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Abstract. This paper studies a model of corporate finance in which firms use stock

issuance to finance investment. Since the firm recognizes the relationship between future

dividends and stock prices, future variables enter in the constraints and optimal policy

is in general time inconsistent. We discuss the nature of time inconsistency and show

that it arises because managers promise to incorporate value maximization gradually into

their objective function. This shows how one could change managers’ incentives in order

to enforce the optimal contract under full commitment. We then characterize several

cases where time consistency arises and we study different examples where policy is time

inconsistent. This allows us to address some outstanding issues in the literature about

dividend policy and equity issuance. In particular, our results suggest that growing firms

that can credibly commit will pay lower dividends at the beginning and promise higher

dividends in the future, consistent with empirical evidence. Our results also suggests

that compensation that is tied to stock options creates incentives to inflate prices and

pay lower dividends. This is consistent with the empirical evidence of increased stock

option compensation and payout through repurchases instead to dividends during the

last decades.
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1. Introduction

The study of consumers’ savings and portfolio choices in dynamic stochastic models has pro-

gressed enormously in the last thirty years. However, modelling firms’ savings and portfolio

choices in a dynamic framework has received less attention. Issues on firms’ financing have

been often assumed away, sometimes by the introduction of complete markets, sometimes by

simply assuming that consumers take the decision of how much physical capital to accumu-

late. This situation is unsatisfactory, since the form of financing matters for the equilibrium

quantities under incomplete markets, and we know that consumers do not actually decide on

the firm’s investment. Moreover, issues such as stocks repurchases, dividend payments, and

their interaction with investment cannot be analyzed in such a framework. There is a large

empirical literature on firm financing, but it often lacks explicit dynamic modelling, making

it hard to formulate hypotheses to be tested with time series data.

Some papers have started to close this gap and explicit modelling has been used to

address issues such as firm dynamics in an infinite horizon setting or the effects of financing

frictions on investment (see e.g. Hopenhayn (1992), Cooley and Quadrini (2001), Covas and

Den-Haan (2007), Cooley, Marimon and Quadrini (2004), Quadrini and Jermann (2005),

Gomes (2000, 2003)). In this paper, we contribute to this literature by focusing on equity

financing and dividend policy in a dynamic setting.

Our work differs from the previous literature in several aspects. First, since the focus

is on equity financing, we abstract from the debt/equity choice. The choice of the firm is,

then, about how many stocks to issue (or repurchase), how much to pay out as dividends and

how much to invest. Second, most dynamic analyses of financial policy share the common

features of ruling out repurchases and obtaining the pecking order theory. In this setting,

the pecking order theory would imply that firms will use outside equity only if internal funds

are not enough to finance the optimal level of investment. As a consequence, firms will not

increase dividends while they are issuing equity. Given the empirical implausibility of this

result, we focus on cases under which the pecking order theory does not hold. To do this,

we introduce financing frictions and consider different firm objectives under which managers

are in conflict with the objective of market investors. These objectives can be interpreted

as different managerial compensations and one way to theoretically rationalize them is to

consider them as a reduced form agency issues, which we do not model explicitly.

We first point out the following. A firm that is deciding how much equity to sell (or

repurchase) in a competitive stock market and, simultaneously, how much dividends to pay

should recognize that the stock market imposes a mapping from future dividends to current

stock prices, namely, that stock prices equal the discounted sum of dividends. We label

this relationship the price-dividend mapping (PD mapping henceforth). Put differently, a

rational firm understands that future dividends influence the current stock price and thus

constrain how much funding can be obtained and therefore how much can be invested by

issuing stocks today. The literature has avoided considering this link by assuming value

maximization as a firm objective and/or very particular financing frictions. In these cases,

the PD mapping does not constraint the firm’s investment choice but we show that it does

so in general.

As is well known, if future decision variables (in this case future dividends) constrain

today’s choices, the problem of the firm might not be recursive in the natural state variables,

standard dynamic programming does not apply and the Bellman equation does not hold.

The problem of the firm is then of a similar nature to a problem of optimal macroeconomic

policy and the optimal solution is generally time inconsistent. Usually, the reason for time

inconsistency is that a manager who needs equity financing will promise to pay high dividends

in the future to buyers of newly issued stock. Later on, however, if the manager could

reoptimize, he will have an incentive to lower current dividend and promise high dividends

in the future. In this way the manager can fund current investment and the future high
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dividends drive the stock price up today. This gives rise to a number of issues on how to

formulate and solve the model and how to apply it in several setups.

The first issue to address is of a technical nature, since standard dynamic programming

is not appropriate. Using the approach recursive lagrangeans in Marcet and Marimon (2009)

the model is formulated recursively by adding the sum of past lagrange multipliers as a co-

state variable. This recursive formulation facilitates numerical solutions, theoretical analysis

and it provides insights as to the nature of time inconsistency. In particular, it shows that

the objective that implements the full commitment solution will compensate the manager

according to his own objective function but it will also assign a time-varying weight to

the (investors’) objective of value maximization. On the one hand, if a re-optimization is

possible, this formulation illustrates that the manager will have incentives to set the weights

on value maximization to zero. On the other hand, it shows that the "optimal compensation"

enforcing the full commitment policy would have to incorporate gradually the objective of

investors into the managers’ objective.1

We argue that the lack of recursivity and the time inconsistency problem is a very general

feature arising in most setups in which a firm uses stock issuance to finance its investment.

Similarly, it would also arise if a firm uses stock repurchases to distribute profits to the

stockholders. We then show that time consistency can be recovered in the following cases:

a) there is agreement between managers and shareholders (value maximization) or b) the

manager is compensated only with cash flows. These results are useful to a researcher who

wishes to ignore issues of time consistency. This researcher can set up his/her model as one

of these special cases and, using our results, can use the standard set of state variables that

are dictated by the Bellman equation.

The previous findings complement the literature on firm dynamics and financing frictions

mentioned earlier, where the PD mapping is not mentioned in spite of the fact that firms

use equity issuance. At first sight it might look as though these papers consider firms that

ignore the PD mapping. Instead, they assume value maximization and fall therefore into

the categories mentioned above where the issue of time inconsistency is absent.2 While

these models derive important implications of financing frictions for investment, analyzing

financial policy with value maximizing firms is very limiting. First, from an empirical point

of view, the papers imply a pecking order result: firms finance their investment by only

issuing equity in the initial periods and only later pay dividends. As mentioned before, this

behavior is not validated by observed firm behavior, since many firms actually pay dividends

and issue stocks in the same period.3 Second, from a theoretical point of view, the literature

on general equilibrium and production with incomplete markets (see McGill and Quinzii

(1996) for a compendium) has pointed out that value maximization might not be agreed

upon heterogeneous shareholders and it is therefore not a universally valid principle.4 In

other words, many issues of interest can only be addressed if there is a conflict of interest

between managers and investors.

1There is a vast literature where the optimal compensation contract is explicitly modelled and a recently

growing literature studies this in dynamic contexts (see e.g. Danthine and Donaldson (2008), Atkeson and

Cole (2005), DeMarzo et al (2008) or Cooley et al (2009))
2Many macro models have assumed a fixed dividend rule (for example, dividends equal earnings) or they

have assumed no equity issuance. Of course, the issues we discuss do not arise in these models, since the PD

mapping plays no role under these restrictions.
3This poses no direct problem to the results in the papers just mentioned, since they focus on the behavior

of firms’ investment.
4This literature has proposed various alternatives to determine endogenously the objective function of the

firm. Some of the first proposed solution concepts were by Drèze (1994) and Grossman and Hart (1979). We

take from this literature the observation that value maximization is not to arise as a natural objective of the

firm so that, according to our results, time inconsistency is likely to arise in equity financing setups. Unlike

this literature, however, we assume a certain objective of the firm, although in the examples we consider we

do check that the environment justifies the objective assumed.
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Finally, we use our setup to analyze several examples that differ in the manager’s com-

pensation and the source of disagreement between managers and shareholders. We first

consider a simple case of internal versus external investors. We assume that an internal

investor controls the firm by holding a sufficient amount of stocks, acts as manager and

finances investment by selling equity to investors. To capture the idea that the manager’s

interests are closely linked to the firm we assume that his/her only income comes from the

dividend yield of his/her shares. To capture the idea that investors draw income from many

sources we assume they are risk-neutral. We find that with enough transaction costs, the

optimal policy for a growing firm that can credibly commit is to pay low dividends in the

initial periods and higher dividends in the future. However, if the firm cannot commit, such

a profile would not be credible and dividend payments decrease over time. These results

indicate that commitment could be part of the explanation for the observation that growing

firms pay low dividends.

The previous example can also be interpreted as one where managers are compensated

with stocks. According to the survey by Murphy (1999), however, other important compo-

nents of US CEO compensation include a fixed salary, a bonus linked to performance and

stock options. Given this, we study other examples where the compensation corresponds

to different combinations of these. First, we assume that managers are compensated with

bonuses linked to cash flows and a fixed salary component. In the absence of disagreement,

optimal policy is time consistency and we therefore assume that there is a probability that

the manager gets fired every period. This generates a conflict of interest between investors

and managers suffering from short termism. In this case, if the manager is allowed to reopti-

mize, we show that he will try to lower the optimal capital and pay lower dividends. Finally,

a last example assumes that managers are compensated with bonuses linked to cash flows

as well as one period stock options. In this case, managers have strong incentives to inflate

stock prices and reduce the dividend payout, a fact that is consistent with the increase in

stock option compensation and the substitution of dividend payouts with repurchases during

the last decades.

To summarize. Our theoretical results show that time inconsistency is not a problem

when managers agree with the shareholders or when they are compensated only with bonuses

linked to cash flows. However, the previous examples illustrate that small deviations from

cash flow compensation lead to time inconsistency when firms use equity financing. In the

absence of institutions that can enforce full commitment, this could potentially make equity

financing very costly, potentially providing an explanation for several empirical regularities.

For example, our framework could partly explain why in some countries (like Germany) there

are relatively new firms listed in the stock market, while the opposite happens in countries

like the US, where the institutional framework makes the problem of time consistency less

severe through common leverage buyouts.

Our work is related to several other strands in the literature. The link between future

dividends and stock prices is implicitly recognized in the seminal work of Modigliani and

Miller (1961). In their work, firms realize how their initial value is determined by future

dividend payments and this assumes that firms understand the PD mapping in period zero.

The difference is that, in our paper, due to market incompleteness, the PDmapping influences

choices every period. As to the issue of time inconsistency, the only explicit mention in the

literature of corporate finance we have found is in Miller and Rock (1985), who study a

two period model with private information. In contrast, our paper assumes full information

but disagreement between stockholders and managers. Given this, our work provides an

alternative channel for the presence of time inconsistency.

There are several issues which our paper does not address. While we compare the solution

with and without commitment for some of our examples, our focus is on the case where firms

have full commitment. This is obviously an extreme assumption. The alternative is to assume
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that firms have no commitment and they follow time consistent policies, in which case one

could use the solution techniques designed by Klein, Krusell and Ríos-Rull (2007) in a number

of papers on optimal fiscal policy. This is also an extreme assumption that is not validated

by informal observation, since CEO’s often justify paying lower dividends in a given period

by promising investments and, therefore, future dividends. We believe that the assumption

of full commitment is the most reasonable place to start. The issues of commitment and

how to support it by reputation, institutional design, or manager compensation can only be

even discussed if we have the full commitment solution at hand.

Other important issues we do not address are why dividends are smooth or why dividends

are paid at all. There is a very basic reason why firms pay dividends in our setup: under

rational expectations and non-bubble prices zero dividends in all periods imply zero stock

prices, so that the firm would be unable to finance itself with stock. As to dividend smoothing,

some versions of our model simply impose that firm managers dislike dividend variability.

This could be thought of as capturing an optimal contract in which the firm’s board of

directors has solved an agency problem determining that the payout to the manager should

be according to dividend payments or the stock price of the firm. This has been justified in

various ways by the literature of hidden information but we take the compensation as given

and discuss other issues. These are all interesting issues that we leave for future research.

The paper is organized as follows. The model is presented in Section 2. Section 3 presents

the main theoretical results. It formulates the problem recursively under full commitment,

it discusses the nature of time inconsistency and it presents an example with an analytical

solution where a proof of time inconsistency is provided. Section 4 characterizes the cases

under which the solution is time consistent. Section 5 present other examples that differ in

the compensation of the manager. Finally, Section 5 summarizes and concludes.

2. The Model

We first set up a generic model where firms take into account the PD-mapping. This model

can be taken literally as a partial equilibrium model or the firm behavior can be embedded

in a general equilibrium setting.

2.1. The Choice Set of the Manager. Time is discrete and indexed by  = 0 1 2Firms

take as given an exogenous stochastic process z = {}∞=0.  ∈ R2+ includes (), where

 is an exogenous market discount factor to be endogeneized later and  is an exogenous

productivity shock that follows a Markov process. As usual,  denotes a possible realization

of  while 
 denotes histories of z up to period . Moreover, Ω denotes the set of possible

histories  and Ω denotes the state space of z. The firm has full information and observes

 in period 

Each period, the firm acquires investment goods and converts them into capital to be used

next period. The firm produces a good using capital as the only input with the production

function (−1). The price of investment goods is constant and normalized to one. Capital
depreciates at a constant rate  and the cash flow of the firm is therefore given by:

 = (−1) + (1− )−1 −  (1)

where  − (1− )−1 is gross investment.
Each period, the firm can obtain external financing by issuing new stocks that are traded

at the (per share) stock price . Letting  be the amount of stocks in the firm, total equity

financing received by the firm at time  is  ( − −1). The firm distributes a dividend per

share of  and it can also repurchase stocks. A constraint relating the dividend and price

will be specified later.

The choice variables of the firm at each period are capital, stocks issued, dividend and

stock price. Denoting these choice variables by  ≡ (   ), the firm chooses sequences
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{}∞=0, where each  maps Ω
 into 4+. Throughout the text, we denote x = {}∞=0 and

k = {}∞=0.
We introduce incomplete markets in an extreme way by assuming that the firm can

not issue or hold any asset other than its own stock. In addition it has to pay costs

C ≡ C( −1 ) for a fixed function C. This general formulation encompasses capital ad-
justment costs, financial transaction costs of issuing or repurchasing equity, costs of changing

dividends and many other frictions that have been considered in the literature. It will also

include the compensation of the manager when this is given by a fixed function of the firm’s

performance.

To simplify notation, we define net cash flows (net of financing, adjustment and man-

agerial costs) as  =  − C. The previous elements consolidate in the following budget
constraint of the firm:

−1 +  − (1− )−1 ≤ (−1) +  ( − −1)− C( −1 ) (2)

or, equivalently,

−1 ≤  +  ( − −1)

in addition to the non negativity constraints  ≥ 0 and  ≥ 0.
This formulation implies that a start up firm can increase its capital in two ways. It can

retain earnings and pay low dividends (internal investment) or it can use equity financing

(setting   −1) Each of these options may imply different financing costs and manager
compensations which are summarized by C. Similarly, in the face of a negative (positive)
shock, the firm can sustain a level of investment by lowering (increasing) dividends or by

issuing new (repurchasing old) equity. In general, however, the firm will not be able to

invest optimally, as if it had access to complete markets due to two sources of frictions: i) it

can only accumulate one asset (namely, the firm’s own stock) and ii) it faces financial costs

reflected by C. Most aspects of this formulation are in line with the recent literature on
dynamic corporate finance. While many of the papers in the literature do not have both a

dividend and equity choice, similar costs are introduced.

2.2. The PD Mapping. One fundamental difference between this paper and the pre-

vious literature is that we include the stock price  in the choice set of the firm. However,

this choice is not unrestricted. Since the new stocks are purchased by external investors

the manager has to choose combinations of prices and dividends such that the investors will

indeed purchase the stock. We assume that investors purchase the stock if the following

condition holds:

 = +1 (+1 + +1) (3)

Most dynamic stochastic models under rational expectations imply the above relation-

ship, where  is the stochastic discount factor for the marginal investor. Throughout the

paper, we assume that the firm takes this discount factor as given5. Obviously, the standard

case of risk neutral investors with a constant discount factor corresponds to  = 1.

The firm also realizes that the transversality condition of the investors’ problem has to

be satisfied. Formally, let  be the stocks owned by investors, where 

 =  −  and 

are the stocks of the manager, which are assumed to be fixed. The firm understands that

the following transversality condition holds a.s.:

lim
→∞





 +


+ = 0 (4)

5This is justified, for example, if there is a continuum of identical firms subject to the same shock or, more

generally, if each firm has a minuscule impact on the consumption of the market stockholders.
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where 

 is the compounded stochastic discount factor:



 ≡

Y
=1

+

As usual, this transversality condition requires that the firm chooses a path for prices

and stocks that satisfies one of two conditions. Either the stock price grows at a rate lower

than the inverse of the discount factor or the number of stocks in the hands of investors

goes to zero. In other words, under the above constraint, the firm understands that it could

afford to never pay dividends, but in this case the firm would have to compromise to retire

all stock outstanding sufficiently fast by setting lim→∞

+ = 0. This is because with

zero dividends (3) would imply that the stock price goes to infinity at the rate −1 so that
in order for (4) to hold the firm has to repurchase eventually all stock.

In the remainder of the paper, we only consider cases where the firm never repurchases all

of the stock that has been previously issued. We make this assumption so that the stock price

is the discounted present value of dividends. This is assumed for simplicity. In principle, we

could impose (3) and (4) directly, but this would complicate the analysis. More precisely,

we assume the firm acts as though a constraint:

 ≥  (5)

holds for all periods, for some positive . Some firms in the real world do not behave in

this way and indeed internal investors sometimes repurchase all the firm’s stock in order

to avoid interferences from outside investors. But this does not happen very often. Once

a firm becomes public it often stays public. We conjecture that this constraint would arise

endogenously in setups where the costs for a large firm of re-entering the stock market after

retiring all the stock would be very large, but we do not pursue this possibility in this

paper. Furthermore, there are legal limits and other barriers to repurchases. Imposing (5)

is therefore a relevant possibility.

Clearly, this inequality together with (4) implies that lim→∞



 + = 0 a.s. for

all . Given this and condition (3), we can write the stock prices as follows:

 = 

∞X
=1



 + (6)

Equation (6) maps future dividends into today’s stock price in a standard way. Through-

out the paper, we call this relationship the price-dividend mapping or PD mapping.

As mentioned earlier, the fact that the manager recognizes that (6) constrains his choice

of investment is what distinguishes this paper from the literature. In previous papers on

dynamic corporate finance this relation is not written explicitly. More precisely, the papers

in the literature only introduce in the constraints of the firm the value of equity issued  ≡
 ( − −1) and the value of total dividend payments  = −1 without distinguishing
between  and  or  and . Moreover, the costs and frictions are also functions of  and .

In this case, we have that  = ( ) and the budget constraint of the firm becomes:

 +  − (1− )−1 ≤ (−1) +  − C( −1 )

Later on, we will discuss the conditions under which this is equivalent to our setting.

Finally, we would like to point out that the fact that firms consider the PD mapping as a

constraint in their feasible set corresponds to a standard definition of competitive behavior

under incomplete markets and rational expectations. This needs some more careful justifica-

tion because, at first sight, it might seem that there is an element of monopolistic behavior
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in the problem defined above, since firms choose stock prices. But the fact is that a firm that

behaves competitively in the stock market should choose stock prices and dividends subject

to the PD mapping.6

To explain this point in detail let us build an analogy by considering two types of firms

who face slightly different financing environment as the firm considered above. First consider

a firm that has to finance investment under incomplete markets but the firm can only issue

bonds of two different maturities. Say, the firm can only issue short bonds that mature in

one period and long bonds that mature in  periods, for a given   1. Both are real

riskless bonds that pay one unit of consumption at maturity. Assume, for simplicity, that

the firm never buys back any of these bonds, so that the budget constraint of the firm is

1−1 + − ≤  + 
1
 1 + 


 

where 1  

 are the amount of short and long bonds issued by the firm at time  and 

1
 ,



 are the corresponding bond prices. It should be uncontroversial to claim that a standard

definition of competitive equilibrium in this case would entail assuming that the firm chooses©
1  


  




ª
taking as given the price process

n

1
  




o
. The firm chooses the total cost

of the portfolio of bonds issued 
1
 1 + 


  , but it is obviously behaving competitively

since it takes prices as given.

Suppose now that we change this model very slightly. In particular, let’s assume that the

firm issues  units of a portfolio of bonds. Investors can purchase units of this portfolio

from the firm, but the short or long bonds can not be purchased separately. Let us denote

the units of the short bond by  so that (1 − ) is the share of the long bond in each

portfolio. The firm can choose the share of long and short bonds  and it can choose

the amount of bond portfolios issued  each period. The firm sells each unit of portfolio

of bonds for a price . Let us call this a bond-portfolio-financing (BPF) firm and let us

assume again there is no buyback of previously issued bonds.

In this setup the firm has to repay −1−1 short bonds plus (1− − )− long
bonds in period  Assuming again there is no buyback of previously issued bonds, the budget

constraint of a BPF firm is

−1−1 + (1− −)− ≤  + 

A general equilibrium model will, in general, deliver that the following holds in equilibrium

 =  
1
 + (1− ) 


 (7)

A natural definition of competitive behavior for a rational BPF firm would say that the

firm takes the process
n

1
  




o
and it takes as given that (7) holds. The firm can choose

the share  and change the price of the portfolio  accordingly, but the firm behaves

competitively in the bond market because it takes bond prices and the mapping (7) as given.

In fact, the BPF firm is not doing anything different from the firm issuing only long and short

bonds described above, it is just packaging the bonds differently. Equation (7) should then

become a constraint in the BPF firm’s problem and  would become a choice variable

in the firm’s problem. In other words, a rational BPF firm is behaving competitively by

choosing  subject to (7).
7

6We have found that economists who are active in the finance or corporate finance literature find the

assumption quite natural. On the other hand economists active in the macroeconomics literature sometimes

view this assumption as though we include an element of monopolistic behavior on the part of the firm. It is

to the later, that the following discussion is mainly addressed.
7To make an even more basic analogy: consider a competitive firm that produces two goods jointly. For
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The previous example shows that a BPF firm that took  as given, independent of ,

would behave rationally. By the same reasoning, a stock financing firm that ignored how the

choice of future dividends influences today’s stock price would behave irrationally. Consider

now our setting. From a competitive equilibrium point of view a stock is a composite asset,

equivalent to a portfolio of many contingent claims that deliver a consumption good in

each future period and for each possible realization. The dividend (
) is the amount of

contingent claims that pay one unit of consumption at  if  occurs. The discount factor



 is the price of a contingent claim that pays one consumption unit in period  + 

in terms of period  consumption units By choosing a history of dividends , firms in our

paper offer a different composite portfolio  and firms simply understand how the market

values the different elements of this asset. This is reflected in the fact that the price-dividend

mapping (6) is a constraint in the firms’ problem.

A similar reasoning has been used in the corporate finance literature before. Most notably,

the Modigliani-Miller theorem only works if firms understand how future dividends map into

the initial stock price and, therefore, into the value of the firm. More generally, the definition

of firms’ objective functions under incomplete markets proposed by Dreze (1974), Grossman

and Hart (1979) and recently by Bisin et al (2010) take for granted that a firm understands

(or conjecture) how their future dividend choice map into the current initial stock price.

As in the present paper, this literature also assumes that firms take the stochastic discount

factor as given. We simply extend the same reasoning to all periods and assume that when

the stock price appears in the firm’s budget constraint in period  (2) the firm understands

how this  is linked to future dividends.

2.3. Feasible Allocations. We state that a nonnegative sequence x = (k sdp) is

feasible if it satisfies

−1 ≤  +  ( − −1) (8)

 ≡ (−1)−  + (1− )−1 − C( −1 ) (9)

 = 
1
 (+1 + +1) = 

∞X
=1



 + (10)

for all  = 0 1  a.s. and the transversality condition (4) holds.8

One of the key differences between our setting and previous papers in dynamic corporate

finance is that due to constraint (10) future choice variables influence today’s feasible set.

More precisely, future dividends influence today’s value of equity and, therefore, today’s

investment. This means that standard dynamic programming does not apply and we have to

example, consider a winery that produces white and red wine. The winery sells bottles of red and white wine

in neatly packaged wooden boxes, 6 bottles in each box. The firm chooses how many bottles of red or white

wine go in each box. It would be natural to assume that a competitive firm should recognize that the price

of the box depends on how many bottles of each kind are included. The firm can in a way choose the price

of the 6-bottle box, by choosing how many bottles of each kind are included, but this is compatible with

price-taking behavior since the firm takes as given the way that the market of wine drinkers values boxes with

a different number of whites or reds.
8Our formulation is consistent with stock splits being irrelevant. A stock split occurs in actual corporations

when a firm decides that each stock previously issued is converted into, say, two stocks. In this case each

shareholder will now receive half the dividends per share it would have received otherwise but it now has

twice as many shares. Stock splits are performed in the real world for accounting reasons and in a framework

like ours they should be irrelevant. In fact, we could introduce a stock split by assuming the firm can give 
shares for each previously owned share, then −1 should be replaced by −1 in the above budget constraint,
dividends, prices and future stocks would be divided by  and financing costs and objectives are unchanged

by such an action. Our formulation of (8), however, does not introduce such a  It assumes that each old

share is always one old share, while newly issued equity ( − −1) is sold in the market and it is not given
out to former shareholders. Therefore we simply rule out stock splits.

9



resort to other formulations in order to formulate the model recursively. A similar difficulty is

commonly found in the macro literature on Ramsey equilibria of optimal fiscal and monetary

policy and models of risk sharing with dynamic participation constraints. Throughout the

paper we will make analogies to this literature to clarify the nature of the results.

We now discuss some features of the firms’ feasible set. The first result rewrites the

period-by-period constraint (8) in a present value discounted form.9

Lemma 1. A non negative sequence  = (   ) is feasible if and only if

( + ) −1 = 

∞X
=0



 


+ (11)

for all  = 0 1  a.s.

The proof uses forward substitution in (8) and it is standard, except that one needs to

check that equation (10) also holds. This result will be useful in various parts of the paper

and it shows how incomplete markets restricts the firms’ choice. As is well known, if the firm

would have access to complete markets it would be enough to impose equation (11) only in

period  = 0, namely

(0 + 0) −1 = 0

∞X
=0

 

0  (12)

But in the presence of incomplete markets equation (11) has to hold for all  and all

realizations of uncertainty. This means that in addition to (38) the firm faces many more

constraints. These additional constraints are called measurability conditions and they are

stated precisely in the appendix. We discuss this in what follows with an example.

Consider the case of risk neutral investors  = 1 and no financing costs C ≡ 0. Given
any cash flow n, a constant stream of dividends  =  = (1− )0

P∞
=0 

 for all  does

satisfy (38) for the stock price  =  =  
1− and, therefore, ( ) would be a feasible choice

if the firm would have access to complete markets. Indeed, this would be the optimal choice

if the manager would have a concave utility function depending on dividends. The budget

constraint of the firm at  ≥ 1 will only be satisfied if:

−1 =


P∞
=0 

+

+ 

Clearly, if cash flows are stochastic, the right hand side of this equation depends on

information up to , while the left side can only be chosen contingent on information up

to  − 1. Alternatively, if the firm can only use stocks to save or disave (8) would imply

 = −

+ −1−1, which gives an explosive solution for  and therefore is not feasible

(it violates the transversality condition of the investors) whenever cash flows are stochastic.

Therefore, constant dividends is not a feasible policy under the sort of incomplete markets

that we consider in this paper, but it would be a feasible policy with complete markets.

Since we seek a theory of equity issuance and dividend policy we have to depart sufficiently

from complete markets so as to break the Modigliani Miller result of irrelevance of financial

policy. We already mentioned that we depart from complete markets in two ways: i) only

one asset is available to the firm (the firm’s own stock), ii) there are financial frictions C.
The following proposition shows that i) alone is not enough to break the Modigliani-Miller

result.

9The proof of this lemma and of all the other results throughout the paper is provided in Appendix A.
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Proposition 1. Assume C ≡ 0.

1. Any sequence k with non-negative discounted cash flows, i.e. if 

P∞
=0 



 


+ ≥ 0

a.s. for all  is feasible.

2. For any k as in part 1. there are many feasible choices for the financial variables

(d sp) that are compatible with k

3. The k that maximizes firm’s value is feasible.

This proposition establishes that in the absence of frictions the firm can effectively com-

plete the markets by appropriately using financial policy. Furthermore, many financial

choices on equity and dividend are feasible for a given capital sequence. In other words,

the first best that maximizes value can be achieved as under complete markets. One of the

implications of this is that in order to break the Modigliani-Miller irrelevance result, we have

to assume that C 6= 0 and/or depart from the objective of value maximization.

2.4. Firm Behavior. We assume that the objective of the firm manager is to maximize

0

∞X
=0

 ( −1 ) (13)

where  is some given function  . The previous function encompasses many issues that

arise in corporate finance and firm financing and it includes different objective functions

that we will use in the examples throughout the paper. For example, we will look at a case

of internal versus external investors, a case with short termism of the manager and a case

where compensation includes stock options.

The firm’s problem is to choose x in order to maximize this function subject to (8)-(10)

and the investors’ transversality condition, taking −1 −1 and the processes for  as given.
Our solution assumes full commitment on the part of the firm to the preannounced policy,

since the firm decides in period zero what the solution will be in all future periods for any

possible contingency. Later on, we will show that if the manager could reoptimize in the

future, he would change the preannounced plan. The above firm behavior can be embedded

in a general equilibrium model in a standard way, namely, by assuming that the stochastic

discount factors are determined in equilibrium by the marginal investors. In this case,

 =
0 ()
0 (−1)

Finally, note that we take  as given and thus avoid the issues of endogeneizing corporate

control as discussed in the literature on general equilibrium, incomplete markets and endoge-

nous production. This literature points out that the objective of the firm is not well defined

in an incomplete markets setting and that heterogeneous stockholders will generally disagree

as to what should be the objective of the firm. In short, each shareholder has a different

stochastic discount factor and each would like the firm to maximize the value of the firm

according to their own stochastic discount factor. Various alternatives have been postulated

in this literature to determine the firm’s objective and they postulate different equilibrium

concepts (see e.g. Drèze (1974), Grossman and Hart (1979) and Bisin et al (2010)). In

this paper  is not endogeneized, but our analysis could be used in order to determine 

endogenously in a fully dynamic model by implementing the equilibrium concepts in the

literature.
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3. Recursive Formulation and Time Inconsistency

Due to the presence of constraint (6) in the problem of the firm, the Bellman equation does

not hold and, in general, the optimal choice is not a time invariant function of the natural

state variables. Formally, denoting the optimal choice ∗ , there is no reason to expect
that ∗ =  (∗−1 ) for some time invariant function  10. This happens in many other

models where future variables appear in the current choice set. Moreover, as pointed out by

Kydland and Prescott (1977), the solution is likely to be time inconsistent, in the sense that

the solution promised by the firm in period zero is such that, if in a future period  the firm

is allowed to re-optimize, the decision will in general be different from the optimum initially

promised.

The assumption of full commitment on the part of a firm manager may be a questionable

description of the way managers behave. Arguably, investors may not believe blindly what

firm managers state. Our focus on the full commitment solution is justifiable. First of all,

this is the first best given the technology and financial frictions, so that this will always be a

benchmark for any solution under some sort of partial commitment. Second, only by making

commitment an issue can we study how to build commitment in a firm’s financial policy.

As we will show later, depending on the objective function for the firm and the form of

financial frictions, the optimal policy under full commitment happens to be time consistent,

and we can study what incentives the manager can receive to seek a time consistent policy.

Third, while full commitment may be a questionable assumption, any other assumption on

the commitment of the manager is also questionable. Perhaps managers do not fully commit

as in the solution studied in this paper, but managers certainly do not default constantly

on past promises, since this carries costs of various kinds. Given this, full commitment is as

good a place to start. 11

3.1. Recursive Formulation. We now show how the problem of the rational firm can

be written recursively following the approach of Marcet and Marimon (2009). To have a

general setting we assume that all the inequalities faced by the firm are summarized by the

function B ≡ B ( −1 ). The Lagrangian for the firm’s problem can then be written as:

 = 0

∞X
=0



⎡⎣ ( −1 ) + 

⎛⎝

∞X
=1



 + − 

⎞⎠
+ (


 + ( − −1)− −1 − C)− B]

where  and  are the multipliers associated with the period  budget constraint and the

non negativity constraints and  is the multiplier on the PD mapping (10). To obtain a

recursive Lagrangian, one has to rewrite the previous Lagrangian so that future variables do

not appear in the current return function. This can be achieved as follows. In the first line

of the Lagrangian (the second line can stay as is), apply first the law of iterated expectations

so that the term  above disappears. Second, group terms depending on  to obtain:

 = 0

∞X
=0


£
 ( −1 ) + 

¡
1

−1−1 + + 
00
¢−  

Then, we can introduce a new variable  with the following law of motion for  ≥ 0:
 = −1 +  with −1 = 0 (14)

10Most commonly the state variables would not include −1 and −1. Given the general objective and
frictions discussed earlier, it could happen that those appear as natural state variables. See later for examples

where this is the case.
11SeeKlein, Krusell and Rios-Rull (2007) or Domínguez (2009) for applications to fiscal policy under no

commitment and see Debortoli and Nunes (2008) for applications to government debt policy with partial

commitment.
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while the Lagrangian can be written as:

 = 0

∞X
=0


£
 ( −1 ) + −1 − 

+ (

 + ( − −1)− −1 − C)− B]

After rewriting the problem in this way it is clear that future variables do not enter

today’s objective function and that now only past ’s appear in the objective. This suggests

that the optimal choice (with the additional assumption that () is Markovian) satisfies:

(∗  
∗
 ) =  (∗−1  

∗
−1)

for a time-invatiant policy function  Marcet and Marimon (2008) provide conditions guar-

anteeing that this is indeed the case and they show a saddle point functional equation that

plays the role of the Bellman equation. This means that solving the model amounts to finding

a policy function  that satisfies either the saddle point functional equation or the first order

conditions for optimality. There are various methods to find this policy function numerically.

The key observation here is that  now becomes a state variable (sometimes called a co-state

variable) and that the multiplier  needs to be added to the list of decision variables. Given

the initial conditions −1 0 and adding the initial conditions 0 = 1 −1 = 0, this policy
rule, together with (14), determines the whole optimal path.

Note that the multiplier −1 captures the promises that have been made in the past
about future dividends. Past promises bind the current choice for . Since there are no past

promises to be kept at the beginning of time, the optimal choice entails setting −1 = 0.

However, at  = 1, there is an inherited promise from period 0, ∗0 = ∗0, which summarizes
the cost of the promises made about future dividends. Since the firm is fully committed

to the optimal plan it will have to remember the promise made in all past periods about

today’s dividend payments, and this promise is summarized in the value −1. Similarly, as
we consider dividends further away in the future (2, 3 etc.), these are linked with promises

made in past periods. As reflected by its law of motion, the co-state −1 adds up all of
these past promises and summarizes them in a single number.

3.2. Time Inconsistency. In what follows, we discuss the issue of time inconsistency

that can potentially arise when firms are rational. Intuitively, the reason for time inconsis-

tency is the following. A firm that wishes to issue stock today will in general have incentives

to announce that it will postpone dividend payments. By paying a low dividend in the first

period and by promising high future dividends today’s per-share stock price is higher and

more funds can be raised by today’s equity issuance. However, in future dates, after some

investors have already bought the firm’s stock, the manager will have an incentive to deviate

from the previously announced policy, namely, the firm will announce that today’s dividends

will be lower than had been promised, but that they will be higher in the future. This is

because adjusting today’s dividends will not affect the current stock price, since it depends

only on future dividends. Thus, there is a permanent pressure to announce a temporary

reduction of dividends, relative to what had been promised.

To show this formally, we first describe a standard definition of time consistency. De-

note the full commitment solution by ∗ . Given a time period   0 and a realization of

uncertainty  , define the "time- reoptimization problem" as:

max
{}∞=



∞X
=0

 (+  +−1 + ) s.t.

(8)-(10) for all  ≥ 

given −1 = ∗−1
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where  is now a function of histories of realizations from  to . This is the solution that

would arise if, having followed the full commitment solution up to time  , the manager could

re-optimize and choose the best solution from then on, ignoring the plans that were involved

in the solution x∗. Denote the solution to this problem by x∗ = {∗ }∞= .

Definition 1. We say that the problem is time consistent at time  if x∗ = {∗ }∞=
a.s.. We say that the problem is time consistent if it is time consistent for all   0

Time inconsistency arises if the problem is not time consistent. The fact that time

inconsistency may arise in the present setup is reflected formally in the recursive formulation.

If the manager reoptimized in period  , he would want to follow a policy that implies re-

setting −1 = 0 and following the optimal policy  from then on, since this is the solution to
the full commitment problem. But if the manager is fully committed to the pre-announced

policy, he will plug in ∗−1 in the policy function  .

Time inconsistency is usually seen as a source of instability. The full commitment solu-

tion can only be implemented if the manager can convince investors that he/she will indeed

follow the full commitment plan and that it will never reoptimize. In the presence of time

inconsistency, the manager will try to establish credibility that he will follow the full com-

mitment solution, but of course the temptation to default on past promises and to reoptimize

is very strong and it may undermine how the whole system works.

The method of Marcet and Marimon provides another way to express the problem of time

inconsistency and, at the same time, of discussing how the incentives of managers should

change in order to restore time consistency. In particular, Marcet and Marimon show that

the full commitment solution x∗ would arise as a solution of the reoptimization problem
if the objective function is modified appropriately. In our application this translates into

the following statement. Consider a "reoptimization problem" with the following objective

function:



Ã ∞X
=0

 (+  +−1 + )

!
+

∗−1
∗−1

( +  ) (15)

while all constraints stay as in the previous reoptimization problem. It turns out that the

solution to this modified reoptimization problem is the original full commitment solution

{∗ }∞= . In other words, if the manager was able to reoptimize but his incentives would
somehow change so that instead of caring only about  he would now care about a linear

combination of his own objective and the value of the firm, with a weight in the value of the

firm that is equal to ∗−1
∗
−1, then the manager would decide to maintain the previously

stated promises. This suggests a possible solution of the time inconsistency problem. The

objective of market investors should be incorporate gradually to the one of the manager.

This amounts to saying that investors’ preferences should play a larger role in older firms.

Such a compensation can be interpreted as an "optimal contract", in the sense that it would

eliminate the problem of time inconsistency.

In the next section, we analyze an example that demonstrates all the issues we have been

discussing.

3.3. Example 1: A Dominant Shareholder. In what follows, we consider an example

in which the manager owns a fixed number of stocks in the firm and has no other sources

of income. Formally, assume that managers hold a (fixed) number of stocks  and let the

stocks held by investors be given by  , so that the total number of stocks in the economy

is equal to  =  + . The problem of the investors implies the PD mapping and their

consumption is equal to  =  . Moreover, the consumption of the manager is equal to
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 = 
 and he maximizes the following objective:12

0

∞X
=0

(
)

for some increasing and concave utility function .

In general,  can be justified as the contract that the manager has been offered to give

him or her incentives to manage the firm properly. In a setting in which the optimal payout

and investment are not observable, the manager is restricted from overinvesting or diverting

funds by linking his compensation to the payout. In other words, there may be a signalling

problem or hidden action mechanism in the background, that prompts the firm to offer a

reward to the manager that is tied to the dividend. Indeed, many firms offer stocks or options

as a form of payment to managers and managers are not allowed to sell these assets for a

long time. We concentrate on the optimal stock issuance policy given , but we can think of

 as a reduced form of an incentive problem that we take as exogenous here but that, ideally,

would be endogenized.

Another interpretation of this utility function is that there are two types of stockholders:

market stockholders and internal stockholders. Market stockholders would correspond to the

investors (households) in this setting. Internal stockholders are somehow tied to this firm,

either because they founded the firm, or because their human capital is particularly useful

in this firm; they run the firm and they decide how much to invest and how many stocks to

issue, while the utility  () represents their direct preferences on the firm’s performance.

Consider the simple case where  = 1 and no financing frictions C ≡ 0 The first order
conditions for optimality imply:

0 () = −1 −−1 (16)

 = [+1(+1 + +1)] (17)

 = 

£
+1

¡
+1

0() + 1− 
¢¤

(18)

 = ( − −1) (19)

The second and third equations represent the stock Euler equation (17) and the capital

Euler equation (18) respectively, which are fairly standard. The last condition is the first

order condition for the stock price and it allows us to write the co-state as:

 = −1 + ( − −1) with −1 = 0 (20)

We focus on the condition describing the optimal dividend choice (16). As we see, a

marginal increase in  yields a direct utility benefit of 
0 () but it has a cost in terms of

lost resources at  that is equal to −1. A rational firm takes into account the fact that

the dividend choice at time  will affect stock prices in all previous periods. In particular, a

marginal increase in  also implies increases in the stock prices of all previous periods and

this in turn affects the resources available in previous periods. If the firm has been issuing

stocks we see from (20) that we can expect −1  0, implying that more funds were raised
in the past for the same level of stock issuance given a higher dividend at . Conversely, if

the firm has been repurchasing stocks in the past (−1  0), a dividend increase today has
a negative effect on past resources. A fully rational firm needs to take into account all these

effects when deciding the optimal dividend and equity issuance policies.

12Whereas this formulation assumes that the stocks of the manager are fixed, he can change his proportion

in the firm by modifying the total number of stocks through issues and repurchases. Issues arising from the

trade of shares between managers and shareholders are also discussed in Gorton and He (2006). Their focus

is more on the interaction of agency issues and asset pricing and less on financial policy and investment.
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Consider now a firm that ignores the PD mapping. Throughout the paper, we denote

this firm as naive. It can be easily checked that the first order conditions of such a firm are

like the ones above but setting −1 = 0 in all periods. This shows how the naive firm will

ignore the links among the periods and it will, in general, achieve a lower objective value

than the fully rational firm.

The previous discussion clarifies again how the multiplier −1 summarizes the effect of
a marginal change in  on all previous periods’ resources and it can be positive or negative

depending on the history of stock issuance and repurchase. Even though the whole past

history is needed to make decisions at any point in time , the recursive contracts formulation

of Marcet and Marimon allows us to summarize all the relevant information in just one

variable, −1. The nature of time inconsistency is that the firm will always be tempted to

follow a policy where  is re-set to zero and only the fact that the firm is fully committed

will prevent this from happening. Next, we provide an analytical version of the example that

compares the full commitment with the no commitment solution.

Full Commitment. We now analyze a version of the example above for which we can

obtain an analytical solution. In this example, the friction consists of a maximum amount

of stock that can be issued in the first periods. This can be justified by the presence of

transaction costs or due to the manager disliking that too many stocks are distributed, since

this would cause a loss of his control in the firm. The manager solves:

max
{}

∞X
=0

(
) s.t.

−1 +  − (1− )−1 = ( − −1) + (−1)
 − −1 ≤ ∆, −1 −1 given

 =

∞X
=1

+

where  =  +  and ∆  0 is a fixed constant limiting the amount of stocks that can be

issued. We assume that initial capital is much lower than the steady state capital. Formally,

the steady state capital, which we denote by  for ‘golden rule’, satisfies:

1 = 
£
 0() + 1− 

¤
and we assume that −1  .

No Bounds on Stock Issuance: ∆ = ∞. In the absence of uncertainty, the firm

would be able to achieve the complete market solution if the constraint on stock issuance

was not present. That is, if ∆ =∞, the manager would be able to issue a sufficiently large
amount of stocks in the first period to finance the desired accumulation of capital at  = 0,

achieving the first best capital in one step. In fact, the manager would be able to complete

the markets with stock issuance so that  =  for all  ≥ 0 and dividends would be

perfectly smoothed. For the case with () = log() the analytical solution is provided below.
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Result 1. When ∆ =∞, () = log() and −1  , the allocations are, for  ≥ 013:

 =  =

"
1

− 1 + 



# 1
−1

 = ̄ =


(1− )
¡
−1 + (1− )−1 − 

¢
+ 

−1

 = ̄ =


̄
and  =  =



1− 
̄

The proof of these results is provided in the appendix. The above allocations imply that

firms issue stocks in the first period and invest enough to jump to the optimal level of capital

immediately. This implies that there is no time inconsistency. In what follows, we explore

the solution in the presence of a relatively tight bound ∆.

Bounds on Stock Issuance: ∆  ∞. Suppose there is a bound on stock issuance

∆ ∞. For any ∆  0, there is a point in time after which the bound is not binding any

longer. That is, capital has grown enough so that it is close to the steady state and one last

period of stock issuance (that does not violate the issuance bound) is enough to reach the

steady state. Suppose this happens after  periods. Then

 − −1 ≤ ∆ for 0 ≤  ≤  − 1

Starting at period  =  and given −1 and −1, the continuation problem is one where

bounds on stock issuance are not binding any more and the solution given by the one in

the previous section. The optimal policy for this setup turns out to be time inconsistent, as

shown by Proposition 2 below.

Proposition 2. In a production economy with no uncertainty, bounds on stock issuance

for the initial  periods and initial capital lower than the steady state, the problem is time

inconsistent.

The previous proposition shows that the example with the issuance bound and risk averse

firms exhibits time inconsistency. This illustrates that a crucial factor generating time in-

consistency in the model is that there is disagreement between the shareholders and the

manager of the firm. It would be interesting to know how the firm would set its policy if

could not credibly commit. This is investigated in what follows.

No Commitment. We now compare the full commitment solution with the one that

would arise under no commitment. To simplify things, we assume that the bound is only

binding for one period  = 1. In this case, the solution for  ≥ 2 is the same as under full
commitment and it would have an identical path if the initial conditions were the same.

However, the solution for period  = 1 will differ if the firm cannot commit. Since we do not

have an analytical solution, we have depicted the path for some of the endogenous variables

in the graph below. We consider a startup firm, that is, a firm that starts at a very low level

of capital, −1  .

Consider first the solution under commitment. The figure reflects that the firm can

promise higher dividends in the future and lower dividends in the first period, which allows

for higher stock prices and a higher growth. Note that the bounds on stock issuance are

binding in the first period both under commitment and no commitment. However, if the

firm can credibly commit, it can obtain higher levels of external finance. In particular, by

promising lower dividends in the first period and higher dividends in the future, it ensures

13See the appendix for details and for a comparison with the naive solution.
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that the competitive price for its stock is higher and thus its external finance is higher for

the same level of stock issuance.

Figure 1: Commitment versus no Commitment
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The figure also reflects that the dividend policy looks very different if the firm cannot

credibly commit to the pre-announced policy. In this case, an increasing profile of dividends

would not be credible and we see that dividends decrease over time. Intuitively, the firm will

have incentives to lower dividends in the future and promising an increasing sequence would

not be sustainable. Given this, the shareholders are compensated in the first period with a

higher dividend per share.

Two important implications arise from this comparison. First, the commitment solution

seems to be more relevant empirically, growing firms typically pay lower dividends when

young and more when mature. Second, our framework suggests that commitment is an

additional motive explaining this empirical observation.

Although time-inconsistency will arise in general in the presence of a constraint such as

the PD mapping, we can characterize some cases under which the solution is time consistent.

These cases are discussed in the following section.

4. Time Consistency

It should be clear that, in general, the solution is time inconsistent in the presence of a

constraint such as the PD mapping. However, time consistency can be recovered sometimes.

It turns out that this happens when the objective function of the manager depends only on

cash flows net of financing frictions,  = −1 −  ( − −1), namely,

 ( −1 ) =  (−1 −  ( − −1)  ) (21)

Propositions 3 and 4 characterize these settings.

Proposition 3: Let  ( −1 ) =  (−1 −  ( − −1)  ) and define  0 =
1 (−1 −  ( − −1)  ). The full commitment solution is time consistent in period 

if either :

a) There is agreement between managers and shareholders, namely,  0 = 
0.

b) The PD mapping is not a binding constraint until   Formally, −1 = 0

The proof of proposition 3 relies on showing that, when reoptimizing at period  =  , the

same prices and allocations can be supported with a suitable renormalization of multipliers

if conditions a) or b) are satisfied. Several remarks are worth noting. First, part a) of the

proposition holds if there is agreement between the managers and the shareholders. This

will arise under value maximization, which is a particular case of (21) that satisfies:

 (−1 −  ( − −1)  ) =
Y

=1

 (−1 −  ( − −1)) = 
0 (−1 −  ( − −1))
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Given this, the objective of the firm becomes:

0

∞X
=0

 
0 [−1 −  ( − −1)] (22)

First, an important feature of the formulation in (??) is that it uses the PD mapping. To

see this note that the (cum-dividend) value of the firm at time  = 0 is given by (0+0)−1.
Using the PD mapping and the period by period budget constraint of the firm, we can then

re-write the value of the firm as follows:

(0 + 0)−1 = 0 + 00 = 0 + 0
1
0 (1 + 1) 0

= 0

∞X
=0

 
0


 = 0

∞X
=0

 
0 (−1 −  ( − −1)) (23)

To make the point clearer, notice that a manager who ignored the price dividend mapping

and who literally maximized the value of the firm taking stock prices as given would treat 0
as outside of his control and decide that the optimum is to pay everything out as dividends

today and close down the firm in one period. A manager could only go from (0+ 0)−1 to
(??) or (23) if he understood the link between future dividends and 0 every period.

Second, under this objective, it becomes clear that  0 = 
0 and therefore

 0+1
 0

=
 +1
0

 
0

= +1 =
0 (+1)
0 ()

=
0
¡
+1

¢
0 ()

(24)

Thus, the marginal rate of substitution of the manager is the same as the one of market in-

vestors at the optimum, who consume the net cash flows net of financing costs,  =  . Con-

versely, if  0 = 
0, implying (24), then it must be the case that  ((−1 −  ( − −1))  ) =

 
0 (−1 −  ( − −1)). It is in that sense that we identify value maximization with

agreement between managers and shareholders.

As for part b) of Proposition 3, also shows that agreement between the manager and

the shareholders is sufficient but not necessary for the solution to be time consistent. In

other words, time consistency can also arise under disagreement. An example of this case is

discussed in Proposition 4 below.

Proposition 4: If  ( −1 ) =  (−1  ( − −1)  ) and frictions are sym-
metric, in the sense that they are of the form C =  ( −1  ( − −1)  −1  ) and
B = B ( −1  ( − −1)  −1 ), then  = 0 for all .

The previous proposition states that time consistency will arise if both the compensa-

tion of the manager and the financing frictions are symmetric. We label a compensation

or a friction symmetric if it affects stocks and per share dividends equally or if they de-

pend on the total value of issuance  ( − −1) and/or the total value of dividends −1.
The most common example of a symmetric compensation is cash flow compensation, since

 = −1− ( − −1). Examples of symmetric frictions are restrictions on repurchases,
 ( − −1) ≥ 0, issuance costs  ( ( − −1)) = [ ( − −1)] for  ≥ 1 or minimum
dividend payments, −1 ≥ 0. In contrast, examples of asymmetric frictions would be a
limit on the number of stocks issued,  − −1 ≤ ∆ per share dividend targets  ( − )

for  ≥ 1 or costs in changing per share dividends,  ( − −1) for  ≥ 1.
This result is particularly important, since the literature typically assumes symmetric

frictions and compensation linked to cash flows. In fact, the literature has considered what
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we denote as DE-problem, given by

max
{}

0

∞X
=0

 ( −1 −  ) s.t.

 +  =  + (−1) + (1− ) −1 − C( −1  ) (DE)

0 ≥ B ( −1  )

where  = −1 and  =  ( − −1). The proposition then shows that this problem is

equivalent to what we call the OP-problem:

max
{}

0

∞X
=0

 ( −1 −  ) s.t.

−1 +  =  ( − −1) + (−1) + (1− ) −1 − C( −1  )

 = 

∞X
=1



 + (OP)

0 ≥ B ( −1  )

An important implication of this equivalence is that the issues we discuss do not arise,

since the price dividend mapping is redundant. Note also that the DE problem is actually the

model considered by Gomes (2000) and Gomes at all (2003), who assume that  ( −1−
 ) = 

0 ( − ), a cost of issuing equity, a no repurchase constraint and a lower bound

on total dividends14. Proposition 4 shows then that these authors are justified in focusing on

the naive case. On the other hand, the solution displays the well known pecking order result,

implying that firms do not increase their dividend payments while they are issuing equity.

This, and the fact that value maximization is not validated by the data leads us to study

other firm objectives that introduce a conflict of interest between managers and shareholders

and are more in line with the empirical observations on manager compensation. We do this

in the next section.

Finally, Proposition 5 below shows that one cannot ignore the PD mapping if frictions

are asymmetric, even under value maximization. In this case, it turns out that  6= 0. Our
second example illustrates this.

Proposition 5. If  6= 0 for some , then policies are different if the PD mapping is

ignored.

4.1. Example 2: Value Maximization with Asymmetric Frictions. In this exam-

ple, we assume value maximization as in Gomes(2000) and Gomes et all (2003) but introduce

costs of changing per share dividends. This is intended to capture (in an admittedly crude

fashion) the observation that per share dividends are very persistent, in the sense that they

are very infrequently changed. This is an example in which the naive and rational solutions

do not coincide in spite of the fact that the rational solution is time consistent. Formally,

the firm solves:

max
{}

∞X
=0

 [−1 −  ( − −1)] s.t.

14Variations of this are analyzed in Cooley and Quadrini (2001), Covas and Den-Haan (2007), Quadrini

and Jermann (2005) and Gomes et al (2003) amongst others.
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−1 =  ()−  + (1− )−1 +  ( − −1)
−2 ( − −1)2 −  ( − −1)2

−1 ≥ 0,  ( − −1) ≥ 0

 =

∞X
=1

+

The time path for some of the endogenous variables in the model is displayed in the

figure below. For comparison, we also depict the solution for a naive firm that ignores the

PD mapping. As reflected by the figure, the two solution can differ substantially. When

the PD mapping is taken into account, dividends are lower at first and higher in the future,

leading to higher stock prices every period.

Figure 2: Value maximization with costs in changing dividends
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The previous results illustrate that time consistency arises in very specific cases and in

particular when shareholders are compensated according to symmetric payments, like cash

flows, or when shareholders and managers agree, for example when the objective of managers

is value maximization. These are the standard assumptions in the literature. In the next

section, we show that small departures from these assumptions lead to time inconsistency.

We model these departures so that they reflect empirically observed CEO compensation

schemes. The first one assumes that managers are compensated through bonus payments

linked to cash flows and a fixed salary, while the second assumes that compensation is based

on bonuses linked to cash flows and stock options. In addition, we also study a case with

asymmetric frictions to illustrate the importance of Proposition 5.

5. Examples of CEO Compensation

This section studies specific examples that reflect empirically observed compensation schemes.

For simplicity, all the examples throughout this section assume risk neutral households and

no uncertainty. The initial capital stock of the firm is lower than the steady state value,

which is reached after a finite number of periods  . This implies that the firm is growing

over time. Given this, the role of stock issuance is, precisely, to provide funding to invest in

capital so that the firm can operate at the optimal level given by the golden rule. Since firms

will achieve the optimal capital immediately (after one period) in the absence of frictions,

we introduce such frictions.

According to the survey by Murphy (1999), the main components of CEO compensation

in US are (i) a fixed part or base salary, (ii) a bonus mostly based on yearly performance, with

the most common measure being accounting profits, (iii) stock options, which are typically

non tradable and now constitute the largest component of compensation in US and (iv) other
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forms of compensation, including restricted stock. Murphy also notes that stock options

have typically a strike price equal to the market value on date of grant and they reward only

price appreciation (no dividends). Following the evidence, the objectives we consider are

combinations of the different components in (i)-(iv). We have already analyzed objectives

linked to cash flows only (component (ii)), a special case of which is value maximization.

Moreover, we have studied a firm objective that links compensation to per share dividends,

corresponding to component (iv). Next, we study a firm objective that links compensation

to cash flows and stock options, corresponding to a combination of components (ii) and (iii)

and to cash flows and a base salary, corresponding to combinations of components (i) and

(ii).

5.1. Example 3: Bonus Compensation with a Base Salary. We consider an ex-

ample with infinitely many periods that can be solved analytically. We motivate the main

analysis from the point of view of a manager that has a shorter-term view than the investors.

But the analysis is obviously extendable to a case of two types of agents, the investors with a

higher discount factor than the manager. In essence this is a case where managers discount

more heavily the future, but it maintains all the standard assumptions of corporate finance

models, namely, the manager is rewarded according to cash flow.15

The technology of the firm is as in the main text. There is no uncertainty, and cash flows

are:

 = (−1)−  + (1− )−1 (25)

In the absence of frictions, financial policy is indeterminate. Therefore, we assume a bound

on issuance that determines the amount of stocks issued in the first period 0, where the

initial stocks −1 = 0 are normalized to zero for simplicity. As we will show later, the firm
will have no incentives to issue equity in subsequent periods.

Investors are risk-neutral, that is  = 1 The manager has the same utility function as

investors, that is, the manager is risk neutral and has discount factor . The manager is

rewarded according to a fixed wage and a bonus linked to earnings. So the payment for the

manager in period  is:

 + 

for fixed constants  and  That the manager is rewarded in this way can be justified in

various ways. First, empirically, as manager’s compensation is often a combination of a

fixed pay and a bonus linked to performance. Second, some papers on the optimal contract

literature find that optimal incentives imply this kind of reward.

Each period, there is a probability 1− ≤ 1 that he will be fired, in which case we assume
that it has a fixed outside option  from then on. This setup would arise endogenously in

various ways, for example, i) the founding manager has invented the technology used in the

production of the firm, he is the only one who can run this technology initially and ii) with

probability 1 − , the stockholders find how to manage the technology by themselves and

they can coordinate to fire the manager. It is implicit that we only consider problems where

the value of the objective function for the manager is higher than the manager’s utility from

engaging in some other activity. The idea is the manager’s human capital is tightly linked

to this firm and he is much less productive working in some other activity. This guarantees

that the manager will stay as manager unless he is fired.

The only uncertainty in the model is the firing decision. As is well established, in

this case we can view the manager as choosing a deterministic sequence that maximizes

15With this compensation, the solution will be time consistent if we do not introduce any source of dis-

agreement.
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P∞
=0 ()


£
 + + (1− )

¤
or, equivalently, that the manager maximizes:

Max{}
∞X
=0

()  s.t.

 =

∞X
=1

+ (26)

−1 = (1− ) − +  ( − −1) (27)

 ≥ 0,  ≥ 0 (28)

For simplicity we assume that the firm itself fully commits to the preannounced dividend

policy, so that the dividend paid by the firm is the one chosen by the manager, regardless

of whether or not he has been fired. Therefore the price satisfies the usual PD mapping for

the dividends chosen by the manager.

Denote by 

the optimal capital from the point of view of the investor, that is, for

1 = ( 0() + 1− ) Similarly let 

be the optimal capital from the point of view of the

manager, that is 1 = ( 0() + 1− ) If the investors were to run the firm, capital would

be equal to 

in all periods, and if managers can invest free of any financial constraint they

will choose capital 

in all periods. We make the usual assumption that:

(1− )

Ã
(−1) + (1− )−1 − 


+ 

(

)− 



1− 

!
− 

1− 
 0 (29)

that is, the value of the firm is be positive if capital would be accumulated according to

investor’s preferences. This assumption insures that the problem of the manager is well

defined, since there is a positive stock issuance that is feasible if capital is accumulated

according to the investor’s preferences, so that the feasible set is non-empty.

As mentioned earlier, we assume that the initial capital low enough that the initial cash

flow is negative, so that the firm indeed needs some financing to start growing. Clearly, there

is no reason to pay any dividends in the initial period, since this dividend does not yield

any return to the manager, so that the optimal choice is 0 = 0. In the following periods,

however, dividends will have to be positive in order to sustain a positive stock price.

Full Commitment. The solution to the problem under full commitment differs in two

cases.

Case 1: (1 − )
³
(


)− 


´
−  ≥ 0. This case insures that the value of the

firm from period 1 onwards is positive if the manager invests according to the investor’s

preferences. In this case the manager will implement his own first best. The manager has to

invest a large amount in the first period, for this he needs to issue some equity. The excess

production in periods  ≥ 1 is enough to guarantee future dividend payments insuring that
investors will pay a positive price for these stocks initially issued. In this case the fact that

equity has to be issued does not impose a cost on the manager.

This case arises for several parameter values: i) the technology of the firm is very produc-

tive or initial capital is quite high, so that it is worthwhile for investors to put their money

in this firm even if the capital is not accumulated according to their first best, or ii) the

discount factor of managers and stockholders is in fact very similar (that is,  close to 1)

and in that case the manager chooses something close enough to the investors so that the

investors also have a positive value of the firm, or iii) manager compensation is low enough.

Formally, this case occurs if (

)− 

 →∞, or if → 1 or if  → 0
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It turns out that in this case the manager implements the first best from the point of

view of his own discount factor and never invests according to stockholders’ preferences. To

see this, all we need to check is that implementing the manager’s first best  = 

for all 

is feasible. To prove this we just need to find sequences for stocks, dividend and prices that

satisfy budget constraints and PD mapping. Notice that this is the case if we choose stocks

 = 1 and prices

 =

∞X
=1

+ = 

³
(


)− 


´
(1− )− 

1− 
(30)

for all  ≥ 0 and dividends  =
³
(


)− 


´
(1− )−  for all  ≥ 1

Case 2: (1− )
³
(


)− 


´
−   0. In this second case, the manager does face

some constraints because he has to sell the new equity in the stock market. If the manager

tried to implement his first choice for capital as he does in case 1, the budget constraint

would mean that 0 would be negative and, obviously, it would be impossible to raise any

funds from equity issuance. This case occurs for the contrary the parameter values i),ii),iii),

mentioned above, that is, when the technology is not highly productive, or when the manager

and investor are very different or when the manager compensation is very high.

In case 2 the manager has a non-trivial choice, the investors’ preferences will now con-

strain his choice. Therefore, the manager will have to find a compromise between his interests

and those of the investors.16 A summary of the properties of the solution is as follows. Cap-

ital is always between the investors’ and the manager’s first best:



 ∗  


(31)

showing that the manager has to find a compromise between his and investor’s preferences.

That is, even if the investors do not run the firm the fact that they have to purchase the

newly issued equity forces the manager to invest somewhere in between his and the investors’

preferences. Furthermore, we can show that:

∗  ∗+1 (32)

That is, capital now is increasing and it converges to the investors’ first best. Capital

increases because this allows the manager to pay ever higher dividends that allows them

support a return of −1 for the stocks. Moreover, the long run capital converges to the
investors’ first best:

∗ → 


(33)

In this way the manager can guarantee that when capital stops growing he can pay

dividends that satisfy the investors, since in the long run capital is accumulated optimally

from the investors’ point of view. Hence, the manager can exploit the investment financed

by the equity issuance by promising to find a compromise, he will invest more than he would

like to and, in the long run, invest completely according to investor’s preferences.

Let us now show these properties formally. The Lagrangian is

 =

∞X
=0

()

⎡⎣ +  [−1 −  −  ( − −1)] + 

⎛⎝ −
∞X
=1

+

⎞⎠⎤⎦
16There are many parameter configurations for which this can occur, so the case is not vacuous. To see

this, notice that   1 implies 


 

 therefore (


) − 


 (


) − 


 so for any technology and

discount factors there are many values f , for which Case 2 arises.
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where  is the lagrange multiplier of (??) and  the multiplier of (??). FOC with respect to

capital, dividends, and price give:

1 +  = (1 + +1)
£
 0() + 1− 

¤
+1 = 

for  with a law of motion

 = −1−1 + ( − −1) for all  ≥ 0 and −1 = 0

It is clear that the following solution satisfies the first order condition. We set 0 equal

to the bound on issuance, which is chosen to be equal to 1 for simplicity. Thus, 0 = 1. Set

 = −1 for all   0 hence  = −0 for all  ≥ 0 Hence first order condition for capital
becomes:

1 = 

µ
1 + −−10
1 + −0

¶¡
 0() + 1− 

¢
(34)

Notice that given a value for 0  0 (34) gives a solution for the whole capital series k
∗.

Clearly the large bracket is always larger than one, it increases with  and it converges to

−1 as →∞ This implies, respectively, (31), (32), (33)17

Therefore, if the manager can not implement his first best he will initially accumulate

less capital than 

but in the long run capital will be set according to investors’ preferences.

It is easy to see that initial capital is higher than the managers’ first best: ∗0  

and that

∗0 is closest to 

when the budget constraint is very tight so that the manager really is in

need of external financing (i.e., when the lagrange multiplier 0 is very large) or when the

manger has very different preferences from the investors’ ( is very low). To solve the model

one has to find 0 such that the capital series implied by (34) implies an initial value of the

firm equal to zero:

∞X
=0


£
(∗−1) + (1− ) ∗−1 − ∗

¤
(1− )− 

1− 
= 0 (35)

The solution for stocks, prices and dividends that satisfies all budget constraints is as

follows:  = 1 for all  stock prices satisfy

 =

∞X
=1


£
(∗+−1) + (1− ) ∗+−1 − ∗+

¤
(1− )− 

1− 
(36)

and it is easy to see that setting dividends  =
£
(∗−1) + (1− ) ∗−1 − ∗

¤
(1−)−  the

budget constraints and PD mapping hold. In principle, we would need to check that the non-

negativity of dividends is satisfied. But we consider a case that ∗0 is sufficiently high so as
to guarantee [(∗0) + (1− ) ∗0 − ∗1] (1−)−   0 and, therefore, that all later dividends

are positive as well. This will occur whenever 0 is sufficiently high so as to guarantee a

quick jump to the investors’ first best. In this case, it is also clear that there is no need for

equity issuance beyond the first period.

17Obviously, we could have analyzed Case 1 from this analysis. In that case the budget constraint is not

binding so that 0 = 0 implying  = 0 for all  Then the large parenthesis in the FOC for capital disappears

so that investment is done according to the manager discount factor. But in the current case the budget

constraint is binding therefore 0  0.
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Time Inconsistency. Now we have to consider the choice that the manager would

make if he could reoptimize in period   If this choice is different from the one planned in

period zero under full commitment we say there is time inconsistency. Using the results in

Marcet and Marimon (2009), we see that the full commitment solution amounts to reopti-

mizing at time  the problem:

∗−1 = ∗0
−−1 we see that the full commitment solution amounts to reoptimizing at

time  the objective:

max
{}∞=

∞X
=0

() (1− ) + + ∗0
−−1

∞X
=0

 + (37)

where we have substituted for ∗−1 = ∗0
−−1, subject to all the constraints. In other words,

the problem can always be seen as one of meeting the interests of two agents who have a

discounted utility, they both care about a common good and have the same instantaneous

utility (namely ) but they have different discount factors. These agents receive different

weights, initially the weight (1−) on the manager and ∗0
−1 is the weight on the investor.

As time goes by, the full commitment solution amounts to increasing the weight given to the

investor at an exponential rate equal to −1.
In should be intuitive that in Case 1 the full commitment solution is time consistent.

There is nothing to gain from defaulting on past dividend promises if the manager can always

implement his own first best and he will pay the dividends promised at time  because he

does not loose anything from paying them. Interpreting this in terms of the problem (37)

the objective function that would deliver the full commitment solution is just the objective

function of the manager that reoptimizes his own utility, because in case 1 ∗0 = 0, reflecting
the fact that in this case there is time consistency.

On the other hand, in case 2 ∗0 6= 0 so the objective function that should be reoptimized
in order to obtain the full commitment solution gives some weight to the investors and it

is different from the one that the manager would maximize if he chose his own first best

at  . Intuitively, what will happen is the following. Recall that the manager had promised

to increase capital to make it closer and closer to the investors’ first best and, therefore,

further and further away from his own first best. Therefore, if the manager can reoptimize,

his interest is to "rearrange things" so as to lower capital. The exact level of capital will

depend on the value of the capital at reoptimization time ∗−1 but in general reoptimization
means that the manager will default on the promised prices and dividends and reset capital

to a lower value than he had promised. The following figure displays the evolution of the

aggregate capital and per share dividend payments under full commitment and in the event

of a reoptimization.

The upper panel of the figure displays the aggregate capital stock and the lower panel

displays the evolution of the dividend payments. The two solid lines represent the optimum

for the manager (black line) and the shareholders (blue line). As already explained earlier,

the manager suffers from short termism and wants to invest less than the market investors.

If he implemented his optimal investment, however, he would have to pay negative dividends

and no one would provide financing to the firm. Given this, he has to compromise and choose

a path of capital that converges to the optimal capital of the shareholders in the long run.

If the manager is allowed to reoptimize, however, it will choose the lowest possible capital

stock that allows him to obtain external finance. This will imply paying positive dividends

in the period in which he reoptimizes and zero dividends from then onwards.

The nature of time inconsistency is clear. In period 1, the founding manager will be

tempted to renege on promises to stock holders. He will be tempted to pay lower dividends

and lower the value of the firm in the future. These lower dividends allow him to invest

even less than had been promised. Even though the full commitment solution had lower
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than optimal investment, the investment under reoptimization is even lower. This allows the

manager to have a higher payoff at the time of reoptimization.

Figure 3: Evolution of Capital and Dividends
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5.2. Example 4: Bonus Compensation and Stock Options. We now consider a

third alternative objective representing the case where managers are compensated through

stock options and cash flows18. In particular, we assume that managers receive one period

options every period at the fixed strike price , which is chosen so that the options are

exercised every period. We introduce costly equity issuance and a target for total dividend

payout. Both frictions fall under the category of symmetric frictions. The manager solves19:

max
{}

∞X
=0

 [−1 −  ( − −1) + max (0  − )] s.t.

−1 =  ()−  + (1− )−1 +  ( − −1)
−2 ( − −1)2 −  (−1 − )2

−1 ≥ 0,  ( − −1) ≥ 0,  =
∞X
=1

+

The following figure displays the evolution of some of the key endogenous variables.

Qualitatively, the story here is not any different than in the previous examples. The rational

manager pays lower dividends at the beginning and higher dividends in the future, a strategy

which allows him to obtain a higher external finance and grow faster. In fact, the naive

18This is the case that is most closely related to the empirical observation on CEO compensation. Recall

that the three main components of CEO compensation are bonuses (linked to cash flows), stock opitons and

base salary. We omit the base salary component since it makes no qualitative difference.
19The presence of the max operator in the objective would in general complicate the maximization problem

considerably. We sidestep this issue by ensuring that the option is optimally exercised every period so that

the max operator can be ignored.
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manager here acts as if there was no stock option component in their compensation since

they take prices as given. Naive managers would follow the value maximizing policy while

rational manager exploit their decision making power in order to inflate the stock price and,

hence, their own compensation.

Using this example, we also attempt to illustrate the nature of time inconsistency. We do

this by considering the possibility of deviation in period  = 2: After the manager has chosen

investment and financial policy for all the future under the assumption of full commitment,

we consider what he would change if he were given the opportunity to re-optimize at  = 2.

At that stage, past choices have already been realized and the manager inherits some levels

of capital stock 1and number of outstanding stocks 1. He also inherits promises made

about financial policy in the past (in the form of a positive 1), but is allowed to renege on

those and set 1 = 0.

Figure 5: Compensation linked to cash flows and stock options
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As we see. The deviation in dividend policy is clearly aimed at raising stock prices 2
and 3. The way this is achieved is by lowering current dividends 2 which do not affect

these prices and promising higher dividends in the future (). By raising stock prices, the

manager can raise external finance without too much dilution (3 is less under the deviating

policy) and also grow faster (2 is higher under the deviating policy). As a result, he

can deliver the promised higher dividends per share. Clearly the manager is better off by

deviating which means the commitment policy is time inconsistent.

6. Conclusions

We have provided a way to formulate and solve a stochastic general equilibrium dynamic

model of dividend and stock policy. The aim was to provide a framework within which

a number of important issues can be addressed. The model proposed makes explicit the

distinction between dividends and stock issuance or repurchases. It is thus well suited to an-

alyze payout policy. In addition, the framework is also available for the analysis of questions

regrading the interplay between payout policy and investment.

As a first implication of the theoretical analysis presented in the main section of this pa-

per, we highlight the behavior of growing firms with regard to dividend payments. Typically,

startup firms pay little or no dividends, while they funnel resources towards the available

productive projects that lead to firm growth. One obvious theoretical explanation of this

observation points at financial frictions that do not allow for unlimited funds being raised

from external sources. Our framework provides another, complementary mechanism that

can explain this observation. The idea is that young firms lack the burden of past promises

about dividends and can therefore pay little now, while promising a lot of dividends for the

future. This strategy allows them to raise external funds at more favorable prices by inflating

the price of their stock. Using the cheaper external funds, they can also grow faster.
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Our framework also provides a rationale for why a firm would prefer to use dividends

as opposed to repurchases if the full commitment solution is taken as the benchmark case.

As mentioned above, the reason is that dividend promises can be used to influence prices

towards achieving cheaper external finance, while the same objective cannot be achieved

through announcements in stock repurchases.

Finally, our work identifies a potential for time inconsistency in financial policy even in

the absence of asymmetric information of the type considered by Miller and Rock (1985). We

point out the complications arising from the need for commitment and we provide examples

where the full commitment policy is time consistent and others where it is not.

The examples under which optimal policy is time consistent assume that there is agree-

ment between managers and shareholders or that the compensation of managers only consists

of bonuses linked to cash flows. In general, when these assumptions are broken, optimal pol-

icy is time inconsistent.

One of the examples where policy is time inconsistent assumes that shareholders and

managers have different discount factors. In this case we assume that the firm acts to

maximize the value according to the discount factor of an agent different from the market

investors that purchase the stock each period. Since the firm insures that the PD mapping is

satisfied, investors are still willing to hold the stock even though the firm pursues a different

objective from the one of the investors. Such setup is quite natural for firms with a group

of core shareholders who influence closely the decisions of manager but funds are collected

from external shareholders. Another scenario assumes that internal shareholders’ income is

directly related to the profits distributed by the firm. We assume an extreme case in that

internal shareholders are bound to not sell or buy part of the stock (perhaps to retain control

of the firm and to insure that he stays on as a manager) and they can not save. In this case

the consumption of internal shareholders is proportional to the cum-share dividends. In

a different example, we consider an objective function that represents the most common

empirically observed CEO compensation by assuming that managers are compensated with

bonuses linked to cash flows and one period stock options.

The examples illustrate that time inconsistency would arise in general and that it could

be an important aspect in determining the availability of equity financing for firms.
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APPENDIX A: PROOFS

Proof of Lemma 1

To prove Lemma 1, consider a non negative sequence x that satisfies (8)-(10), together

with the transversality condition of investors. Clearly, the period by period budget constraint

in (8) together with the PD mapping imply:

( + ) −1 = 

∞X
=0



 


+

To see this, we only need to use the PDmapping and substitute forward (+++)+−1
for  ≥ 1. To prove the converse, we show that given (11), the budget constraint of the firm
in (8) and the PD mapping are satisfied. To see this, note that:

( + ) −1 =  +

∞X
=1



 


+

=  + 

⎡⎣+1

∞X
=0


+1
 ++1

⎤⎦
=  + 

1


⎡⎣+1 ++1

∞X
=1


+1
+1 


++1

⎤⎦
=  + 

1
 [(+1 + +1) ]

=  + 
1
 [(+1 + +1)]

Now define  = 
1
 [(+1 + +1)]. This satisfies the PD mapping in (??) and it

implies that the period by period budget constraint is satisfied, since ( + ) −1 = +.

Note that Lemma 1 can also be stated as follows: A nonnegative sequence  = (   )

is feasible if and only if

−10
∞X
=0



0 = 0

∞X
=0



0


 (38)




is measurable with respect to information up to − 1 for all   0 (39)

where  and  represent the present value of dividends and cash flows net of financing

costs respectively:

 ≡ 

∞X
=0



 + and  ≡ 

∞X
=0



 


+

In contrast to a framework in which markets are complete, Lemma 1 implies that the pe-

riod by period budget constraint of the firm is not equivalent to the period zero consolidated

budget constraint in (38). Under incomplete markets, the measurability conditions (39) also

need to be satisfied.20 In other words, while many dividend sequences satisfy (38), not all

of them are feasible. To prove this version of the Lemma, first it is easy to see that the

period-by period constraint in (8) and the price Euler equation from the consumers’ problem

20The proof of this part follows closely the reasoning of Proposition 1 in Aiyagari, Marcet, Sargent and

Seppala (2002).

30



in (10), together with the no Ponzi scheme assumption, imply (38), (39). It is easy to see

that the latter imply:

( + ) −1 = 

∞X
=0



 


+ (40)

where we have used the price dividend mapping to substitute forward (+ + +)+−1
for  ≥ 1. Since this holds for all  ≥ 0, the equation evaluated at  = 0 implies (38). In

addition, using the definitions of  and , equation (??) implies



= −1 so that (39) is

satisfied.

To prove the converse, we show that given (??), (39) and (6), we can construct a sequence

of stock holdings such that (8) is satisfied. First, define  ≡ 


so that  is measurable

with respect to to information up to − 1. Then

 =  +

∞X
=1



 


+ =  +  [+1+1]

But +1 is measurable with respect to information up to , so that = ++1 [+1].

Finally, noticing that  =  + , we see that period-by-period budget constraint in (8) is

satisfied for −1 =  =



.¥

Proof of Proposition 1

Lemma 2 directly follows from Lemma 1. Part 1 is straightforward. By Lemma 1, a

sequence k that implies non negative discounted cash flows implies a positive value for the

firm and it is therefore feasible.

To prove part 2, consider a sequence k that implies non negative cash flows and let the

cash flow sequence be given by {}∞=0. Consider any choice of stocks {e}∞=0 such thate 6= 0 a.s.. Consistent with this choice of e we can find the associated price to satisfy the
following equation:

ee = 

⎛⎝ ∞X
=1



 +

⎞⎠
and the divided process

neo to satisfy:
ee−1 + ee−1 = 

∞X
=0



 +

Now we have to show that such a stock, price and dividend processes satisfy budget

constraints and pricing equations. First, notice that:

ee = 

⎛⎝+1

⎛⎝ ∞X
=1



 +

⎞⎠⎞⎠ = 

⎛⎝1
 +1

∞X
=0



+1++1

⎞⎠
Using the definition of ee−1 + ee−1 we also have that

ee = 

³
1



³e+1e + e+1e´´
so e cancels out and the PD mapping holds. It is easy to see also that the above choices

satisfy the period by period budget constraint of the firm. We can find many other equilibria

by changing {e}∞=0.¥
Proof of Result 1.
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The problem of the firm is:

max

∞X
=0

 (
)

s.t. −1 =  ( − −1) + −1 + (1− )−1 − 

 =  (+1 + +1) , −1 −1 given

The recursive Lagrangian is

 =

∞X
=0


£
 (

) + −1 + 
¡
−1 + (1− )−1 −  − −1

¢¤
and the equilibrium conditions are now

0() = −1 − −1
 = 

£
+1 (+1 + +1)

¤
 = +1

¡
1−  + −1

¢
 =  (+1 + +1)

−1 =  ( − −1) + −1 + (1− )−1 − 

 = −1 + ( − −1)

We provide an analytical solution to these conditions. The stock Euler together with the

price equation imply  = +1 so the stock Euler implies

 =  =

"
1

− 1 + 



# 1
−1

just like under naive firms. Using the fact that  = −1 for all  ≥ 1 and the dividend first
order conditions we have

0()− 0(−1) = −1 − −1 − −1−2 + −2
= ( − −1)−1 = 0

so  = −1 for all  ≥ 1. The constant dividend level is found from the time 0 budget

constraint

 = ̄ =
(1− )

¡
−1 + (1− )−1 − 

¢
+ 

−1
for  ≥ 0

Given that, we can use the period 0 dividend first order condition to find  :

 = 0 =
0(̄)

−1

and the price is also constant and equal to  =  = 
1− ̄. We can now compute the stocks

from the intertemporal budget constraints for  ≥ 1

(̄+ )−1 =
∞X
=

− =


1− 
⇒

−1 = ̄ =


̄
for  ≥ 1
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It is straightforward to see that

̄ =


(1− )
¡
−1 + (1− )−1 − 

¢
+ 

−1  −1

as long as −1  . Finally, the multipliers  are constant after period 0 and equal to 0

 = 0(̄− −1)  0 for  ≥ 0¥
Proof of Proposition 2.

The first order conditions for the time 0 problem are given by:

 = −1 + ( − −1) with −1 = 0

0() = −1 − −1
along with

 = +1(
0() + 1− )

 = −1 + (+ 1)∆ for 0 ≤  ≤  − 1
We now consider whether a re-optimization in future periods would lead the firm to

deviate from the dividend plans announced in period zero. We use the superscript  to

denote the solution if the firm re-optimizes in period  = 1. The conditions for capital and

the stock are the same as before. On the other hand, we have

 = −1 +  (

 − −1) for  ≥ 1

0 = 0

0( ) =  

−1 − −1

This implies that the following equation holds for   1:

0( ) = 0(−1) + (

 − −1)


−1

In addition, since the firm re-optimizes at  = 1, we have

0(1 ) = 1 0

Suppose that the re-optimization choices are the same as the original ones, i.e.  = 

 =  and  =  for  ≥ 1. We now show that this leads to a contradiction. If the

re-optimized choices are the same as originally, the following must hold

0(1) = 1 0 (41)

2 − 1 =
0(2)− 0(1)

1
= 2 − 1 (42)

In addition, for these choices of  to be compatible with the same choice for capital in period

1, the following equation must also be satisfied:

2 (
0(1) + 1− ) = 1

but this cannot happen. In fact, if (42) holds, we have 2 = 1 − 1 + 2 so that we need

the following to be true

1 = 2 (
0(1) + 1− ) = (1 − 1 + 2)(

0(1) + 1− )

= (1 − 1)(
0(1) + 1− ) + 1
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The last expression can only be equal to 1 if either (
0(1) + 1 − ) = 1 or 1 = 1.

The first condition arises when capital is optimal, a case which gives rise to time consistency

as shown in Proposition 3 below, but which we have excluded above by the choice of a low

initial capital and an upper bound on issuance ∆ that is binding for at least two periods

(period 0 and 1). The second case can be excluded by the formulae for 1 in (41) and for

1 in the original problem, since 0 6= 0. Therefore the re-optimized solution cannot be the
same as the original one and the time zero policy is time inconsistent in this example.¥

Proof of Proposition 3.

We consider the following problem:

max0

∞X
=0

 [−1 −  ( − −1)  ]

s.t.

−1 =  (−1) + (1− )−1 −  +  ( − −1)− C( −1  −1  −1  −1)

 = 

∞X
=1



 +

B( −1  −1  −1  −1) ≤ 0

The Lagrangian is:

 = max0

∞X
=0


£
 [−1 −  ( − −1)  ]− 2 + 1−1

¤
+

+

∞X
=0

 [ (−1) + (1− )−1 −  +  ( − −1)]

+

∞X
=0

 [−C( −1  −1  −1  −1)− −1] +

−
∞X
=0

B( −1  −1  −1  −1)

1 = 1−1 + 2

Let  0 = 1 [−1 −  ( − −1)  ], C = C(−1−1−1−1)


and B =
B(−1−1−1−1)


where  stands in for any of the arguments of C and B. The

FOC are:

 (1 + C) + B = 

£
+1

¡
1−  +  0()− C+1

¢− +1B+1
¤

0 =  0 −1 − [−1 + C + B]− 

£
+1C+1 + +1B+1

¤
+ 1−1£


¡
 −  0

¢− C − B
¤

= 

£
+1

¡
+1 −  0+1

¢
+ +1C+1 + +1B+1 + +1

¡
+1 −  0+1

¢¤
2 = ( − −1)

¡
 −  0

¢− C − B − 

£
+1C+1 + +1B+1

¤
1 = 1−1 + 2

the last two can be used to get rid of 2

1 = 1−1 + ( − −1)
¡
 −  0

¢− C − B − 

£
+1C+1 + +1B+1

¤
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We now show that the problem is time consistent in period  if either i) 1−1 = 0 or

if ii)  (  ) =  
0


 or 

0
 =  

0. To do this, suppose
©
∗  ∗  ∗  ∗  ∗  ∗  

∗
  

∗
1

ª∞
=0

solve the above problem given −1 −1 −1 −1 1−1 = 0 and consider reoptimization at

 =  given ∗−1 
∗
−1 

∗
−1 

∗
−1 and ∗∗1−1 = 0

¡
possibly different from ∗1−1

¢
. We will

show that the new choices
©
∗∗  ∗∗  ∗∗  ∗∗  ∗∗  ∗∗  ∗∗  ∗∗1

ª∞
=

given by

∗∗ = ∗  
∗∗
 = ∗  

∗∗
 = ∗  

∗∗
 = ∗  

∗∗
 = ∗

∗∗ =
∗

1 +
∗1−1
∗−1

 ∗∗ =
∗

1 +
∗1−1
∗−1



∗∗1 =
∗1 −

∗1−1
∗−1

∗
0 ∗

1 +
∗1−1
∗−1

for all  ≥ , satisfy all the first order conditions of the reoptimization problem as long as

 0 =  
0. Clearly, the capital FOC is satisfied for the same allocations since all multipliers

are simply divided by a constant which can be cancelled out. Plugging the above relationships

in the stock Euler of the re-optimization problem gives:

∗

µ
∗ −

µ
1 +

∗1−1
∗−1

¶
 ∗0

¶
− £∗C∗ + ∗B∗

¤
= 

∗
+1

µ
∗+1 −

µ
1 +

∗1−1
∗−1

¶
 ∗0+1

¶
+ 

£
∗+1C∗+1 + ∗+1B∗+1

¤
+

∗
+1

µ
∗+1 −

µ
1 +

∗1−1
∗−1

¶
 ∗0+1

¶
and using the original stock Euler

∗
∗1−1
∗−1

 ∗0 = 
∗
+1

∗1−1
∗−1

 ∗0+1 + 
∗
+1

∗1−1
∗−1

 ∗0+1 ⇔

∗
∗0
 = 

¡
∗+1 + ∗+1

¢
 ∗0+1 or 

∗
1−1 = 0

Using the PD mapping, this is clearly true if  0 = 
0 so the stock euler is also satisfied.

We need to show also that the 1 law of motion and the dividend FOC are satisfied in

the re-optimization problem. The dividend FOC is satisfied by choosing ∗∗1 appropriately.
Here is how this is done:

0 =  ∗∗0 ∗∗−1 −
£
∗∗ ∗∗−1 + ∗∗ C∗∗ + ∗∗ B∗∗

¤− 

£
∗∗+1C∗∗+1 + ∗∗+1B∗∗+1

¤
+ ∗∗1−1

∗∗
 ⇔

0 =  ∗∗0 ∗∗−1 +
−
h
∗ ∗∗−1 + ∗C∗∗ + ∗B∗∗

i
− 

h
∗+1C∗∗+1 + ∗+1B∗∗+1

i
1 +

∗1−1
∗−1

+ ∗∗1−1
∗∗
 ⇔

0 =

µ
1 +

∗1−1
∗−1

¶
 ∗0 ∗−1 −

£
∗ 

∗
−1 + ∗C∗ + ∗B∗

¤− 

£
∗+1C∗+1 + ∗+1B∗+1

¤
+

µ
1 +

∗1−1
∗−1

¶
∗∗1−1

∗


using the ∗ dividend fOC we can derive the relationship between ∗∗1−1 and ∗1−1 as

0 =
∗1−1
∗−1

 ∗0 ∗−1 − ∗1−1
∗
 +

µ
1 +

∗1−1
∗−1

¶
∗∗1−1

∗
 ⇒

∗∗1−1 =
∗1−1 −

∗1−1
∗−1

 ∗0
∗

∗−1

1 +
∗1−1
∗−1
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This renormalization of multipliers, although it delivers the right result, is not really feasible

because it requires future variables. But under value maximization,
 ∗0
∗

=
∗
0

∗
= ∗−1

0 is

known at period − 1. The renormalization required then is

∗∗1 =
∗1 −

∗1−1
∗−1

∗
0 ∗

1 +
∗1−1
∗−1

Finally, we need to check the law of motion for 1 holds:

∗∗1 = ∗∗ ∗∗1−1 +
¡
∗∗ − ∗∗−1

¢ ¡
∗∗ −  ∗∗0

¢− ∗∗ C∗∗ − ∗∗ B∗∗
−

h
∗∗+1C∗∗+1 + ∗∗+1B∗∗+1

i
⇔ ∗1 −

∗1−1
∗−1

∗
0 ∗ = ∗

µ
∗1−1 −

∗1−1
∗−1

∗−1
0 ∗−1

¶
+
¡
∗ − ∗−1

¢µ
∗ −

µ
1 +

∗1−1
∗−1

¶
 ∗0

¶
− ∗C∗ + ∗B∗ − 

h
∗+1C∗+1 + ∗+1B∗+1

i
⇔ −

∗
1−1
∗−1

∗
0 ∗ = ∗

µ
−

∗
1−1
∗−1

∗−1
0 ∗−1

¶
+
¡
∗ − ∗−1

¢µ−∗1−1
∗−1

 ∗0

¶
⇔ ∗1−1

∗
0

¡
∗ − ∗−1

¢
=
¡
∗ − ∗−1

¢
∗1−1

∗0


This last condition is true if either ∗1−1 = 0 or 
0
 = 

0.¥
Proof of Proposition 4.

To prove proposition 2, we first establish the equivalence between the DE and the OP

problems. Recall that the OP-problem is given by:

max
{}

0

∞X
=0

 ( −1  ) s.t. (43)

−1 +  − (1− )−1 =  ( − −1) + (−1)− C ( −1 ) (44)

 = 

∞X
=1



 

+ (45)

where total dividends  and new equity  are defined as

 ≡ −1 (46)

 ≡ ( − −1)

Notice that given constraint (44)  −  =  − C are cash flows. We now prove the
following properties of the solution of the OP-problem {∗  ∗  ∗ }.

1. {∗  ∗  ∗ } is recursive in the natural state variables ( −1 −1) In particular, it
has the following recursive structure:

∗ =  (∗−1 )∙
∗
∗

¸
=  (∗−1  

∗
−1)

for time-invariant functions   : 2 →  and   : 3 → 2

2. {∗  ∗  ∗ } is time consistent
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3. {∗  ∗  ∗ } coincides with the solution to the problem of the naive manager

The proof of this result is based on the fact that the OP-problem is equivalent to the

following DE-problem:

max
{}

0

∞X
=0

 ( −1  ) s.t. (47)

 +  − (1− )−1 =  + (−1)− C( −1 ) (48)

We first prove the following.

a Given a sequence {  } that is feasible in the original problem we can find {}
that satisfies (46) and that is feasible in the DE problem for the same  series.

b Conversely, given { } that is feasible in the DE problem we can find a { }
that satisfies (46), and that is feasible in the original problem for the same  series.

Part a) follows immediately from choosing {} that satisfies (46), plugging the results
in (44) and observing it satisfies the only constraint in DE problem. For part b), given

{ } we build a process { } in the following way: first build the series of cash
flows:

 ≡ (−1) + (1− )−1 − C( −1 )− 

Then build { } recursively as follows. At any period  ≥ 0 given −1 and the process
{ } find (  ) for a given realization as follows:

 = −1 (49)

 =

⎛⎝

∞X
=0



 + −

⎞⎠ 1

−1
(50)

 =



+ −1 (51)

With this solution we get  and can construct (+1 +1 +1) and so on. It is clear that

in this manner one can build a whole process {  }. Now we have

( + )−1 =  +

∞X
=1



 


+ (52)

=  + 
1


⎛⎝+1 ++1

∞X
=1


+1
+1 


+1+

⎞⎠
=  + 

1
 (+1 + +1)  (53)

where the first equality follows from the fact that the process so constructed satisfies (49)

and (50), the second equality uses the law of iterated expectations and simple algebra and

the third equality uses (52) for period  + 1 inside the expectation. On the other hand we

have

( + )−1 =  −  +  =  + 

where the first equality follows from (46) and the second from the definition of cash flows.

This together with (53) implies that:

 = 
1
 (+1 + +1) = 

⎛⎝ ∞X
=1



 +

⎞⎠
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so that (45) is also satisfied. In sum, all the constraints of the OP-problem are satisfied for

the series that satisfies (49) to (51) and this proves part b).

Now note that given a sequence {  }, for the feasible sequence {} that is
alluded to in part a), we have

0

∞X
=0

 ( −1  ) = 0

∞X
=0

 ( −1 −1 ( − −1) )

The same holds for any feasible sequence { } and the corresponding sequence
{ } that is mentioned in part b). This is because, in both cases,  = −1 and
 = ( − −1). Therefore the maximum value of the original problem coincides with the

maximum value of the DE problem. Formally, letting {∗∗  ∗∗ ∗∗ } denote the solution of
the original problem and let {∗  ∗  ∗ } denote the solution to the original problem. Then,

0

∞X
=0

 (∗∗  ∗∗−1
∗∗
  ∗∗ ) = 0

∞X
=0

 (∗  
∗
−1 

∗
 
∗
−1 

∗
 (

∗
 − ∗−1))

Now it is clear that the solution to the DE problem is recursive in the standard dynamic

programming sense, since only past values of  (in addition the shock ) constrain the feasible

set for current   therefore the optimal solution for the DE problem has the form

(∗∗  ∗∗ ∗∗ ) = (∗∗−1 ) for all  a.s. (54)

for some time-invariant policy function  : 2 → 3.

This means that the sequence {  } corresponding to {∗∗ ∗∗  ∗∗ } according to
part b) of the results mentioned above achieves the maximum in the original problem. Since

this corresponding { } sequence satisfies (49) to (51) then it is clear that for any  the

variables ( ) are a function of (
∗∗
 ∗∗  ∗∗ ) and also of ∗−1, therefore, combining (49)

to (51) with (54) we have

(∗  
∗
 ) =  (∗∗−1  

∗
−1) (55)

for a time invariant function  . This proves part 1 of the proposition.

For part 2, consider the case where the manager reoptimizes at time  taking as given the

"initial" state variables (∗∗
−1  

∗
−1). We simply state that by a similar argument as above

the reoptimized original problem is equivalent with the reoptimized DE problem. Since the

DE problem satisfies a standard Bellman equation this problem is time consistent and the

reoptimized series for   coincides with the original optimum announced at time zero for

the DE problem {∗∗  ∗∗ ∗∗ }∞=  It is clear that the corresponding   series would also

coincide with the preannounced one, so there is time consistency.

For part 3 of the proposition, note that the naive problem simply does not take into

account (45) as a constraint. This means that the optimum of the DE problem is consistent

with a series     that satisfies all constraints in the naive problem, since this problem

simply has one fewer constraint than the original problem, namely (45). Therefore the

maximum of the OP-problem is also the maximum of the naive problem.

Proof of Proposition 5.

We now show that the naive solution () is equal to the rational solution () iff  = 0

for all . First, if ∗ = 0 for all , then the  and  fOC are the same. Conversely, suppose

that {     }∞=0 solve the  problem so that

 (1 + C) = 1


£
+1

¡


0() + 1−  − C+1
¢¤

0 =  0 −1 − −1 − C − +1
1
 C+1


¡
 −  0

¢− C = 1
 +1

¡
+1 −  0+1

¢
+ 1

 +1C+1
+ 1

 +1
¡
+1 −  0+1

¢
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Suppose that the same {   }∞=0 solve the rational problem, that is

 (1 + C) = 1


£
+1 (() + 1−  − C+1)

¤

¡
 −  0

¢−  C = 1
 +1

¡
+1 −  0+1

¢
+ 1

 

+1C+1 + 1

 +1
¡
+1 −  0+1

¢
0 =  0 −1 −  −1 −  C − 1

 

+1C+1 + 1−1

1 = 1−1 + ( − −1)
¡
 −  0

¢−  C − +1
1
 C+1

Clearly it has to be the case that
+1


=
+1


for all . Using the two dividend fOC and

subtracting one from the otherµ
1− 



¶£
 0 −1 + 1−1

¤
+ 1−1 = 0

At  = 0, this implies
³
1− 0

0

´
 00−1 = 0 Assuming 

0
0 6= 0, this implies that 0 = 0.

By the previous condition, this also implies  =  for all . As a result, from the  dividend

first order condition for any , it must be that  = 0.¥

References

[1] Aiyagari, R., A. Marcet, T. Sargent and J, Seppala (2002), "Optimal Taxation without

State-Contingent Debt", Journal of Political Economy, 110 (6), pp. 1220-1254.

[2] Bhattacharya, S. (1979), "Imperfect Information, Dividend Policy and the "Bird in the

Hand" Fallacy", The Bell Journal of Economics, 10 (1), pp. 259-270.

[3] Cooley, T. F. and V. Quadrini (2001), "Financial Markets and firm Dynamics", Amer-

ican Economic Review, 91(5), 1286-1310.

[4] Covas, F. and W. DenHaan (2007), "The Role of Debt and Equity Finance over the

Business Cycle", manuscript

[5] Gorton, G. and P. He (2006), "Agency-Based Asset Pricing", NBER Working Paper

12084.

[6] Hopenhayn, H. (1992), "Entry, Exit and Firm Dynamics in Long Run Equilibrium",

Econometrica, 60 (5), 1127-50.

[7] Klein, P., P. Krusell and J.V. Ríos-Rull (2007) "Time Consistent Public Policy" working

paper, University of Pennsylvania.

[8] Kydland, F. and E. C. Prescott (1977). "Rules Rather than Discretion: The Inconsis-

tency of Optimal Plans", Journal of Political Economy, 473-492.

[9] Marcet A, and R. Marimon (1999), "Recursive Contracts", Eco. No. 98/37, European

University Institute.

[10] Miller, M. H. and K. Rock (1985), "Dividend Policy under Asymmetric Information",

The Journal of Finance, Vol. 40, No. 4, pp. 1031-1051.

[11] Quadrini, V. and U. Jermann, (2005), "Financial Development and Macroeconomic

Stability, manuscript.

39


