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Abstract

Height-for-age (HA) and weight-for-age (WA) of children are standard measures

to study the determinants of stunting and short-term underweight. Rather than

studying these indicators separately, this paper looks at their interaction and there-

fore at the dynamics of height and weight. Considering HA a child’s health stock

and WA nutritional investment, we develop an overlapping generations model. The

main features of the model are self-productivity of health stocks and the dynamic

complementarity between past health stocks and contemporaneous nutrition. We

test the model’s predictions on a Senegalese panel of 305 children between 0 and 5

years over three periods. To control for endogeneity and serial correlation we em-

ploy different GMM methods. We find evidence of self-productive health stocks and

that child health produced at one stage raises the productivity of nutritional inputs

at subsequent stages. Our results indicate that child health is quickly depleted and

needs constant updating. Simulations based on our estimates show that a positive

nutritional shock during the first six months of life is essentially depleted at the

age of 2. Consequently, sustainable development and nutrition programs have to

be long-term and yield higher returns if they reach babies in the early months of

infancy.
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1 Introduction

The dynamic interaction between health stocks and nutrition flows is key to child health.

Despite Grossman’s seminal work (1972) who first modeled health and the demand for

health dynamically, most of the empirical literature dealing with child nutrition in de-

veloping countries has been confined to static models. This is surprising, given that a

child’s long term health stock – usually measured by height-for-age Z-scores (HAZ)– is

dynamically linked to short term nutritional status – usually measured as the weight-for-

age Z-score (WAZ) – which is subject to substantial fluctuation in response to transitory

shocks such as spells of illness.

While common sense leads parents and doctors to establish a connection between child

weight and child height over time, the economics literature has so far only considered

them independently. The basic purpose of this paper is to study the dynamics of the link

between child weight and child height (and thus between WAZ and HAZ), as motivated

by a simple household model of intertemporal optimization in terms of nutritional inputs.

In order to test the model’s predictions empirically we need to follow children over time.

For most developing countries it is impossible to carry out this analysis given the dearth

of child panel data.1 We investigate this relationship using a unique Senegalese panel

dataset that follows 305 children between age 0 and 5 biannually over a period of 2 years.

This paper ultimatley contributes to a deeper understanding of both WAZ and HAZ,

which are among the most widely used measures of child and household welfare in de-

velopment economics (e.g. Deaton, 2007 or Strauss and Thomas, 1998). In particular,

these variables are used in the assessment of development programs, as they provide a

precise metric that is seen as being common across geographic areas and time periods.

Duflo (2003), for example, studies the impact of a cash transfer program in South Africa

on children’s WAZ and HAZ. Behrman and Hoddinott (2005) consider HAZ to analyze

the impact of the Mexican PROGRESA program on child nutrition. Arcand and Bassole

(2007) take both indicators and the dataset used in this paper to assess the impact of

the Senegalese PNIR rural infrastructure program.

A resulting question is whether understanding the HAZ-WAZ link contributes anything to

the manner in which policy interventions that are geared towards economic development

and the improvement of child health should be viewed. Estimates in this paper point out

that a single-period development intervention that aims at improving child health may

have a relatively high snapshot impact but no sustainable effect. This view is supported

1For example, the widely-used DHS or MICS datasets, which include the most commonly used an-
thropometric indicators, are confined to repeated cross-sections and do not follow children over time.
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by nutritionists who noted that randomized trials of the impact of, for instance, food

complements on nutrition status and growth are mixed. Reviews of nutritional supple-

ment programs in 14 countries (Allen and Gillespie, 2001 or Dewey, 2001) reveal that

weight and height were only increased in three trials and in two others merely weight was

increased. Most studies identify a critical period for children between 6 and 12 months,

while program returns are substantially diminishing after the age of 1 year. Furthermore,

long-term effects of infant malnutrition are persistent, so that no intervention helped

children reach expected and healthy growth paths.

The remainder of the paper is structured as follows: in Section 2 we present an overlapping

generations model of child health. Section 3 lays out the empirical model. We adopt

difference GMM (Arellano and Bond, 1991) and system GMM (Arellano and Bover,

1995) estimators which control for time-invariant child-specific unobservables in order to

estimate a dynamic child health production function. The dataset and the context are

presented in Section 4. The data were collected in Senegal as part of a World Bank-funded

rural infrastructure program. In Section 5 we present our results, which are robust to

different GMM specifications. Section 6 discusses results with a simulation of the long

run impact of a nutrition shock and concludes.

2 An overlapping generations model of child health

The overlapping generations model we present extends the skill formation technology

discussed in Cunha and Heckman (2007) to child health. The two basic ideas are the

following. First, the health production function displays self-productivity. A higher

stock of child health in period t − 1 raises the stock in period t. In other words, child

health acquired in one period persists into future periods. The second feature is dynamic

complementarity.2 Child health produced in period t − 1 increases the productivity of

nutritional inputs in period t and all subsequent periods. The model allows one to estab-

lish an optimal relationship between nutritional inputs in early childhood and nutritional

inputs in subsequent periods. For early investment in child health to be productive con-

tinuous re-investment is required.

Dynamic complementarity and self-productivity have consequences for the design of nu-

tritional programs. First, they imply that investments in child health in early childhood

increase the returns to child health programs in later years. Second, they explain why

short term interventions, say nutritional supplements for newborns, have little lasting

2See Behrman (2000) for a discussion of synergies or complements in health production functions with
respect to various inputs such as health stocks, nutrition and education.
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impact. Continuous reinvestment in child health is needed to maintain their impact.

Third, the model shows why a lack of nutritional inputs in early childhood cannot easily

be offset in later periods of a child’s life.

In what follows we solve a simple overlapping generations model that features dynamic

complementarity and self-productivity in child health production. We assume that an

individual lives for 2T periods. The first T years cover childhood, while years T + 1 to

2T correspond to adulthood. At age 2T the individual dies. Thus, at each point in time

two generations are alive. Cohorts across and within generations are equally sized. Each

year t ∈ {1, 2, ..., 2T} an equal number of individuals of each age is alive.

Parents have common preferences. Each household consists of one adult parent and one

child. Parental labor is supplied inelastically. Parental investment in child nutrition is

motivated by altruism. During childhood, children receive a nutritional input denoted

by Nt. The nutritional input Nt is the investment in the stock of long term child health,

denoted by Ht. This investment is fully controlled by the parent. Adults do not receive

nutritional inputs as their growth process is assumed to be over and their level of physical

and intellectual development is taken as given. In order to keep as flexible a dynamic

process as possible while allowing for empirical tractability, we write the evolution of

child health as a first-order difference equation in H, which is allowed to be a function of

past health inputs:

Ht+1 = Ht+1(X,Ht, Nt+1, Nt, Nt−1,...), (1)

where X denotes time-fixed parental and child characteristics. We specify the model for

a broad class of standard production functions that exhibit increasing returns to all their

inputs, yet at a diminishing rate. Thus, the production technology of child health is a

strictly increasing and concave function in Nt+1, and twice continuously differentiable in

all arguments. It follows that contemporaneous dynamic complementarity is obtained

when:

∂2Ht+1(X,Ht, Nt+1, Nt, Nt−1,...)

∂Ht∂Nt+1

> 0;

the health stock accumulated at time t makes contemporaneous investments in health (at

time t+ 1) more productive. In addition, self-productivity arises as

∂Ht+1(X,Ht, Nt+1, Nt, Nt−1,...)

∂Ht

> 0.

In other words, a higher stock of child health in period t leads to a higher stock in period

t+1. The combined effect of self-productivity and dynamic complementarity implies that
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nutrition is more productive for disadvantaged babies at an early rather than at a later

stage of their infancy.

Another feature of the production technology is that it can also account for particularly

sensitive periods of early child development. For example, child health is more sensitive

to nutritional inputs in period t∗ than in period t if ∂Ht∗/∂Nt∗ > ∂Ht/∂Nt.

In order to solve the model and to obtain a closed form solution, we assume that childhood

takes three years and T = 2. Adult health stock is H2 = H2(X,H1, N1, N2). Further we

assume for clarity a constant elasticity of substitution health production technology that

is separable in X and H0 on the one hand, and contemporaneous health inputs N1 and

N2, on the other:

H2 = H2 (X,H1, θ (N1, N2)) , (2)

where:

θ (N1, N2) =
[
γNφ

1 + (1− γ)Nφ
2

] 1
φ
. (3)

The parameter γ ∈ [0, 1] represents the nutritional input multiplier that characterizes the

direct and the indirect productivity effects of each period’s nutritional input. The degree

of complementarity between nutritional inputs in periods 1 and 2 is φ ≤ 1. Expressed in

terms of the elasticity of substitution 1
1−φ , it captures the extent to which one can sub-

stitute between nutritional inputs in the two periods. When φ is small, substitutability

is small.

The CES technology includes two special cases. First, if one assumes that φ = 1 and

γ = 1
2
, the timing of nutritional inputs is irrelevant. In the extreme case, a child could

starve as a newborn (in period 1) but be overfed in later years (period 2). Conditional on

X and H0, such a child would have the same health stock H2 as a child that would have

been overfed in infancy and starved later on. In such a case, the timing of nutritional

inputs is irrelevant. Second, one can consider the Leontieff case of perfect complemen-

tarity in which H2 = H̃2 (X,H2,min[N1, N2]). This specification implies that nutritional

inputs should be equally spaced over childhood: N1 = N2, and no compensation between

periods is possible.

Having defined the production technology of child health, we can calculate the optimal

investment scheme. The solution to the parent’s maximization problem is the following:

(
c∗0, c

∗
1, c

∗
2, N

∗
1 , N

∗
2 , b̃

∗
)

= arg max
{c0,c1,c2,N1,N2,b̃}

{
u(c0) + βu(c1) + β2u(c2)

+β3δH2 (X,H1, θ (N1, N2))

}
(4)
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s.t. c0 +
c1 +N1

(1 + r)
+
c2 +N2

(1 + r)2
+

b̃

(1 + r)3
= y +

y

(1 + r)
+

y

(1 + r)2
+ b

and equation (2) and (3),

where u(.) is the single-period parental utility function, β denotes the discount factor and

δ represents parental altruism towards the child, ci (i = 0, 1, 2) is parental consumption

in the first three periods of the life cycle, r denotes the interest rate, y parental income, b̃

is the bequest that parents leave to their children and b is the bequest that the parental

generation received from their parents. For −∞ < φ < 1 the FOCs imply that:

N∗
1

N∗
2

=

[
γ

(1− γ)(1 + r)

] 1
(1−φ)

. (5)

For φ → −∞, N∗
1 = N∗

2 : high complementarity means that high investment in period

1 leads to similar investment in period 2. Low complementarity means that the impor-

tance of self-productivity increases and nutritional investment should be higher in the

early years of the child’s life cycle.

Note that with perfect credit markets, the optimal nutrition ratio is not affected by

parental income. For the sake of brevity we do not derive results imposing credit con-

straints here. However, it can be easily shown that imposing the restriction that parents

are not allowed to leave debts to their children, b̃ ≥ 0, results in lower investment in

nutritional inputs in periods 1 and 2, relative to the unconstrained case. This implies

that for children growing up in families that are credit-constrained malnutrition starts

early on and remains throughout childhood.

In addition, the model can also be extended to a situation where parents cannot borrow

future income to finance consumption and nutrition in the first period of childhood.3 If

both, bequest and saving constraints hold and we assume a CRRA utility function, it

can be shown that the timing of income will matter for the optimal nutrition ratio
N∗

1

N∗
2
.

Put differently, unless late nutrition is a perfect substitute for early nutrition, the level

of parental income during early childhood affects long term health in credit constrained

families.

3 Estimating Child Health Production

We now test for (i) self-productivity of the child health stock and (ii) dynamic comple-

mentarity empirically by estimating a linear version of the health production function

3A similar problem is solved by Cunha and Heckman (2007).
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given by equation (1). We assume that the autoregressive lag of H enters linearly and

therefore linearize production technology as:

H2 = α H1 + γ N1 + (1− γ) N2 +X. (6)

This translates into the following empirical panel specification:

yit = α yit−1 + β1 nit + β2 nit−1 + γ1 xit + γ2 xit−1 + ηi + λt + νit, (7)

where yit is a proxy for long term child health defined as height-for-age Z-score. Nutri-

tional inputs and their lag are represented by nit and nit−1. They are proxied by the

child’s weight-for-age Z-score. Contemporaneous control variables are collected in xit

and their lags in xit−1. Amongst the control variables we include the age of the child

and its squared term, household size, and total expenditures. The individual fixed effect

is ηi. This also allows us to control for all time-fixed parental characteristics that influ-

ence child health. The period fixed effect controlling for common shocks to all individual

children in the same period is represented by λt. To test the dynamic complementarity

suggested by the theoretical model, we further introduce an interaction term between

contemporaneous investment and lagged health stocks: yit−1nit. It is captured by the

interaction between weight-for-age and lagged height-for-age.

Our model predicts that the coefficient on the lagged health stock α is positive due to

self-productivity. Dynamic complementarity should result in a positive coefficient on the

interaction term. The estimate of β1 reflects the marginal effect of contemporaneous nu-

trition and is also expected to be positive. As is common in dynamic panel models we

also control for the lag of nutrition.

So far we have presented and discussed the linearized empirical counterparts of the the-

oretical model. We now address some of the identification problems associated with

the empirical model. Explanatory variables may be correlated with the error term in-

troducing endogeneity. For instance, weight-for-age and height-for-age are likely to be

correlated with unobservables such as the child’s metabolism, immune system or genetics.

This implies that applying Ordinary Least Squares to the empirical model will result in

biased estimates. To control for time invariant unobservables such as the genotype we

first difference equation (7).4

Although we control for time invariant effects at the child level and above, a number

4For panels with a small number of time periods T , the transformation into deviations with respect
to individual-specific means induces correlation between the transformed lagged dependent variable and
the transformed disturbance term. A consistent estimator is obtained by first differencing all variables,
∆yit.

7



of time-varying unobserveables may be correlated both with long and short-term child

health. Furthermore, reverse causality between health stocks and nutritional investments

cannot be ruled out. Therefore, in addition to first differencing the variables we use lagged

levels of the endogenous variables as instruments for their own current differences under

the assumption that the disturbance term νit is serially uncorrelated and uncorrelated

with the excluded instruments. This boils down to the standard first-differenced GMM

estimator proposed by Arellano and Bond (1991).

Furthermore, as we do have additional time series information for some children we also

consider an orthogonal deviations specification (Arellano and Bover, 1995) for the GMM

estimation. This allows us to exploit our dataset even further, as the difference estimator

is vulnerable to gaps, whereas the orthogonal deviations estimator averages over all the

available information.

There is one more concern we have to deal with. Both the difference and the orthogonal

deviations specification perform poorly when child health stocks are highly persistent,

and past levels of height-for-age contain little information about future changes in the

variable as these changes are white noise. In terms of the econometric specification this

means that the first differences instrumented with past levels will not identify the coeffi-

cients. To circumvent this problem levels are instrumented with differences in a system

GMM model following Arellano and Bover (1995). This implies that in addition to the

moment condition of the first differenced equation a moment condition in levels can be

exploited.

In the following analysis we present results for all three GMM specifications for robustness

reasons. Moreover, we carry out both, the one-step feasible and the two-step efficient

GMM estimation using the asymptotically efficient variance-covariance matrix.

4 Data

We have data on child anthropometrics from 7 Senegalese regions,5 35 rural communities,

and 60 villages. The regions are all located in the North and North-West of the coun-

try, with the exception of Tambacounda which is in the North-East of the country. The

sample covers only 50 % of Senegal’s regions. However, it covers those with the highest

population density in the country. The survey was conducted between January 2004 and

June 2005. Within that time-span surveys were repeated on a biannual basis. Data were

collected as part of the impact evaluation of the Programme national d’infrastructures

5Djourbel, Fatick, Kaolack, Louga, St. Louis, Tambacounda, Thies.
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rurales (”National Rural Infrastructures Program”, henceforth PNIR6) which is a decen-

tralized rural development program initiated by the World Bank and IFAD.

As a consequence of the relatively short time-span of six months between consecutive

survey rounds, we were able to follow young children over multiple periods. Our sample

consists of 305 children. For each child we have at least three consecutive observations of

height-for-age and weight-for-age. Roughly half our sample covers observations between

January 2004 and January 2005, the remaining 50 % are observed between June 2004 and

June 2005. The panel is balanced in the sense that half the children were first surveyed

in the baseline survey and followed in the second and third survey round, whereas the

second half was first surveyed in the second survey round and followed upon until the

last survey. Sources of attrition are very limited and negligible. In fact those few children

that do drop out are older than 5 years old at which age their anthropometric information

was no longer collected.

Descriptive statistics are presented in Table 1. Each observation corresponds to a child

between 0 and 5 years of age. The mean age averaged over the lags is 1.9 years (22.7

months). The maximum age is 4.7 years (56.3 months). As the relatively high standard

deviation of 9 months indicates, there is substantial variation in the sample in terms of

the age structure. The sample is gender balanced. Half of the children are girls, half

are boys. The summary statistics per lag structure show the expected pattern. Aver-

age age in periods dating back further is lower than average age in the current period.

Median household size is roughly 13 people throughout the three periods and the period

averages are slightly above the median and fluctuate to a small degree. It is noteworthy

that we have households as small as four people and others consisting of 29 members in

our sample. Average total expenditures are 143,306 CFA in the last six months. Total

expenditure show substantial variation across households but relatively limited variation

over time.

As this paper focuses on the link between long-term health and health inputs, we briefly

recapitulate the construction of the two commonly-used child health measures. The

indicators are expressed in terms of Z-scores. The calculation of these Z-scores can be

thought of in the following simplified way:

Z =
V −Mr

sdr
, (8)

where V is the observed value of either child weight or height, Mr refers to the median

value of either of the two measures in a reference population and sdr is the value of the

6For further information about the PNIR, see Arcand and Bassole (2007)
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standard deviation in this reference population. The reference population chosen here is

US children. Replacing V with the observed child weight, the Z-score for weight-for-age

(WAZ) can be calculated. WAZ is a short-term measure of underweight and proxies

nutritional intake. As WAZ varies in the short-run it can be considered a flow variable

of health which results from transitory income and health shocks. Thus, WAZ indicates

short term malnutrition. The Z-scores for height-for-age (HAZ) are calculated in the

same way. HAZ is a measure of the long-term health status of children; it reflects the

cummulative impact of transitory shocks over time. It is also known as stunting and

represents the health stock.

As should be clear from equation (8) the metric for Z-scores is standard deviations. A

child with a Z-score of zero has no deviation of its health status with respect to the

reference population. Positive Z-scores indicate that children are better off than children

in the reference population. Children with an index less than -2 standard deviations from

the median of the reference population are said to have global underweight (malnutrition)

when considering WAZ (HAZ). Severe underweight (malnutrition) arises for -3 standard

deviations or less of the WAZ (HAZ). The advantage of using Z-scores is that they are

standardized by age and gender and are thus comparable across different cohorts and

regions.

The mean WAZ in our sample is -1.07. Although children are on average underweight,

they are not severely malnourished. However, as for the other variables in the sample,

the variation among individuals is substantial. 16.0 % of the sampled children suffer

from global underweight, 3.9 % even show signs of severe underweight. The descriptive

statistics by lag structure show that the average for the latest observations is the highest,

suggesting that, over time, child malnutrition becomes less severe. The difference in

means test rejects the null hypothesis of equal means at conventional significance levels.

The mean HAZ of -1.46 shows an even worse picture for the health stock than for health

inputs. The lag structure shows that on average children are better off in later periods.

Again, the difference is significant at conventional significance levels. Standard deviations

are also large relative to the mean. Global malnutrition is found for 18.9 % of the children,

severe malnutrition for 15.7 %. Thus, about a third of the children in the sample are

‘globally’ stunted.

5 Empirical Results

Results for the impact of nutritional inputs on long-term child health as estimated in

equation (7) are presented in Table 2. The difference specification is shown in Column

(1) and (2), the sytem GMM results are presented in Column (3) and (4) and the or-

10



thogonal deviations method is employed for the results in Columns (5) and (6). Across

empirical specifications results suggest a strong role for the self-productivity of child

health stocks. The coefficient on the lag of the height-for-age Z-score is always large,

positive and significant and ranges between 0.424 and 0.628. The importance of these

magnitudes is discussed at the end of this paper with a small numerical example.

Across specifications we fail to reject the simple theoretical prediction that ceteris paribus

children with a high initial health stock will be healthier in the future. With a value of

0.628 in the one-step difference specification and 0.544 in the two-step difference specifi-

cation the coefficient on lag HAZ is biggest compared to the other econometric specifica-

tions. Due to the nature of our panel data and the results from the overidentification tests

the difference estimates are the preferred ones. Despite the sizable impact of the lagged

height-for-age Z-scores the underlying time series does not have a panel unit root as can

be seen from the statistical tests at the bottom of Table 2. This also implies that the

difference specification is correctly identified as past levels are informative in predicting

future changes in HAZ and in identifying the model.7

Although the self-productivity of child health stocks is noteworthy, our results also un-

derline that a sustainable health stock requires regular nutritional updating. The impact

of contemporaneous nutrition is positive and significant across specifications. Most inter-

estingly, the coefficient on nutrition is statistically comparable in magnitude to the one

associated with self-productivity. As such we fail to reject the null hypothesis that the

coefficients on lagged HAZ and contemporaneous WAZ add up to one (see tests at the

bottom of Table 2).

These findings illustrate that contemporaneous child health stocks are determined by the

combined level of past health stocks and contemporaneous investment. This highlights

the importance of constant nutritional updating for children to build up a healthy con-

stitution. In contrast to physical capital health capital is quickly depleted and needs

period-by-period reinvestment. Another noteworthy feature of our empirical specifica-

tion is the fact that the marginal effect of lagged WAZ is negative and statistically the

coefficients on WAZ and lagged WAZ add up to zero in the preferred difference GMM

7In the difference specification we fail to reject overidentification according to the Sargan and the
Hansen test, suggesting that the model is properly identified. Conversely, the Hansen test statistic leads
us to reject overidentification for the orthogonal deviations and system GMM models. In addition to
the standard overidentification tests, the dynamic panel models also have two internal validation tests,
the AR(1) and the AR(2) test in first differences. As the time series dimension in our dataset is limited,
namely T=3, we can only test for the AR(1) in first differences. Reassuringly, we reject a unit root
across all specifications. To check for the robustness of our results we also provide both one and two
step estimation of the GMM models. The second column of each pair of results shows how the use of the
efficient variance-covariance matrix affects coefficient size and significance relative to the feasible identity
matrix. One and two step estimates are qualitatively similar in terms of size and significance levels.
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specification. While this result is often found in dynamic panel applications, it can also be

taken as evidence that parents smooth nutritional inputs around the steady state. This

in turn indicates that excessive food supply in one period cannot be offset by subsequent

malnourishment and vice versa.

In addition, there is evidence of dynamic complementarity, which is captured by the

interaction term ’WAZ x Lag HAZ’. The positive and significant coefficient on the inter-

action term points to the reinforcing capacity of the lagged child health stock to utilize

contemporaneous nutrition inputs. Indeed we fail to reject the theoretical prediction that

a child that has been well fed in previous periods is likely to be in good health in later

periods in our statistically preferred difference specification. Conversely, this implies that

a child that was malnourished in previous periods drags on bad health into later periods

regardless of contemporaneous nutrition. This impact of dynamic complementarity is not

trivial, in our preferred difference specification presented in Columns (1) and (2) the lower

bound of the coefficient is 0.128. Considering that our sample contains babies and infants

between 0 and 5 years of age, the finding emphasizes the importance of accumulating a

sufficient health stock during early infancy. Not only are contemporaneous nutritional

investments more productive in previously well-nourished babies, but babies who had an

adverse health shock in the past are in a bad position to assimilate nutrients.

In order to control for other observable characteristics that are not time-fixed we also in-

cluded the child’s age and its squared term, household size, total expenditure and period

dummies. A child’s age and the squared age have no significant impact in the difference

GMM model. This is not surprising as HAZ and WAZ are already standardized by age.

Neither do household size, nor total expenditure have any significant impact on child

health as measured by HAZ and captured in this dynamic specification.

To address the sensitivity of our results we also tested for critical periods in child de-

velopment as suggested by the theoretical model. However, in our sample we could not

detect such periods in which nourishment has a greater impact than in others from a

statistical point of view. For brevity results are not reported here.8

6 Discussion

This paper investigates the dynamics of child health using an overlapping generations

model. The model highlights the role of (i) self-productivity of the health stock and (ii)

the dynamic complementarity between the past health stock and contemporaneous nutri-

8Results are provided on request.
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tion. Empirical tests of a linear version of the model’s production technology on a panel

of 305 Senegalese children fail to reject these two main predictions. Initially healthier

children tend to be better off in the future in that existing health capital is carried on

into the next period and impacts the effectiveness at which new nutritional inputs are

transformed.

Using the estimates of this paper we can do a simple, but insightful simulation presented

in Figure 1. The simulation underlines that only long-term nutrition or development

programs can have a sustainable impact on child (and ultimately adult) health and cre-

ate significant economic returns. Take for instance the impact of the rural development

program PNIR in Senegal for which the data in this paper has been collected. The sim-

ulation is based on our coefficient estimates for WAZ and the lag of HAZ in Column

(2) of Table 3 and the estimated treatment effects of PNIR are taken from Arcand and

Bassole (2007).9 Assume a ‘hypothetical child’ with initial HAZ and WAZ scores of zero.

This hypothetical child’s WAZ is boosted by 0.67 within a single six-month period due to

PNIR projects in the village. Let us further assume that the program does no continue in

subsequent periods and the child’s WAZ score returns to zero after the one-time positive

shock. Then, the effect of the program on the child’s health stock (HAZ), although sizable

initially, dies out after about 24 months. This admittedly rough calculation suggests that

positive one-period nutrition shocks have no lasting impact on the long-run health stock

of infants. Furthermore, these estimates also allow researchers to cross-check estimated

treatment effects on HAZ and WAZ.10

Results in this paper also have important implications for the timing of nutrition pro-

grams in developing countries. In particular, long term returns to nutrition programs are

higher if they reach babies early on and if they target children beyond the early months

of infancy. Then, subsequent nutritional investments can reap dynamic complementarity

effects.
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Figure 1: Simulation of the long term impact of the rural infrastructure program PNIR.
The effect of PNIR’s short term impact on nutrition (WAZ) on the child health stock
(HAZ) is depicted. The average treatment effect on the treated of 0.67 on WAZ is taken
from Arcand and Bassole (2007), coefficient estimates for the simulation are taken from
Column (2) in Table 3.
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Variable Obs Mean Median Std. Min Max

HAZ 305 -1.26 -1.36 1.37 -4.72 2.60
1st lag 305 -1.54 -1.52 1.44 -4.72 2.57
2nd lag 305 -1.58 -1.59 1.50 -4.75 2.73

WAZ 305 -0.95 -0.93 0.99 -3.31 1.88
1st lag 305 -1.16 -1.21 1.07 -4.15 2.22
2nd lag 305 -1.11 -1.19 1.29 -4.68 3.43

Age in months 305 28.26 27.76 9.16 11.60 56.34
1st lag 305 22.64 21.88 9.09 5.22 49.97
2nd lag 305 17.30 17.08 9.21 0.49 45.67

Gender dummy (Girl=1) 305 0.502
1st period 305 0.502
2nd period 305 0.498

Household Size 305 13.574 13 5.679 4 29
1st period 305 13.413 13 5.577 4 29
2nd period 305 13.089 13 5.453 4 29

Total Expenditure in CFA 305 143,306.4 109,000 116,602.2 0 580,000
1st lag 304 133,826.4 95,505 118,633.8 1000 637,500
2nd lag 299 142,078.4 111,510.7 114,040.4 8 573,300

Table 1: Descriptive Statistics.
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(1) (2) (3) (4) (5) (6)
Difference System Orthogonal

GMM GMM Deviations
1 step 2 step 1 step 2 step 1 step 2 step

Lag HAZ 0.628 0.544 0.427 0.485 0.424 0.488
(0.166) (0.146) (0.123) (0.132) (0.123) (0.137)

WAZ 0.438 0.562 0.759 0.778 0.759 0.786
(0.245) (0.225) (0.142) (0.153) (0.140) (0.154)

Lag WAZ -0.409 -0.279 -0.190 -0.159 -0.182 -0.143
(0.180) (0.149) (0.113) (0.132) (0.111) (0.130)

WAZ*Lag HAZ 0.134 0.128 0.028 0.068 0.034 0.080
(0.067) (0.064) (0.059) (0.060) (0.059) (0.063)

Household Size 0.006 0.171 0.036 0.022 0.034 0.024
(0.240) (0.222) (0.052) (0.055) (0.052) (0.057)

Total Expenditure -5.17e-7 -2.46e-6 -1.68e-6 -2.21e-6 -1.74e-6 -2.18e-6
(2.22e-6) (2.25e-6) (1.37e-6) (1.43e-6) (1.38e-6) (1.53e-6)

Age (in months) -0.998 -0.665 0.034 0.039 0.037 0.042
(0.985) (0.895) (0.017) (0.018) (0.017) (0.018)

[Age (in months)]2 0.001 0.000 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Constant -0.704 -0.395 -0.697 -0.467
(0.693) (0.712) (0.687) (0.729)

Observations 304 304 758 758 758 758

AR(1)-test in 1st ∆ 0.006 0.001 0.013 0.014 0.015 0.016
Hansen Test 0.575 0.575 0.000 0.000 0.000 0.000
Sargan Test 0.359 0.359 0.204 0.204 0.140 0.140

Tests

Waz + Lag Waz = 0 0.930 0.306 0.007 0.009 0.005 0.006
Lag Haz = 1 0.026 0.002 0.000 0.000 0.000 0.000
Lag Haz + WAZ = 1 0.833 0.712 0.402 0.255 0.407 0.252

Table 2: GMM Results for Difference, System and Orthogonal Deviations GMM. For all
specifications the one-step and the two-step estimators are presented. Robust standard
errors are parentheses. All specifications include period dummies which are not shown
here. For the tests at the bottom of the table p-values are presented.
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