
                    
Experiment no. 3b : Large increase in ββββ  Experiment no. 6b : Higher post-break volatility  Experiment no. 9b : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.199 -0.088 -0.057 -0.033 -0.016  0 -0.204 -0.092 -0.057 -0.033 -0.016  0 -0.189 -0.084 -0.054 -0.032 -0.016
1 -0.199 -0.099 -0.067 -0.039 -0.018  1 -0.183 -0.087 -0.055 -0.032 -0.015  1 -0.154 -0.074 -0.046 -0.027 -0.014
2 -0.201 -0.108 -0.070 -0.043 -0.021  2 -0.162 -0.084 -0.056 -0.032 -0.016  2 -0.126 -0.062 -0.042 -0.025 -0.012
3 -0.209 -0.115 -0.079 -0.049 -0.025  3 -0.148 -0.083 -0.053 -0.032 -0.016  3 -0.107 -0.053 -0.037 -0.023 -0.010
4 -0.212 -0.121 -0.084 -0.052 -0.026  4 -0.136 -0.075 -0.053 -0.031 -0.015  4 -0.091 -0.048 -0.031 -0.018 -0.010
5 -0.214 -0.127 -0.091 -0.056 -0.030  5 -0.131 -0.071 -0.051 -0.030 -0.016  5 -0.079 -0.039 -0.027 -0.018 -0.008

10 -0.233 -0.154 -0.115 -0.077 -0.040  10 -0.103 -0.062 -0.044 -0.030 -0.015  10 -0.045 -0.021 -0.013 -0.006 -0.002
20 -0.249 -0.187 -0.151 -0.108 -0.063  20 -0.073 -0.052 -0.039 -0.026 -0.013  20 -0.023 -0.003 0.003 0.007 0.008
30 -0.264 -0.209 -0.175 -0.130 -0.080  30 -0.060 -0.044 -0.036 -0.025 -0.014  30 -0.013 0.004 0.009 0.012 0.013
50 -0.272 -0.235 -0.205 -0.164 -0.109  50 -0.047 -0.039 -0.031 -0.020 -0.013  50 -0.006 0.007 0.014 0.018 0.020

100 -0.286 -0.261 -0.241 -0.207 -0.155  100 -0.027 -0.025 -0.023 -0.016 -0.011  100 -0.003 0.008 0.014 0.021 0.026

 
Note: Experiments 1b to 9b are defined in Table 1b. 



 
Table 7: Small sample bias of the OLS estimate of ββββ1 1 1 1 + ββββ2   2   2   2   - (AR(2) model)                             

                    
Experiment no. 1b : No break  Experiment no. 4b : Large decrease in ββββ  Experiment no. 7b : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.315 -0.152 -0.098 -0.059 -0.028  0 -0.342 -0.173 -0.117 -0.071 -0.035  0 -0.159 -0.091 -0.065 -0.043 -0.024 
1 -0.277 -0.143 -0.096 -0.057 -0.029  1 -0.302 -0.159 -0.106 -0.065 -0.032  1 -0.193 -0.116 -0.083 -0.056 -0.030 
2 -0.256 -0.137 -0.094 -0.056 -0.028  2 -0.267 -0.146 -0.099 -0.060 -0.031  2 -0.205 -0.127 -0.095 -0.063 -0.034 
3 -0.237 -0.131 -0.088 -0.055 -0.028  3 -0.231 -0.129 -0.090 -0.055 -0.028  3 -0.202 -0.131 -0.099 -0.068 -0.037 
4 -0.220 -0.127 -0.087 -0.054 -0.028  4 -0.204 -0.117 -0.084 -0.053 -0.026  4 -0.195 -0.132 -0.100 -0.072 -0.039 
5 -0.202 -0.118 -0.083 -0.052 -0.028  5 -0.182 -0.110 -0.078 -0.047 -0.024  5 -0.192 -0.129 -0.102 -0.071 -0.041 

10 -0.147 -0.097 -0.073 -0.048 -0.025  10 -0.102 -0.066 -0.047 -0.032 -0.017  10 -0.151 -0.109 -0.093 -0.070 -0.044 
20 -0.100 -0.072 -0.058 -0.041 -0.024  20 -0.023 -0.015 -0.009 -0.006 -0.002  20 -0.102 -0.084 -0.071 -0.056 -0.041 
30 -0.072 -0.058 -0.048 -0.036 -0.022  30 0.013 0.014 0.013 0.012 0.009  30 -0.076 -0.066 -0.058 -0.049 -0.034 
50 -0.049 -0.041 -0.036 -0.029 -0.018  50 0.047 0.043 0.040 0.035 0.026  50 -0.049 -0.044 -0.041 -0.035 -0.028 

100 -0.026 -0.024 -0.022 -0.020 -0.014  100 0.076 0.072 0.068 0.062 0.049  100 -0.027 -0.025 -0.024 -0.022 -0.018 
                    
Experiment no. 2b : Small break in ββββ  Experiment no. 5b : Break in ββββ (post-break unit root)  Experiment no. 8b : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.317 -0.154 -0.098 -0.059 -0.030  0 -0.544 -0.290 -0.202 -0.125 -0.063  0 -0.289 -0.144 -0.096 -0.056 -0.028 
1 -0.303 -0.154 -0.102 -0.061 -0.030  1 -0.503 -0.284 -0.195 -0.122 -0.062  1 -0.236 -0.121 -0.083 -0.049 -0.025 
2 -0.286 -0.154 -0.101 -0.063 -0.031  2 -0.465 -0.271 -0.190 -0.120 -0.062  2 -0.202 -0.104 -0.071 -0.043 -0.021 
3 -0.272 -0.154 -0.106 -0.063 -0.033  3 -0.437 -0.261 -0.184 -0.117 -0.061  3 -0.174 -0.090 -0.062 -0.036 -0.019 
4 -0.264 -0.153 -0.108 -0.066 -0.034  4 -0.415 -0.250 -0.180 -0.115 -0.060  4 -0.154 -0.079 -0.052 -0.030 -0.015 
5 -0.253 -0.152 -0.108 -0.067 -0.036  5 -0.395 -0.243 -0.175 -0.112 -0.060  5 -0.138 -0.069 -0.045 -0.026 -0.013 

10 -0.232 -0.154 -0.114 -0.075 -0.040  10 -0.327 -0.214 -0.159 -0.105 -0.057  10 -0.084 -0.035 -0.018 -0.007 -0.001 
20 -0.211 -0.157 -0.125 -0.090 -0.051  20 -0.269 -0.186 -0.142 -0.097 -0.053  20 -0.042 -0.006 0.007 0.016 0.017 
30 -0.207 -0.163 -0.135 -0.100 -0.059  30 -0.244 -0.175 -0.135 -0.093 -0.051  30 -0.027 0.006 0.018 0.028 0.028 
50 -0.201 -0.171 -0.147 -0.116 -0.074  50 -0.221 -0.167 -0.132 -0.091 -0.050  50 -0.014 0.013 0.026 0.039 0.041 

100 -0.200 -0.179 -0.164 -0.139 -0.102  100 -0.207 -0.167 -0.137 -0.097 -0.054  100 -0.006 0.014 0.026 0.041 0.052 
                    
Experiment no. 3b : Large increase in ββββ  Experiment no. 6b : Higher post-break volatility  Experiment no. 9b : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 -0.323 -0.153 -0.100 -0.058 -0.029  0 -0.365 -0.166 -0.105 -0.061 -0.029  0 -0.289 -0.142 -0.094 -0.055 -0.028 
1 -0.304 -0.151 -0.102 -0.059 -0.030  1 -0.327 -0.156 -0.102 -0.058 -0.028  1 -0.238 -0.122 -0.081 -0.050 -0.025 
2 -0.282 -0.147 -0.100 -0.060 -0.029  2 -0.292 -0.150 -0.101 -0.058 -0.028  2 -0.201 -0.106 -0.072 -0.043 -0.021 
3 -0.268 -0.147 -0.100 -0.060 -0.030  3 -0.265 -0.144 -0.095 -0.057 -0.029  3 -0.175 -0.091 -0.061 -0.038 -0.018 
4 -0.258 -0.143 -0.100 -0.060 -0.031  4 -0.250 -0.137 -0.095 -0.057 -0.028  4 -0.154 -0.078 -0.053 -0.031 -0.016 
5 -0.245 -0.140 -0.098 -0.059 -0.031  5 -0.232 -0.130 -0.090 -0.055 -0.028  5 -0.138 -0.069 -0.045 -0.027 -0.013 

10 -0.209 -0.134 -0.099 -0.064 -0.033  10 -0.183 -0.116 -0.081 -0.053 -0.027  10 -0.081 -0.035 -0.019 -0.007 -0.001 
20 -0.172 -0.126 -0.098 -0.066 -0.037  20 -0.132 -0.093 -0.070 -0.047 -0.026  20 -0.043 -0.006 0.008 0.016 0.017 
30 -0.160 -0.120 -0.097 -0.069 -0.040  30 -0.106 -0.078 -0.062 -0.043 -0.024  30 -0.027 0.004 0.019 0.028 0.029 
50 -0.140 -0.116 -0.099 -0.076 -0.046  50 -0.080 -0.064 -0.052 -0.037 -0.022  50 -0.013 0.013 0.026 0.038 0.042 

100 -0.127 -0.112 -0.102 -0.084 -0.059  100 -0.046 -0.044 -0.038 -0.029 -0.019  100 -0.007 0.014 0.026 0.041 0.053 

 
See the note to Table 6. 
 



Table 8: Bias of forecast error conditional on y = αααα2222 + σσσσ2222 (AR(2) model) 
                    
Experiment no. 1b: No break  Experiment no. 4b: Large decrease in β  Experiment no. 7b: Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.315 -0.152 -0.098 -0.059 -0.028  0 -0.342 -0.173 -0.117 -0.071 -0.035  0 -0.079 -0.045 -0.033 -0.021 -0.012
1 -0.277 -0.143 -0.096 -0.057 -0.029  1 -0.302 -0.159 -0.106 -0.065 -0.032  1 -0.096 -0.058 -0.042 -0.028 -0.015
2 -0.256 -0.137 -0.094 -0.056 -0.028  2 -0.267 -0.146 -0.099 -0.060 -0.031  2 -0.102 -0.064 -0.047 -0.031 -0.017
3 -0.237 -0.131 -0.088 -0.055 -0.028  3 -0.231 -0.129 -0.090 -0.055 -0.028  3 -0.101 -0.066 -0.049 -0.034 -0.019
4 -0.220 -0.127 -0.087 -0.054 -0.028  4 -0.204 -0.117 -0.084 -0.053 -0.026  4 -0.098 -0.066 -0.050 -0.036 -0.020
5 -0.202 -0.118 -0.083 -0.052 -0.028  5 -0.182 -0.110 -0.078 -0.047 -0.024  5 -0.096 -0.064 -0.051 -0.035 -0.020

10 -0.147 -0.097 -0.073 -0.048 -0.025  10 -0.102 -0.066 -0.047 -0.032 -0.017  10 -0.076 -0.055 -0.046 -0.035 -0.022
20 -0.100 -0.072 -0.058 -0.041 -0.024  20 -0.023 -0.015 -0.009 -0.006 -0.002  20 -0.051 -0.042 -0.035 -0.028 -0.020
30 -0.072 -0.058 -0.048 -0.036 -0.022  30 0.013 0.014 0.013 0.012 0.009  30 -0.038 -0.033 -0.029 -0.024 -0.017
50 -0.049 -0.041 -0.036 -0.029 -0.018  50 0.047 0.043 0.040 0.035 0.026  50 -0.025 -0.022 -0.021 -0.017 -0.014

100 -0.026 -0.024 -0.022 -0.020 -0.014  100 0.076 0.072 0.068 0.062 0.049  100 -0.013 -0.012 -0.012 -0.011 -0.009
                    
Experiment no. 2b: Small break in β  Experiment no. 5b: Break in β (post-break unit root)  Experiment no. 8b: Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.317 -0.154 -0.098 -0.059 -0.030  0 -0.544 -0.290 -0.202 -0.125 -0.063  0 -0.344 -0.160 -0.103 -0.059 -0.029
1 -0.303 -0.154 -0.102 -0.061 -0.030  1 -0.503 -0.284 -0.195 -0.122 -0.062  1 -0.339 -0.161 -0.106 -0.061 -0.030
2 -0.286 -0.154 -0.101 -0.063 -0.031  2 -0.465 -0.271 -0.190 -0.120 -0.062  2 -0.340 -0.164 -0.108 -0.064 -0.031
3 -0.272 -0.154 -0.106 -0.063 -0.033  3 -0.437 -0.261 -0.184 -0.117 -0.061  3 -0.338 -0.168 -0.111 -0.065 -0.033
4 -0.264 -0.153 -0.108 -0.066 -0.034  4 -0.415 -0.250 -0.180 -0.115 -0.060  4 -0.341 -0.173 -0.114 -0.066 -0.033
5 -0.253 -0.152 -0.108 -0.067 -0.036  5 -0.395 -0.243 -0.175 -0.112 -0.060  5 -0.342 -0.176 -0.117 -0.069 -0.035

10 -0.232 -0.154 -0.114 -0.075 -0.040  10 -0.327 -0.214 -0.159 -0.105 -0.057  10 -0.349 -0.195 -0.133 -0.082 -0.041
20 -0.211 -0.157 -0.125 -0.090 -0.051  20 -0.269 -0.186 -0.142 -0.097 -0.053  20 -0.363 -0.227 -0.165 -0.104 -0.054
30 -0.207 -0.163 -0.135 -0.100 -0.059  30 -0.244 -0.175 -0.135 -0.093 -0.051  30 -0.377 -0.253 -0.192 -0.126 -0.067
50 -0.201 -0.171 -0.147 -0.116 -0.074  50 -0.221 -0.167 -0.132 -0.091 -0.050  50 -0.392 -0.290 -0.231 -0.161 -0.091

100 -0.200 -0.179 -0.164 -0.139 -0.102  100 -0.207 -0.167 -0.137 -0.097 -0.054  100 -0.411 -0.340 -0.290 -0.223 -0.139
                    
Experiment no. 3b: Large increase in β  Experiment no. 6b: Higher post-break volatility  Experiment no. 9b: Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100
0 -0.323 -0.153 -0.100 -0.058 -0.029  0 -0.730 -0.332 -0.209 -0.123 -0.057  0 -0.234 -0.126 -0.087 -0.052 -0.028
1 -0.304 -0.151 -0.102 -0.059 -0.030  1 -0.655 -0.311 -0.204 -0.117 -0.056  1 -0.134 -0.082 -0.058 -0.038 -0.020
2 -0.282 -0.147 -0.100 -0.060 -0.029  2 -0.584 -0.299 -0.201 -0.117 -0.056  2 -0.065 -0.046 -0.035 -0.023 -0.012
3 -0.268 -0.147 -0.100 -0.060 -0.030  3 -0.529 -0.288 -0.190 -0.113 -0.057  3 -0.013 -0.014 -0.011 -0.009 -0.004
4 -0.258 -0.143 -0.100 -0.060 -0.031  4 -0.499 -0.273 -0.190 -0.115 -0.056  4 0.033 0.014 0.008 0.005 0.002
5 -0.245 -0.140 -0.098 -0.059 -0.031  5 -0.465 -0.261 -0.180 -0.111 -0.056  5 0.067 0.038 0.027 0.016 0.009

10 -0.209 -0.134 -0.099 -0.064 -0.033  10 -0.366 -0.232 -0.161 -0.105 -0.054  10 0.183 0.124 0.096 0.067 0.039
20 -0.172 -0.126 -0.098 -0.066 -0.037  20 -0.263 -0.186 -0.140 -0.094 -0.053  20 0.279 0.216 0.180 0.136 0.087
30 -0.160 -0.120 -0.097 -0.069 -0.040  30 -0.213 -0.157 -0.125 -0.086 -0.048  30 0.323 0.265 0.228 0.181 0.123
50 -0.140 -0.116 -0.099 -0.076 -0.046  50 -0.161 -0.128 -0.105 -0.074 -0.045  50 0.364 0.317 0.284 0.238 0.174

100 -0.127 -0.112 -0.102 -0.084 -0.059  100 -0.092 -0.088 -0.076 -0.058 -0.038  100 0.399 0.367 0.342 0.304 0.244
 
See the note to Table 6.



 
Table 9: Unconditional root mean squared forecast error - (AR(2) model) 

                    
Experiment no. 1b : No break  Experiment no. 4b : Large decrease in ββββ  Experiment no. 7b : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.192 1.083 1.054 1.031 1.015  0 1.180 1.080 1.052 1.031 1.015  0 0.569 0.531 0.522 0.513 0.507 
1 1.166 1.078 1.051 1.030 1.015  1 1.160 1.077 1.051 1.029 1.015  1 0.604 0.549 0.533 0.520 0.510 
2 1.152 1.075 1.048 1.030 1.015  2 1.145 1.074 1.049 1.029 1.015  2 0.619 0.558 0.539 0.524 0.512 
3 1.139 1.071 1.048 1.029 1.015  3 1.131 1.070 1.048 1.029 1.015  3 0.628 0.562 0.542 0.526 0.514 
4 1.125 1.068 1.046 1.028 1.015  4 1.122 1.067 1.047 1.029 1.015  4 0.633 0.566 0.546 0.528 0.515 
5 1.115 1.066 1.045 1.029 1.014  5 1.115 1.064 1.044 1.028 1.014  5 0.635 0.568 0.547 0.529 0.516 

10 1.082 1.054 1.040 1.026 1.014  10 1.086 1.056 1.040 1.026 1.014  10 0.635 0.572 0.551 0.533 0.518 
20 1.052 1.039 1.031 1.022 1.012  20 1.068 1.047 1.036 1.025 1.014  20 0.615 0.570 0.551 0.532 0.518 
30 1.039 1.031 1.025 1.019 1.011  30 1.058 1.042 1.036 1.024 1.014  30 0.594 0.563 0.547 0.532 0.518 
50 1.025 1.022 1.019 1.015 1.010  50 1.052 1.042 1.034 1.025 1.015  50 0.567 0.551 0.541 0.529 0.517 

100 1.014 1.013 1.012 1.010 1.008  100 1.047 1.041 1.036 1.028 1.018  100 0.539 0.533 0.529 0.523 0.515 
                    
Experiment no. 2b : Small break in ββββ  Experiment no. 5b : Break in ββββ (post-break unit root)  Experiment no. 8b : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.190 1.083 1.053 1.031 1.015  0 1.177 1.089 1.061 1.038 1.019  0 1.185 1.083 1.052 1.031 1.015 
1 1.170 1.080 1.052 1.031 1.015  1 1.165 1.086 1.059 1.037 1.019  1 1.166 1.075 1.049 1.030 1.015 
2 1.152 1.075 1.051 1.030 1.015  2 1.149 1.081 1.057 1.037 1.019  2 1.148 1.074 1.049 1.029 1.015 
3 1.137 1.073 1.048 1.029 1.015  3 1.140 1.079 1.057 1.035 1.019  3 1.140 1.069 1.047 1.028 1.015 
4 1.124 1.070 1.048 1.029 1.015  4 1.129 1.076 1.055 1.035 1.019  4 1.134 1.068 1.047 1.028 1.015 
5 1.114 1.066 1.046 1.028 1.015  5 1.124 1.075 1.052 1.034 1.018  5 1.125 1.066 1.045 1.028 1.015 

10 1.083 1.056 1.041 1.027 1.014  10 1.102 1.067 1.048 1.032 1.017  10 1.105 1.062 1.043 1.027 1.015 
20 1.059 1.045 1.034 1.024 1.013  20 1.084 1.058 1.045 1.030 1.016  20 1.092 1.059 1.044 1.029 1.015 
30 1.050 1.038 1.031 1.023 1.013  30 1.077 1.058 1.044 1.030 1.017  30 1.088 1.059 1.046 1.031 1.017 
50 1.039 1.033 1.027 1.021 1.013  50 1.077 1.059 1.048 1.032 1.017  50 1.086 1.063 1.050 1.035 1.020 

100 1.033 1.028 1.025 1.019 1.013  100 1.089 1.072 1.060 1.041 1.021  100 1.087 1.070 1.059 1.044 1.027 
                    
Experiment no. 3b : Large increase in ββββ  Experiment no. 6b : Higher post-break volatility  Experiment no. 9b : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.194 1.084 1.053 1.031 1.015  0 2.428 2.176 2.111 2.063 2.030  0 1.184 1.080 1.052 1.030 1.015 
1 1.175 1.079 1.053 1.031 1.015  1 2.367 2.164 2.107 2.062 2.030  1 1.164 1.075 1.050 1.030 1.015 
2 1.156 1.076 1.051 1.030 1.015  2 2.332 2.159 2.104 2.061 2.031  2 1.151 1.072 1.048 1.029 1.015 
3 1.143 1.073 1.049 1.030 1.015  3 2.315 2.147 2.100 2.060 2.030  3 1.140 1.070 1.047 1.029 1.015 
4 1.130 1.071 1.049 1.029 1.015  4 2.302 2.145 2.096 2.058 2.029  4 1.132 1.068 1.047 1.028 1.014 
5 1.122 1.068 1.047 1.029 1.015  5 2.287 2.140 2.096 2.058 2.029  5 1.124 1.067 1.046 1.028 1.014 

10 1.097 1.061 1.043 1.028 1.014  10 2.238 2.124 2.087 2.055 2.029  10 1.104 1.061 1.044 1.027 1.014 
20 1.074 1.053 1.040 1.026 1.015  20 2.194 2.106 2.076 2.049 2.027  20 1.091 1.059 1.044 1.029 1.015 
30 1.065 1.048 1.038 1.026 1.015  30 2.161 2.095 2.068 2.046 2.026  30 1.088 1.060 1.045 1.031 1.017 
50 1.055 1.046 1.037 1.027 1.016  50 2.122 2.081 2.061 2.042 2.024  50 1.086 1.063 1.050 1.035 1.020 

100 1.050 1.044 1.038 1.030 1.019  100 2.080 2.061 2.049 2.034 2.021  100 1.087 1.070 1.059 1.044 1.027 

 
See the note to Table 6. 
 



 
Table 10: Root mean squared forecast error conditional on y = αααα2222 + σσσσ2222 - (AR(2) model) 

                    
Experiment no. 1b : No break  Experiment no. 4b : Large decrease in ββββ  Experiment no. 7b : Lower post-break volatility 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.206 1.074 1.043 1.022 1.010  0 1.214 1.084 1.051 1.027 1.012  0 0.572 0.528 0.517 0.510 0.505 
1 1.172 1.069 1.042 1.022 1.010  1 1.185 1.078 1.047 1.026 1.012  1 0.607 0.543 0.525 0.514 0.506 
2 1.155 1.066 1.040 1.022 1.010  2 1.163 1.073 1.045 1.025 1.012  2 0.621 0.549 0.530 0.516 0.507 
3 1.139 1.062 1.038 1.021 1.010  3 1.142 1.067 1.043 1.024 1.011  3 0.628 0.553 0.533 0.518 0.508 
4 1.125 1.059 1.037 1.020 1.010  4 1.128 1.063 1.041 1.023 1.011  4 0.633 0.556 0.534 0.519 0.509 
5 1.111 1.054 1.035 1.020 1.010  5 1.114 1.059 1.039 1.023 1.011  5 0.635 0.559 0.537 0.520 0.509 

10 1.074 1.043 1.030 1.018 1.009  10 1.073 1.045 1.031 1.020 1.010  10 0.634 0.565 0.541 0.523 0.510 
20 1.043 1.030 1.022 1.015 1.008  20 1.041 1.030 1.023 1.016 1.009  20 0.612 0.565 0.544 0.525 0.512 
30 1.030 1.023 1.018 1.013 1.007  30 1.028 1.022 1.018 1.014 1.008  30 0.590 0.559 0.542 0.526 0.512 
50 1.018 1.015 1.013 1.010 1.006  50 1.018 1.016 1.014 1.011 1.007  50 0.564 0.548 0.537 0.525 0.513 

100 1.009 1.008 1.007 1.006 1.005  100 1.012 1.011 1.010 1.009 1.006  100 0.537 0.531 0.527 0.520 0.512 
                    
Experiment no. 2b : Small break in ββββ  Experiment no. 5b : Break in ββββ (post-break unit root)  Experiment no. 8b : Break in mean (increase) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.207 1.076 1.043 1.023 1.010  0 1.623 1.319 1.219 1.133 1.066  0 1.233 1.080 1.045 1.023 1.010 
1 1.183 1.072 1.043 1.023 1.010  1 1.523 1.288 1.191 1.125 1.064  1 1.215 1.077 1.044 1.023 1.010 
2 1.160 1.068 1.041 1.022 1.010  2 1.436 1.248 1.177 1.111 1.061  2 1.199 1.075 1.043 1.023 1.010 
3 1.145 1.067 1.041 1.022 1.010  3 1.376 1.219 1.157 1.103 1.059  3 1.188 1.073 1.043 1.023 1.010 
4 1.129 1.063 1.039 1.022 1.010  4 1.331 1.196 1.144 1.096 1.054  4 1.177 1.072 1.042 1.022 1.010 
5 1.118 1.060 1.039 1.021 1.010  5 1.295 1.176 1.129 1.088 1.051  5 1.169 1.069 1.041 1.022 1.010 

10 1.085 1.050 1.034 1.020 1.010  10 1.185 1.117 1.088 1.062 1.039  10 1.140 1.064 1.039 1.022 1.010 
20 1.058 1.040 1.029 1.019 1.009  20 1.104 1.069 1.053 1.039 1.026  20 1.117 1.060 1.039 1.022 1.010 
30 1.047 1.034 1.027 1.018 1.009  30 1.072 1.050 1.039 1.029 1.020  30 1.107 1.060 1.040 1.022 1.010 
50 1.037 1.029 1.024 1.017 1.009  50 1.048 1.035 1.027 1.020 1.013  50 1.100 1.062 1.044 1.025 1.011 

100 1.029 1.024 1.021 1.016 1.010  100 1.031 1.024 1.019 1.014 1.009  100 1.095 1.069 1.053 1.034 1.016 
                    
Experiment no. 3b : Large increase in ββββ  Experiment no. 6b : Higher post-break volatility  Experiment no. 9b : Break in mean (decrease) 

v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100  v1/v2 10 20 30 50 100 
0 1.210 1.075 1.044 1.022 1.010  0 2.443 2.159 2.089 2.047 2.020  0 1.159 1.064 1.039 1.021 1.010 
1 1.185 1.072 1.043 1.022 1.010  1 2.356 2.142 2.085 2.044 2.020  1 1.118 1.053 1.033 1.019 1.009 
2 1.160 1.068 1.041 1.022 1.010  2 2.296 2.132 2.081 2.043 2.020  2 1.096 1.046 1.030 1.018 1.009 
3 1.145 1.065 1.040 1.022 1.010  3 2.259 2.122 2.075 2.042 2.019  3 1.083 1.041 1.027 1.017 1.008 
4 1.132 1.061 1.039 1.021 1.010  4 2.230 2.113 2.073 2.041 2.019  4 1.073 1.038 1.026 1.016 1.008 
5 1.120 1.058 1.037 1.021 1.010  5 2.209 2.106 2.069 2.040 2.019  5 1.068 1.036 1.025 1.015 1.008 

10 1.087 1.049 1.033 1.019 1.009  10 2.148 2.083 2.057 2.035 2.018  10 1.056 1.033 1.023 1.015 1.008 
20 1.055 1.037 1.027 1.017 1.009  20 2.097 2.061 2.044 2.029 2.016  20 1.059 1.038 1.028 1.018 1.010 
30 1.042 1.030 1.023 1.015 1.008  30 2.074 2.049 2.037 2.025 2.014  30 1.064 1.045 1.035 1.023 1.012 
50 1.029 1.023 1.018 1.013 1.008  50 2.051 2.037 2.029 2.021 2.013  50 1.072 1.055 1.045 1.033 1.019 

100 1.018 1.015 1.013 1.010 1.007  100 2.028 2.024 2.020 2.015 2.010  100 1.080 1.069 1.060 1.048 1.032 

 
See the note to Table 6. 
 



CESifo Working Paper Series
(for full list see www.cesifo.de)

________________________________________________________________________

926 Rudi Dornbusch and Stanley Fischer, International Financial Crises, April 2003

927 David-Jan Jansen and Jakob de Haan, Statements of ECB Officials and their Effect on
the Level and Volatility of the Euro-Dollar Exchange Rate, April 2003

928 Mario Jametti and Thomas von Ungern-Sternberg, Assessing the Efficiency of an
Insurance Provider – A Measurement Error Approach, April 2003

929 Paolo M. Panteghini and Guttorm Schjelderup, Competing for Foreign Direct
Investments: A Real Options Approach, April 2003

930 Ansgar Belke, Rainer Fehn, and Neil Foster, Does Venture Capital Investment Spur
Employment Growth?, April 2003

931 Assar Lindbeck, Sten Nyberg, and Jörgen W. Weibull, Social Norms and Welfare State
Dynamics, April 2003

932 Myrna Wooders and Ben Zissimos, Hotelling Tax Competition, April 2003

933 Torben M. Andersen, From Excess to Shortage – Recent Developments in the Danish
Labour Market, April 2003

934 Paolo M. Panteghini and Carlo Scarpa, Irreversible Investments and Regulatory Risk,
April 2003

935 Henrik Jacobsen Kleven and Claus Thustrup Kreiner, The Marginal Cost of Public
Funds in OECD Countries. Hours of Work Versus Labor Force Participation, April
2003

936 Klaus Adam, George W. Evans, and Seppo Honkapohja, Are Stationary Hyperinflation
Paths Learnable?, April 2003

937 Ulrich Hange, Education Policy and Mobility: Some Basic Results, May 2003

938 Sören Blomquist and Vidar Christiansen, Is there a Case for Public Provision of Private
Goods if Preferences are Heterogeneous? An Example with Day Care, May 2003

939 Hendrik Jürges, Kerstin Schneider, and Felix Büchel, The Effect of Central Exit
Examinations on Student Achievement: Quasi-experimental Evidence from TIMSS
Germany, May 2003

940 Samuel Bentolila and Juan F. Jimeno, Spanish Unemployment: The End of the Wild
Ride?, May 2003

http://www.cesifo.de.)/


941 Thorsten Bayindir-Upmann and Anke Gerber, The Kalai-Smorodinsky Solution in
Labor-Market Negotiations, May 2003

942 Ronnie Schöb, Workfare and Trade Unions: Labor Market Repercussions of Welfare
Reform, May 2003

943 Marko Köthenbürger, Tax Competition in a Fiscal Union with Decentralized
Leadership, May 2003

944 Albert Banal-Estañol, Inés Macho-Stadler, and Jo Seldeslachts, Mergers, Investment
Decisions and Internal Organisation, May 2003

945 Kaniska Dam and David Pérez-Castrillo, The Principal-Agent Matching Market, May
2003

946 Ronnie Schöb, The Double Dividend Hypothesis of Environmental Taxes: A Survey,
May 2003

947 Erkki Koskela and Mikko Puhakka, Stabilizing Competitive Cycles with Distortionary
Taxation, May 2003

948 Steffen Huck and Kai A. Konrad, Strategic Trade Policy and Merger Profitability, May
2003

949 Frederick van der Ploeg, Beyond the Dogma of the Fixed Book Price Agreement, May
2003

950 Thomas Eichner and Rüdiger Pethig, A Microfoundation of Predator-Prey Dynamics,
May 2003

951 Burkhard Heer and Bernd Süssmuth, Cold Progression and its Effects on Income
Distribution, May 2003

952 Yu-Fu Chen and Michael Funke, Labour Demand in Germany: An Assessment of Non-
Wage Labour Costs, May 2003

953 Hans Gersbach and Hans Haller, Competitive Markets, Collective Decisions and Group
Formation, May 2003

954 Armin Falk, Urs Fischbacher, and Simon Gächter, Living in Two Neighborhoods –
Social Interactions in the LAB, May 2003

955 Margarita Katsimi, Training, Job Security and Incentive Wages, May 2003

956 Clemens Fuest, Bernd Huber, and Jack Mintz, Capital Mobility and Tax Competition: A
Survey, May 2003

957 Edward Castronova, The Price of ‘Man’ and ‘Woman’: A Hedonic Pricing Model of
Avatar Attributes in a Synthetic World, June 2003



958 Laura Bottazzi and Marco Da Rin, Financing Entrepreneurial Firms in Europe: Facts,
Issues, and Research Agenda, June 2003

959 Bruno S. Frey and Matthias Benz, Being Independent is a Great Thing: Subjective
Evaluations of Self-Employment and Hierarchy, June 2003

960 Aaron Tornell and Frank Westermann, Credit Market Imperfections in Middle Income
Countries, June 2003

961 Hans-Werner Sinn and Wolfgang Ochel, Social Union, Convergence and Migration,
June 2003

962 Michael P. Devereux, Measuring Taxes on Income from Capital, June 2003

963 Jakob de Haan, Jan-Egbert Sturm and Bjørn Volkerink, How to Measure the Tax
Burden on Labour at the Macro-Level?, June 2003

964 Harry Grubert, The Tax Burden on Cross-Border Investment: Company Strategies and
Country Responses, June 2003

965 Kirk A. Collins and James B. Davies, Measuring Effective Tax Rates on Human
Capital: Methodology and an Application to Canada, June 2003

966 W. Steven Clark, Using Micro-Data to Assess Average Tax Rates, June 2003

967 Christopher Heady, The ‘Taxing Wages’ Approach to Measuring the Tax Burden on
Labour, June 2003

968 Michael P. Devereux and Alexander Klemm, Measuring Taxes on Income from Capital:
Evidence from the UK, June 2003

969 Bernhard Eckwert and Itzhak Zilcha, The Effect of Better Information on Income
Inequality, June 2003

970 Hartmut Egger and Josef Falkinger, The Role of Public Infrastructure for Firm Location
and International Outsourcing, June 2003

971 Dag Morten Dalen and Trond E. Olsen, Regulatory Competition and Multi-national
Banking, June 2003

972 Matthias Wrede, Tax Deductibility of Commuting Expenses and Residential Land Use
with more than one Center, June 2003

973 Alessandro Cigno and Annalisa Luporini, Scholarships or Student Loans? Subsidizing
Higher Education in the Presence of Moral Hazard, June 2003

974 Chang Woon Nam, Andrea Gebauer and Rüdiger Parsche, Is the Completion of EU
Single Market Hindered by VAT Evasion?, June 2003

975 Michael Braulke and Giacomo Corneo, Capital Taxation May Survive in Open
Economies, July 2003



976 Assar Lindbeck, An Essay on Welfare State Dynamics, July 2003

977 Henrik Jordahl and Luca Micheletto, Optimal Utilitarian Taxation and Horizontal
Equity, July 2003

978 Martin D. D. Evans and Richard K. Lyons, Are Different-Currency Assets Imperfect
Substitutes?, July 2003

979 Thorsten Bayindir-Upmann and Frank Stähler, Market Entry Regulation and
International Competition, July 2003

980 Vivek Ghosal, Firm and Establishment Volatility: The Role of Sunk Costs, Profit
Uncertainty and Technological Change, July 2003

981 Christopher A. Pissarides, Unemployment in Britain: A European Success Story, July
2003

982 Wolfgang Buchholz, Richard Cornes, and Wolfgang Peters, On the Frequency of
Interior Cournot-Nash Equilibria in a Public Good Economy, July 2003

983 Syed M. Ahsan and Panagiotis Tsigaris, Choice of Tax Base Revisited: Cash Flow vs.
Prepayment Approaches to Consumption Taxation, July 2003

984 Campbell Leith and Jim Malley, A Sectoral Analysis of Price-Setting Behavior in US
Manufacturing Industries, July 2003

985 Hyun Park and Apostolis Philippopoulos, Choosing Club Membership under Tax
Competition and Free Riding, July 2003

986 Federico Etro, Globalization and Political Geography, July 2003

987 Dan Ariely, Axel Ockenfels and Alvin E. Roth, An Experimental Analysis of Ending
Rules in Internet Auctions, July 2003

988 Paola Conconi and Carlo Perroni, Self-Enforcing International Agreements and
Domestic Policy Credibility, July 2003

989 Charles B. Blankart and Christian Kirchner, The Deadlock of the EU Budget: An
Economic Analysis of Ways In and Ways Out, July 2003

990 M. Hasham Pesaran and Allan Timmermann, Small Sample Properties of Forecasts
from Autoregressive Models under Structural Breaks, July 2003


	Abstract



