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Abstract

Individuals often lose con�dence in their prospects as they approach the
�moment of truth.� An axiomatic model of such individuals is provided.
The model adapts and extends (by relaxing the Independence axiom) Gul
and Pesendorfer�s model of temptation and self-control to capture an indi-
vidual who changes her beliefs so as to become more pessimistic as payo¤
time approaches. In a variation of the model, the individual becomes more
optimistic at an ex post stage in order to feel better about her available
options.

�Epstein is at Department of Economics, University of Rochester, Rochester, NY 14627,
lepn@troi.cc.rochester.edu; Kopylov is at Department of Economics, UC Irvine, Irvine, CA
92697, ikopylov@uci.edu. We would like to acknowledge the helpful comments of Eddie Dekel,
Faruk Gul, Bart Lipman, Fabio Maccheroni, Massimo Marinacci, Jawwad Noor and Wolfgang
Pesendorfer. This paper is a substantial revision of our earlier paper titled �Cognitive Dissonance
and Choice.�



1. INTRODUCTION

A common �nding in psychological studies is that individuals tend to lose con�-
dence in their prospects as they approach the �moment of truth.� See Gilovich,
Kerr and Medvec [13], and the references therein; for other studies of the con-
nection between con�dence and temporal proximity see [3] and [28]. Anecdotal
evidence includes students who become more worried about their performance
just before taking a test, and �cold feet�on a wedding day. We provide a choice-
theoretic model of such agents. Since we assume that beliefs are observable only
indirectly through choice, our focus is on the question: what behavior would reveal
increasing pessimism as the moment of truth becomes imminent?
Though it is most often described as modeling ambiguity aversion, the multiple-

priors model of Gilboa and Schmeidler [12] is sometimes interpreted in terms of
pessimism, since the agent chooses an action as though she �rst chooses the least
favorable prior in her set of priors. We model pessimism similarly via minimiza-
tion over a set of probability measures. However, our model di¤ers from Gilboa-
Schmeidler in that its focus is on time-varying pessimism, while their model is
static. It di¤ers also from the dynamic version of multiple-priors proposed by Ep-
stein and Schneider [10], because only here does time-varying pessimism lead to
a demand for commitment. The latter arises much as in the Gul and Pesendorfer
[14] model of temptation and self-control, which we adapt here to model preference
and behavior given time-varying pessimism. Thus formally our model combines
Gilboa-Schmeidler and Gul-Pesendorfer (henceforth GP).
A brief outline is as follows: uncertainty is represented by the (�nite) state

space S, and time varies over three periods. The true state is realized and payo¤s
are received at the terminal time. A physical action is chosen at the initial ex
ante stage. Each such action is modeled by a menu of (Anscombe-Aumann) acts
- the idea is that any action taken ex ante limits options ex post. The agent
understands when choosing a menu that at an intermediate time, called the ex
post stage, she will choose an act from that menu. In addition, she anticipates
that the passage of time will have an e¤ect on her outlook. Ex ante, with the
objectivity a¤orded by temporal distance, she is cool-headed and adopts beliefs
that seem �correct�- they are represented by a Savage prior on S. Ex post, she
is closer to the moment of truth, anxiety about unfavorable outcomes increases
and leads to pessimism about the prospects for the previously chosen menu -
she chooses a new belief about S that makes the menu less attractive.1 She is

1The assumption of correct beliefs only at the ex ante stage is consistent in spirit with the
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tempted to choose out of the menu by maximizing expected utility using the new
pessimistic belief. However, there is a tension because she recognizes that her
prior beliefs, having been formed at a stage where she was more cool-headed and
clear-sighted, would be a better guide for the decisions still to be made. Thus she
may exert costly self-control. Regardless, temptation is costly, and anticipation
of these costs a¤ects her ranking of menus - for example, she may prefer a smaller
menu, or even a singleton that would commit her to a �xed action ex post, in
order to reduce the costs of temptation and self-control. Thus the ex ante ranking
of menus reveals her expected change in beliefs.
Two remarks about the model merit emphasis. First, by �pessimism�we have

in mind an agent who has a negative picture of the future regardless of the prospect
she is holding. This cannot be modeled simply by assuming subjective expected
utility maximization with a �pessimistic probability measure� - any change in
beliefs will make some prospects look less attractive but will render others more
attractive. Essentially, the �pessimistic belief�must vary with the prospect in
hand, and this is achieved endogenously in our model.
Second, our agent is not boundedly rational. Since there are no objective

probabilities available to describe likelihoods of states in S, or undeniable facts
that pin down �correct�beliefs, it is not irrational to change one�s subjective as-
sessment as time passes, even in the absence of new information. Moreover, our
agent is sophisticated and forward-looking - when choosing an action ex ante she
is fully aware that she may develop cold feet as the moment of truth approaches.
She has this sophistication in common with agents in most economic models, but
one may wonder whether individuals outside those models are typically self-aware
to this degree. We are not familiar with de�nitive evidence on this question and
in its absence, we are inclined to feel that full self-awareness is a plausible working
hypothesis.2 Even where the opposite extreme of complete naivete seems descrip-
tively more accurate, our model may help to clarify which economic consequences

broader idea that the greater is the temporal distance from the consequences of choice, the more
choice conforms to �true�or �normative�preferences. Supporting evidence includes �ndings on
so-called �preference reversals�and dynamic inconsistency. See Frederick et al [?], for example;
see also Noor [22] for elaboration and for a model of temptation based on the idea that normative
preference is revealed by the ranking of temporally distant alternatives.

2A range of behavior might be understood in part as re�ecting (partial) commitment mo-
tivated by the expectation of future pessimism. Widely announced and elaborately celebrated
engagements make it costly to succumb to cold-feet at the wedding altar. An example in a
more standard economic setting is the growing tendency for investors to delegate investment
decisions.
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are due to time-varying pessimism per se and which are due to naivete. In ad-
dition, the assumption of sophistication is vital for a choice-theoretic approach:
because she anticipates her future pessimism, it a¤ects her current choice of ac-
tions. This makes it possible to infer her expected pessimism from her (in principle
observable) choice of actions, consistent with the choice-theoretic tradition of Sav-
age. Thus sophistication seems justi�able also on the methodological grounds of
permitting the exploration of modest departures from standard models.
We conclude this introduction with elaboration of connections to the litera-

ture. Though we adapt GP, their model does not apply directly. One di¤erence
is that while they study preferences over menus of lotteries, it is important for
our story that menus consist of (Anscombe-Aumann) acts. This is because, while
GP are concerned with temptation that arises from a change in taste (ranking of
lotteries), our story is that it is a change in subjective beliefs that is the source
of temptation. Epstein [8] shows that GP�s temptation model can be adapted
to address belief distortions (he makes the point in the context of a model of
non-Bayesian updating). In a more technical vein, Kopylov [15] extends the GP
theorem from (menus of) lotteries to abstract mixture spaces, including, in par-
ticular, the space of Anscombe-Aumann acts. However, all these papers adopt the
Independence axiom (appropriate for their respective settings), while we relax In-
dependence signi�cantly. Perhaps not surprisingly, given familiarity with Gilboa
and Schmeidler�s model, we argue that Independence is not intuitive in a model
of pessimism, speci�cally, where the (ex post) distortion of beliefs depends on the
set of available options. Permitting such a dependence constitutes a signi�cant
improvement over Epstein�s model of beliefs distortion (see Section 5 for further
discussion). At the same time, our relaxation of Independence is the major source
of technical di¢ culty and novelty in our model - it necessitates novel proofs rather
than adaptations of GP�s arguments.
Finally, we note that Dekel, Lipman and Rustichini [7] generalize GP�s model of

temptation. However, their motivation is much di¤erent than ours - in particular,
they assume Independence.3

3In their concluding remarks about possible directions for further research, they mention that
accommodating guilt may be a reason for relaxing Independence when modeling temptation.
This rationale is obviously much di¤erent than ours. There exist other representation results in
the menus-of-lotteries/acts setting that do not rely on Independence. Epstein, Marinacci and
Seo [9] study an agent who is not subject to temptation, but rather values �exibility because she
is uncertain about the future; she violates Independence because her conception of the future
is coarse. Other results, with still di¤erent objectives, appear in Ergin and Sarver [11] and in
Noor [23].
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The paper proceeds as follows. The model�s primitives and the functional form
for utility are described in the next section. Then Section 3 describes its under-
lying axiomatic foundations. Section 4 contains our main representation result,
as well as some comparative behavioral characterizations that facilitate interpre-
tations of the components of the functional form for utility. Section 5 concludes
by discussing a variation of the model concerning time-varying optimism (as op-
posed to pessimism), and by outlining an extension that models how pessimistic
(or optimistic) agents respond to information.

2. UTILITY

The model has the following primitives:

� time t = 0; 1; 2

� �nite state space S

� C: set of (Borel) probability measures over a compact metric space
refer to c 2 C as a lottery over consumption, or more brie�y as consumption
C is compact metric under the weak convergence topology

� H: set of acts h : S �! C, with the usual mixture operation

� compact sets of acts are called menus and denoted A; B; :::
K (H) is the set of all menus
it is compact metric under the Hausdor¤ metric4

� preference � de�ned on K (H)

The interpretation is that a menu A is chosen ex ante (at time 0) according
to �. This choice is made with the understanding that at the unmodeled ex post
stage (time 1), the agent will choose an act from A. Uncertainty is resolved and
consumption is realized in the terminal period t = 2. Cold feet, pessimism and
choice behavior at time 1 are anticipated ex ante and underlie the ranking �.

4See [2, Theorem 3.58], for example.
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Menus are natural objects of choice.5 The consequence of a physical action
taken at time 0 is that it determines a feasible set of physical actions at time 1,
and these actions can be modeled by acts in the usual way. Thus each physical
action at time 0 corresponds to a menu of acts.

Our model of utility has the form6

U (A) = max
h2A

[(1� �)U (h) + �V (h)]� �max
h02A

V (h0) , (2.1)

where
U (h) = p � u(h), and (2.2)

V (h) = min
q2Q

q � u(h). (2.3)

Here 0 � � � 1, p is a probability measure on S, Q is a closed and convex set of
probability measures on S containing p, and u : C �! R1 is mixture linear and
continuous.
The standard model of subjective expected utility maximization is the special

case where � = 0 or Q = fpg. More generally, the functional form can be inter-
preted along the lines suggested by GP. When restricted to singletons, U coincides
(ordinally) with U ; thus expected utility with prior p represents preference over
consumption lotteries when the agent can commit ex ante. The ex ante stage is
far enough removed from payo¤ time that the agent is collected, and p represents
her clear-thinking view of likelihoods. However, if she chooses a menu A that
does not provide commitment, then she anticipates the following: she knows that
ex post, near the moment of truth, she will be more nervous about the possible
unfavorable outcomes and she will exaggerate their likelihoods - this is captured
by minimization over the set Q (since p 2 Q, minimization over Q imputes lower
expected utility to any act than was the case ex ante using p). Anxiety creates
the temptation to maximize V ex post. However, she may resist since she is aware
that p is a better guide for remaining decisions. The cost of controlling her feelings
of anxiety and resisting the temptation is given by

�

�
V (h)�max

h02A
V (h0)

�
� 0.

5Kreps [17, 19] was the �rst to propose menus as a way to model physical actions in an ex
ante stage.

6For any real-valued random variable x on S, and probability measure q, q � x is short-hand
for the expected value

R
S
xdq.
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Thus a compromise is struck between maximizing U and maximizing V and choice
out of A is described by maximization of the weighted sum, or by solving

max
h2A

min
q2(1��)fpg+�Q

q � u(h), (2.4)

which balances the ex ante view p and ex post pessimism. The nature of the
compromise is further illustrated by the fact that

p 2 (1� �) fpg+ �Q � Q,

so that the set of beliefs underlying the choice of an act ex post lies �between�
the prior view p and the pessimistic view represented by Q.7

Note that both subjective and objective probabilities are present in the model
- the latter underlie consumption lotteries - but they are treated di¤erently: while
the agent chooses new beliefs ex post about her subjective uncertainty (the state
space S), she does not distort or modify objective probabilities. For example,
both U and V agree about the ranking of lotteries in that, for every lottery c,
U (c) = V (c) = u (c), the vNM expected utility of c. Because an objective
probability law is based on undeniable fact, distorting it is folly or ignorance that
would not be undertaken by the sophisticated individuals that we model. But
where facts alone do not pin down beliefs uniquely, an agent is free to choose
beliefs and to change them as the moment of truth approaches.

3. AXIOMS

The �rst two axioms require no discussion.

Axiom 1 (Order). � is complete and transitive.

Axiom 2 (Continuity). � is continuous.

Menus can be mixed via

�A+ (1� �)B = f�f + (1� �) g : f 2 A; g 2 Bg .
7As is familiar from GP-style models, this interpretation in terms of ex post choice is suggested

by the functional form, and by intuition for the underlying axioms, but ex post choice lies outside
the scope of our formal model. See Noor [22] for a model of temptation where ex post choice is
part of the primitives.
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Formally, the indicated mixture of A and B is another menu and thus when
the agent contemplates that menu ex ante, she anticipates choosing out of �A +
(1� �)B ex post. It follows that one should think of the randomization corre-
sponding to the � and (1� �) weights as taking place at the end - after she has
chosen some mixed act �f +(1� �) g out of the menu. In fact, since the mixture
of acts is de�ned by (�f + (1� �) g) (s) = �f (s) + (1� �) g (s) for each s, the
randomization occurs after realization of the state.
The above mixture operation permits one to state the Independence axiom,

which is adopted by GP. However, Independence is not intuitive under cognitive
dissonance.8 To see this, suppose for concreteness that A � B and consider
whether the mixture �A + (1� �)B should also be indi¤erent to A as required
by Independence. Indi¤erence between A and B is based on the anticipation
that, in each case, the agent will choose beliefs ex post to make the menu in
hand unattractive, and that these beliefs will tempt her to choose out of the given
menu di¤erently from what she would have prescribed ex ante. Evaluation of
the mixture �A+ (1� �)B can be thought of similarly, but the important point
is that beliefs for the mixed menu must be chosen before the randomization is
played out. Since also beliefs chosen given A generally di¤er from those chosen
given B, pessimistic beliefs for the mixed menu bear no simple relation to those
for A and B. A similar disconnect applies to anticipated temptation and ex post
choices across the three menus. For example, it is possible that the acts f and g
be chosen out of A and B respectively, while �f + (1� �) g not be chosen out of
�A + (1� �)B. As a result, the agent will generally not be indi¤erent between
the mixed menu and A, violating Independence. (The deviation from indi¤erence
could go in either direction: �A + (1� �)B � A and �A + (1� �)B � A are
both possible.)
However, suitable relaxations of Independence are intuitive. To proceed, for

any act f 2 H, let

Hf = ftc+ (1� t)f : t 2 [0; 1]; c 2 Cg:

If h = tc + (1 � t)f is an act in Hf , then for any mixture linear u and for all
probability measures q,

q � u (h) = tu (c) + (1� t) q � u (f) .
8The reason is essentially that because the agent anticipates that she will adjust her beliefs

ex post to the menu at hand, the situation is analogous to that of choice between �temporal
risks�. As explained by Machina [20], for example, preferences over temporal risks typically
violate Independence even at a normative level.
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Because the �rst term on the right is independent of q, it follows that any menu A
that is a subset ofHf is rendered unattractive by beliefs that make f unattractive.
In particular, for any two menus A and B in Hf , when the agent chooses beliefs
to �t the menu, there is a pessimistic measure that is common to both A and B.
But this invalidates the reason given above for violating Independence. Thus we
adopt:

Axiom 3 (Collinear Independence). For all � 2 (0; 1), for all f 2 H, and for
all menus A0; A;B � Hf ,

A0 � A =) �A0 + (1� �)B � �A+ (1� �)B:

Acts h0 and h in Hf are naturally called collinear, which explains the name of the
axiom.9

The intuition given for the axiom relies on beliefs, but not tastes (the ranking
of constant acts), changing between the ex ante and ex post stages. Thus it
rules out underlying temptations of the sort considered by GP (for example, the
temptation to eat french fries rather than broccoli). The axiom Constants-Cannot-
Be-Tempted, given below, similarly relies on the special properties of constant acts
when temptation is due to changing beliefs, and thus also serves to distinguish
our story about the reason for temptation from GP�s.
When ranking singleton menus, there is no choice to be made ex post. Thus

ex post beliefs are not relevant and there is no reason for Independence to be
violated. This motivates the following second relaxation of Independence:

Axiom 4 (Commitment Independence). For all f; g; h 2 H and � 2 (0; 1),

ffg � fgg =) f�f + (1� �)hg � f�g + (1� �)hg.

In the standard model, a menu is as good as the best alternative that it
contains. Then

A � B =) A � A [B,
9For any collinear acts h0 and h, it is easy to see that for every s0 and s,

u (h0 (s0)) > u (h0 (s)) =) u (h (s0)) � u (h (s)), that is, the real-valued func-
tions u (h (�)) and u (h0 (�)) are comonotonic. Collinearity implies the stronger restriction
(1� t) (u(h0 (s0))� u(h0 (s))) = (1� t0) (u(h (s0))� u(h (s))) for some t and t0. Thus collinearity
can be viewed as a cardinal counterpart of comonotonicity.
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a property called strategic rationality by Kreps [18]. Such a model excludes temp-
tation. Temptation is an integral part of time-varying pessimism because the
agent changes beliefs to make the menu at hand look unattractive and then is
tempted to make subsequent choices accordingly (see the discussion of utility in
Section 2). In seeking a suitable relaxation of strategic rationality, we begin with
GP�s central axiom Set-Betweenness.

Set-Betweenness (SB): For all menus A and A0, if A � A0, then A � A[A0 � A0:

An equivalent and perhaps more revealing, though less compact, statement is
that if A � A0, then one of the following conditions holds: (i) A � A [ A0 � A0,
or (ii) A � A [ A0 � A0, or (iii) A � A [ A0 � A0, or (iv) A � A [ A0 � A0.
Following GP (p. 1408), we may interpret these conditions intuitively. The

underlying assumptions are that: unchosen acts can only reduce utility, acts can
be ranked according to how tempting they are, and only the most tempting act
a¤ects utility. Consider an agent having the menu A [ A0, and who expects to
choose f though she �nds g most tempting. (i) is the residual case. (ii) indicates
that g is in A0 (hence A � A [ A0), and that f is in A (hence A [ A0 � A0). The
next two cases are our main interest.
In (iii), she still plans to choose out of A which now also contains the most

tempting act. Confront her next with the larger menu A [ A0 [ B. The most
tempting act lies in A [ B. What about her choice out of A [ A0 [ B? Suppose
that her expected choices satisfy the Nash-Cherno¤ condition (or Sen�s property
�); defer for the moment discussion of possible objections to this assumption.
Then having rejected acts in A0 when facing A [ A0, she would (expect to) reject
them also when facing A [ A0 [ B. Thus A [ B contains both the act to be
chosen and also the act in A [ A0 [ B that is most tempting. The indi¤erence
A [B � A [ A0 [B follows.
Finally, consider (iv), which indicates that both f and g lie in A0. Again

confront the agent with the larger menu A[A0[B. The most tempting act lies in
B [A0 and, assuming the Nash-Cherno¤ condition, so does the act to be chosen.
Deduce the indi¤erence A0 [B � A [ A0 [B.
The preceding provides intuition for the following axiom:

Axiom 5 (Strong Set-Betweenness (SSB)). For all menus A and A0, if
A � A0, then: (i) A � A [ A0 � A0, or (ii) A � A [ A0 � A0, or
(iii) A � A [ A0 � A0 and A [B � A [ A0 [B for all menus B, or
(iv) A � A [ A0 � A0 and A0 [B � A [ A0 [B for all menus B.
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Obviously SSB implies Set-Betweenness. We show below that SSB is strictly
stronger than Set-Betweenness even given all our other axioms. However, the
two axioms are equivalent given Independence (and Order and Continuity) - this
follows from counterparts of the representation results in GP [14] and Kopylov [15]
- and thus SSB is satis�ed in their models even though it is not invoked explicitly.
Our intuition for SSB assumed the Nash-Cherno¤ condition, which can be

criticized in a model of temptation - the addition of the acts in B should not
a¤ect the normative appeal of A versus A0, but it may change the self-control
costs associated with various choices, and this may lead to the choice of an act in
A0 when facing A[B[A0 even where she chooses an act in A when facing A[A0.
GP�s rationale (Theorem 5) for Set-Betweenness also relies on Nash-Cherno¤, at
least implicitly; see speci�cally their Axiom T1, which states that choosing an
alternative from a menu A is always at least as good as choosing it from a larger
menu.
The Nash-Cherno¤condition is weaker than the weak axiom of revealed prefer-

ence (WARP), which requires also Sen�s condition � (see [18]). Noor [22] provides
an example to illustrate why WARP may be problematic in a model of tempta-
tion, and in [23] he develops a model of temptation and self-control that does not
impose WARP for ex post choice. Such objections apply also to the GP model
since SSB and WARP for ex post choice are implied when one assumes Inde-
pendence. Moreover, while they may be important for guiding development of a
general model of temptation, these concerns do not seem germane to our fucus
here.
One can raise other objections to Set-Betweenness, and hence a fortiori to our

stronger axiom. Dekel, Lipman and Rustichini [7] argue that Set-Betweenness
excludes some forms of temptation, for example, where the temptation generated
by di¤erent alternatives is cumulative, or where there is uncertainty ex ante about
which alternatives will be tempting. Once again, we do not view these concerns
as especially important for a model of pessimism.

Say that f 2 H dominates g 2 H if ff (s)g � fg (s)g for every s 2 S. If
the evaluation of a lottery does not depend on the state, then a dominating act
should be preferred under commitment. Similarly, if f dominates g , we would
not expect f to be tempted by g. Thus we assume:

Axiom 6 (Monotonicity). If f dominates g, then ffg � ff; gg � fgg.

11



Our axioms thus far have for the most part been concerned with modeling
temptation in general, that is, not tied speci�cally to time-varying pessimism. A
partial exception is Collinear Independence, the intuition for which did rely on
the assumption that temptation arises because of an ex post choice of beliefs to
��t the menu�in hand. However, Collinear Independence is satis�ed even if the
agent becomes more optimistic ex post and adopts beliefs that make the menu
more attractive ex post. The �nal two axioms build in ex post pessimism.

Axiom 7 (Constants-Cannot-Be-Tempted). For all c 2 C and f 2 H,

fcg � ffg =) fcg � fc; fg:

Temptation is due to a change in beliefs (as opposed to a change in risk aver-
sion, for example), which leaves the evaluation of constant acts una¤ected. In
addition, the noted change is always to become more pessimistic ex post about
the available menu, rendering it even less attractive relative to any constant act
c than it was ex ante. Therefore, constant acts cannot be tempted. Note that, in
contrast, ffg � fc; fg � fcg is both permitted by the axiom and intuitive given
our story.

Axiom 8 (Concave Temptation). The set ff 2 H : ffg � ff; cg � fcgg
is convex for every c 2 C.

Suppose that f and g both lie in the indicated set, that is, each is better than
c under commitment and not tempted by c. Consider the mixture �f +(1� �) g.
By Commitment Independence, f�f + (1� �) gg � fcg. We now argue that, in
addition, c should not tempt �f + (1� �) g, thus completing intuition for the
axiom. We are given that ffg � ff; cg � fcg. Because ex post beliefs are
chosen to make the menu ff; cg unattractive, and because the expected utility of
c does not depend on beliefs, we can interpret the indicated strict preference as
follows: the act f , even when matched with the beliefs that make it unattractive,
is better than c. A similar statement applies for g. Consider now the menu
f�f + (1 � �)g; cg. Beliefs to render this menu unattractive are chosen ex post
(time 1), before the randomization is completed (which, as noted earlier, occurs
only at the terminal time after the true state in S is realized). Since the beliefs
that make f unattractive may di¤er from those that make g unattractive, matching
beliefs with the mixed act is more di¢ cult. Therefore, one would expect c not

12



to tempt �f + (1� �)g. Since the set of non-tempted acts is convex, we use the
name Concave Temptation.10

4. REPRESENTATION RESULT

Our main result is that the preceding axioms characterize the functional form
described in Section 2.

Theorem 4.1. The binary relation � on K (H) may be represented as in (2.1)-
(2.3) if and only if it satis�es Axioms 1-8. Moreover, u is unique up to a positive
linear transformation, and if � is not strategically rational, then p, Q and � are
unique.

Concave Temptation is used only at the very end of the su¢ ciency proof in
order to prove that V has the form given in (2.3). If the axiom is deleted, then the
remaining axioms characterize the representation (2.1)-(2.2), for some V : H ! R1
that is continuous, monotone (V (f) � V (g) if f dominates g), satis�es certainty
additivity (V (�f + (1� �) c) = �V (f) + (1� �)V (c) for all c in C), and that
satis�es V (f) � p � u (f) for all f with equality if f is constant. (See Example 3
below.)
We present some examples to demonstrate the tightness of the characterization

in the theorem. Each of the �rst three examples satis�es Order, Continuity, Com-
mitment Independence, Strong Set-Betweenness and Monotonicity, and violates
precisely one of the axioms that relate more speci�cally to pessimism - Collinear
Independence, Constants-Cannot-Be-Tempted and Concave Temptation. The �-
nal example violates only Strong Set-Betweenness, though it satis�es GP�s Set-
Betweenness, thus proving that our adoption of the stronger axiom is necessary.

Example 1 : Let

U (A) = w(A)

v(A)
� maxh2A [U (h)V (h)]

maxh02A V (h0)
,

where U and V are as in (2.2)-(2.3), and where u > 0. Then � violates only
Collinear Independence. In particular, to verify SSB note that for any menus A
and A0, there are only four possible cases:

10Think of a function de�ned on Rn, and the fact that every upper contour set is convex if
and only if the function is quasi-concave.
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(i) w(A) > w(A0) and v(A0) > v(A); then U(A) > U(A [ A0) > U(A0).

(ii) w(A0) > w(A) and v(A) > v(A0); then U(A0) > U(A [ A0) > U(A).

(iii) w(A) � w(A0) and v(A) � v(A0); then for all menus B,
w(A [B) = w(A [ A0 [B), v(A [B) = v(A [ A0 [B), and hence,
U(A [B) = U(A [ A0 [B).

(iv) w(A0) � w(A) and v(A0) � v(A); then analogously to (iii),
U(A0 [B) = U(A [ A0 [B) for all menus B.

There exist simpler examples violating only Collinear Independence - these
retain (2.1)-(2.2) but modify the speci�cation of V . However, because the above
ratio form deviates from the GP functional form, we �nd it more revealing about
the power of Collinear Independence.11

Example 2 : Assume (2.1)-(2.2), but take

V (h) = q � u(h),

for some probability measure q 6= p. Then � violates only Constants-Cannot-Be-
Tempted.

Example 3 : Modify Example 2 by taking

V (h) = min

�
p � u (f) ;

Z
u (f) d�

�
,

where � is a capacity on S and the integral
R
u (f) d� is in the sense of Choquet

(see Schmeidler [26]). Then � violates only Concave Temptation.

Example 4 : This example violates Strong Set-Betweenness, but satis�es all other
axioms adopted in Theorem 4.1 as well as GP�s Set-Betweenness. Let S = fs1; s2g,
11The example is inspired by weighted utility theory [5], a model of risk preference in which

the utility function over lotteries equals a ratio of expected utility functions. Readers familiar
with the �non-expected utility�literature will not be surprised by the observation that � satis�es
the following alternative relaxation of Independence: A � B =) �A+ (1� �)B � A.
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and �x a vNM utility function u such that u(C) = [0; 1]. For every act f 2 H and
menu A, let u1(f) = u(f(s1)), u2(f) = u(f(s2)),


(f) = maxf0; u2(f)� u1(f)� 4
5
g;

�(f) = maxf0; u1(f)� u2(f)� 4
5
g;

U(A) = max
f2A

[u2(f)� 
(f)max
g2A

�(g)].

Let � be represented by U . Then � obeys Order and Continuity. Note that


(f) > 0 =) u1(f) <
1
5
and u2(f) >

4
5

�(g) > 0 =) u1(g) >
4
5
and u2(g) <

1
5
:

Therefore, 
(f)�(f) = 0 for all f , so that U(ffg) = u2(f), implying Commitment
Independence. In addition, 
(f)�(g) = 0 holds in each of the following cases (i)
f or g is constant; (ii) f and g are collinear; (iii) f dominates g; (iv) g dominates
f . Thus � satis�es Collinear Independence, Monotonicity, Constants-Cannot-Be-
Tempted, and Concave Temptation (because constants are not tempting in this
example). For Set-Betweenness, take any menus A and B and acts f; g 2 A [ B
that deliver the maxima in the de�nition of U(A [ B), so that U(A [ B) =
u2(f) � 
(f)� (g). Wlog f 2 A. Then U(A) = U(A [ B) if g 2 A, and U(A) �
U(A [ B) � U(B) if g 2 B. However, � violates SSB: if u1(f) = 0, u2(f) = 1

2
,

u1(f
0) = 1, u2(f 0) = 0, u1(g) = 0, and u2(g) = 1, then ffg � ff; f 0g � ff 0g, but

ff; gg � ff; f 0; gg.

A tuple (u; p;Q; �) as in the theorem is said to represent �. The represent-
ing tuple is unique (up to cardinal equivalence for u) if the degenerate case of
strategic rationality is excluded. Thus it is meaningful to ask about behavioral
interpretations of its components. We have already noted those of u and p: u
ranks lotteries (constant acts) and p is the �commitment prior�- it underlies the
ranking of singleton menus. Turn to Q and �. In what follows, we adopt variants
of GP�s comparative notions �greater preference for commitment�and �greater
self-control�, renamed so as to re�ect better the story we have in mind. Note that
while the behavioral notions studied here are simple variants of those studied by
GP, the characterization results to follow are not corollaries of GP�s results, as a
comparison of the respective proofs will reveal.
Say that �� exhibits greater ex post pessimism than � if for all acts f and g,

ffg � ff; gg =) ffg �� ff; gg. (4.1)
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The ranking ffg � ff; gg indicates that though f is better than g ex ante, the
agent is tempted to choose g ex post when holding the menu ff; gg. This reversal
occurs because the agent with preference � becomes more pessimistic ex post
about the prospects for the menu ff; gg. If �� exhibits greater pessimism ex
post, then she should also strictly prefer ffg to ff; gg.

Theorem 4.2. Suppose that both � and �� have utility representations (2.1)-
(2.3), with components (u; p;Q; �) and (u�; p�; Q�; ��) respectively, and that nei-
ther is strategically rational. Then �� exhibits greater ex post pessimism than �
if and only if

(u; p) = (au� + b; p�) for some a > 0 and some b, and (4.2)

Q = (1� �) fpg+ �Q�, for some 0 < � � 1. (4.3)

The characterizing conditions assert both that the commitment rankings in-
duced by � and �� coincide (this is (4.2)) and that Q is �closer to p�than is Q�
in the sense of an epsilon contamination (this is (4.3)). Since Q� is convex and
contains p, (4.3) implies in particular that Q � Q�, but it implies more.
Note that if � is strategically rational, then any �� exhibits greater ex post

pessimism - the de�ning condition is satis�ed vacuously - and no restrictions on
commitment preferences are implied. If �� is strategically rational, then (4.1) is
satis�ed if and only if � is also strategically rational, and again, condition (4.2)
is not implied.
We are interested not only in how much pessimism an agent experiences (or

expects to experience) ex post, but also in what she does about it, or more pre-
cisely, in the extent to which ex post choices are distorted by �cold feet�. Say that
�� is more panicky than � if it has greater ex post pessimism than � and

ffg � ff; gg � fgg =) ffg �� ff; gg �� fgg.

The hypothesized rankings for � indicate not only that the temptation to choose
g ex post out of ff; gg, but also that, given ff; gg, the agent succumbs and chooses
g; even though f was optimal ex ante under commitment. She does this because
she panics as the moment of truth approaches. If �� is more panicky, then she
should also choose g out of ff; gg.

Theorem 4.3. Suppose that both � and �� have utility representations (2.1)-
(2.3), with components (u; p;Q; �) and (u�; p�; Q�; ��) respectively, and that nei-
ther is strategically rational. Then �� is more panicky than � if and only if
(u�; p�; Q�; ��) and (u; p;Q; �) satisfy (4.2), (4.3) and �� � ��.
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It follows that a change from � to �� > �, keeping other components of the
functional form �xed, renders �� more panicky than � but leaves the two pref-
erence orders equally pessimistic (each has greater ex post pessimism than the
other).

5. CONCLUDING REMARKS

To conclude, we describe a variation of the above model, and then an extension.

5.1. Optimism

Just as the Gilboa-Schmeidler model has a counterpart, where minimization over
the set of priors is replaced by maximization, that captures ambiguity loving,
so too a variation of our model can be used to model ex post optimism. The
individual we have in mind is one who becomes more optimistic at the ex post
stage in order to feel better about her available options. For example, Aronson
[4, pp. 183-5] refers to the psychology of inevitability whereby people attempt to
�make the best of things;�and cognitive dissonance theory posits that beliefs will
be changed ex post to justify a past action (see Akerlof [1]).
Such an individual behaves as though she chooses beliefs ex post so as to make

her menu attractive, and thus is captured by our utility functional form if in (2.3),
minq2Q is replaced by maxq2Q. At the axiomatic level, only the last two axioms
must be modi�ed. Replace Constants-Cannot-Be-Tempted by Constants-Do-Not-
Tempt: For all c 2 C and f 2 H,

ffg � fcg =) ffg � fc; fg;

and replace Concave Temptation by Convex Temptation, which requires that ff 2
H : fcg � fc; fg � ffgg be convex for every c 2 C. These new axioms are readily
interpreted along the lines of the interpretations provided for the original axioms.
Finally, with these modi�cations, Theorem 4.1 is valid.
Other reasons for optimism are intuitive and have empirical support in the

psychology literature. One example, is wishful thinking, by which we mean a ten-
dency to adopt, at an early stage, an optimistic view of future prospects, thus
a¤ording oneself the enjoyment of anticipating a bright future.12 Since anticipa-
tory feelings pass with time, there is a tendency to be more realistic as the time

12See also Mitchell et al [21], Taylor and Brown [27] and Weinstein [29].
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of the eventual payo¤ approaches, reversing the temporal pattern just described.
It might seem that this pattern can be accommodated just by reversing the de�n-
itions of U and V in (2.2)-(2.3). Then maximizing over the set Q would generate
ex ante optimistic beliefs, while the single measure p would represent the return
to realism ex post.13 However, in this case the ex ante view is a delusion that
is enjoyed for one period and loses all relevance afterwards. Therefore, there is
no incentive to resist the temptation to base ex post decisions on the new more
realistic beliefs held then. (Contrast this with the case above where ex ante be-
liefs are correct and are still viewed as such ex post.) This suggests that GP�s
model of temptation without self-control (also in [14]) would provide a more suit-
able framework for modeling wishful thinking. In particular, an agent exhibiting
wishful thinking would be distinguished from the ex post optimist by satisfying

ffg � ff; gg =) ff; gg � fgg.

The wishful thinker would also be distinguishable through her violations of Collinear
Independence, Commitment Independence and Constants-Do-Not Tempt.

5.2. Response to Information

The loss of con�dence as the moment of truth approaches would presumably a¤ect
the way in which an individual responds to information - one would expect signals
received ex post to be interpreted pessimistically. By adding a signal realized at
time 1 and building on Epstein [8], we can extend our model to capture also the
response to information.14

An outline of the model is as follows: let S1 denote the (�nite) space of signals,
one of which is realized at time 1. Ex ante, the agent chooses a contingent menu
- a mapping F from signals into menus of Anscombe-Aumann acts. At time 1,
she observes the realized signal, updates her beliefs about S, and then chooses
an act from the realized menu F (s1). Denote by p prior beliefs on S1 � S, by p1
its �rst marginal, and, for each signal s1, let Qs1 be a (closed and convex) set of
probability measures on S containing p (� j s1), the Bayesian update of p. Then
the utility of any contingent menu F is given by

W (F ) =

Z
S1

U (F (s1) ; s1) dp1 (s1) ,

13More generally, there could be a set P ex post, with P � Q.
14We describe only the setup and the functional form for utility. However, it would be straight-

forward to provide foundations by suitably merging the two sets of axioms.
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where, for any menu A,

U (A; s1) = max
h2A

[(1� �)U (h; s1) + �V (h; s1)]� �max
h02A

V (h0; s1) ,

U (h; s1) = p (� j s1) � u(h), and
V (h; s1) = min

q2Qs1
q � u(h).

The interpretation is clear given the parallel with our model (2.1)-(2.3). The key
is that at the ex post stage, the agent does not rely simply on the Bayesian update
p (� j s1) of her prior beliefs, but rather behaves as though she adjusts the latter
in a direction that renders the realized menu F (s1) unattractive, as indicated by
the minimization over Qs1. In this way, �cold feet�a¤ect also her interpretation of
the signal. (In Epstein�s model, each set Qs1 is a singleton so that the updating
bias does not depend on the realized menu.)
Similarly, an individual who tends to distort her beliefs ex post in order to feel

better about her options would presumably bias her interpretation of a signal so
that it is favorable to her options. Such updating is captured if V is de�ned by
a max rather than a min. The resulting bias resembles the so-called con�rmatory
bias, whereby people tend to interpret evidence in ways that con�rm prior beliefs,
as opposed to the menu in hand (see [24], for example).

A. Appendix: Proof of the Main Representation Result

For necessity, veri�cation of the axioms is straightforward.
The proof of su¢ ciency proceeds roughly as follows: apply the Anscombe-Aumann Theorem

to derive an expected utility function U : H ! R1 for preference restricted to singleton menus.
This delivers a linear utility index u : C ! R1 and a prior p on S, such that U (f) = p � u (f).
Next, for any f 2 H, let

Hf = f�c+ (1� �)f : � 2 [0; 1]; c 2 Cg,

and let Af be the class of menus in Hf . Then Hf is a compact mixture space, and � restricted
to Af satis�es Independence (because � satis�es Collinear Independence) and Set-Betweenness.
Thus, by Kopylov�s [15, Theorem 2.1] extension of GP�s theorem to mixture spaces, one obtains
a continuous and linear function Vf : Hf ! R such that

U(A) = max
h2A

(U(h) + Vf (h))�max
h2A

Vf (h)

represents � on Af . The critical step is to extend the local functions Vf to a global temptation
function V . The remaining step is to show that V has the form (2.3) for some Q, which follows
from Gilboa and Schmeidler [12].
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Turn to the detailed proof. Throughout abbreviate the domain K(H) by A, and assume that
� is non-degenerate, that is, A � B for some A;B 2 A. (Otherwise, the desired representation
holds trivially with u � 0.)

Fix lotteries c+; c� 2 C such that fc+g � fcg � fc�g for all c 2 C. Such c+ and c� exist
because C is compact and � is continuous. By Monotonicity, fc+g � ffg � fc�g for all f 2 H.
By SSB, fc+g � A � fc�g for all �nite menus A; by Continuity, fc+g � A � fc�g for all menus
A 2 A. As � is non-degenerate, fc+g � fc�g.

Lemma A.1. There is a unique triple (U ; u; p) such that

(i) U : A ! R is a continuous utility function that represents �,

(ii) u : C ! R is an expected utility function, u(c+) = 1, and u(c�) = �1,

(iii) p : S ! [0; 1] is a probability distribution, and U(ffg) = p � u(f) for all f 2 H.

Proof. By the Anscombe�Aumann Theorem, the preference � restricted to singleton menus
ffg has a unique utility representation p � u(f), where p is a probability measure on S, and
u : C ! R is an expected utility function normalized by u(c+) = 1 and u(c�) = �1. By
Continuity, for any A 2 A, there is a unique � 2 [0; 1] such that A � f�c++(1� �) c�g. De�ne
a function U : A ! R by

U(A) = u(�c+ + (1� �) c�):

This condition is necessary and su¢ cient for U to satisfy (i) and (iii). Thus it determines U
uniquely. �

Hereafter, let c0 =
c++c�
2 ; then u(c0) = 0. For every act f 2 H, let

� U(f) = U(ffg) = p � u(f)

� e (f) = 1+U(f)
2 c+ +

1�U(f)
2 c�; then e(f) 2 C and ffg � fe (f)g

� f + 
 = 
c+ + (1� 
)f and f � 
 = 
c� + (1� 
)f

Say that f 2 H is temptable if � is not strategically rational on Af . The following lemma
pins down the structure of the utility U on the subspace Af .

Lemma A.2. If f 2 H is temptable, then there is a unique triple (Vf ;Wf ; �f ) such that

(i) Vf ;Wf : Hf ! R are continuous linear functions, and for all menus A 2 Af ,

U(A) = max
g2A

Wf (g)�max
g2A

Vf (g); (A.1)

(ii) Wf (�) = U(�) + Vf (�) on Hf ,

(iii) �f 2 (0; 1), and Vf (�) = �f
1��f U(�) on C.
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Proof. Fix a temptable act f 2 H and invoke [15, Theorem 2.1]: Hf is a compact mixture
space satisfying properties M1�M4 in [15], and � restricted to Af satis�es Order, Continuity,
Binary Independence, and Set-Betweenness, the axioms in the cited theorem. Thus � can be
represented on Af by

Uf (A) = max
g2A

(Uf (g) + Vf (g))�max
g2A

Vf (g);

where Uf ; Vf : Hf ! R are continuous linear functions normalized by Uf (c+) = 1 and Uf (c0) =
Vf (c0) = 0. Then Uf (�) = u(�) on C because both Uf and u are linear on C, have equivalent
normalizations, and represent the same ranking of lotteries. For any menu A in Af , U (A) =
u (e (A)) = Uf (e(A)) = Uf (A), where e (A) 2 C is such that A � fe (A)g. Thus Uf (�) = U(�) on
Af , Uf (�) = U(�) on Hf , and for all A 2 Af ,

U(A) = max
g2A

(U(g) + Vf (g))�max
g2A

Vf (g) = max
g2A

Wf (g)�max
g2A

Vf (g);

where Wf (�) = U(�) + Vf (�) on Hf .
Next, show by contradiction that

Vf (f) < Vf (e(f)): (A.2)

If Vf (f) > Vf (e(f)), then by Continuity, there is 
 such that Vf (f�
) > Vf (e(f)+
). By (A.1),
fe(f) + 
g � ff � 
; e(f) + 
g � ff � 
g, which contradicts Constants-Cannot-Be-Tempted
(here the constant is e(f) + 
). If Vf (f) = Vf (e(f)), then for any g = �f + (1� �)c 2 Hf ,

Vf (g) = �Vf (f) + (1� �)Vf (c) = �f
1��f (�U(e(f)) + (1� �)U(c)) =

�f
1��f U(g):

Therefore, U(A) = maxg2A(U(g)+Vf (g))�maxg2A Vf (g) = maxg2A U(g) for all A 2 Af . Thus
� is strategically rational on Af , which contradicts f being temptable.

Show that Vf is monotonic. Take any h; h0 2 Hf such that h dominates h0. For all 
 2
(0; 1), Monotonicity and Lemma A.1 imply fh + 
g � fh + 
; h0 � 
g � fh0 � 
g and hence,
Vf (h+ 
) � Vf (h0 � 
). Let 
 ! 0; then Vf (h) � Vf (h0) by continuity.

As Vf is non-constant and monotonic, then Vf (c+) > Vf (c�) and Vf (c) � Vf (c
0) for all

c; c0 2 C such that fcg � fc0g. By the vNM theorem, Vf is a positive linear transformation of U
on C. As U(c0) = Vf (c0) = 0, there is �f 2 (0; 1) such that Vf (�) = �f

1��f U(�) on C.
Show that Vf is unique (the uniqueness of Wf and �f then follows immediately). To do so,

construct an act f� 2 Hf such that ff�g � ff�; c0g � fc0g. Then [15, Theorem 2.1] will assert
that Vf is unique in the representation (A.1). Let

f+ =

8<:
Vf (c+)

Vf (c+)+Vf (f)
f +

Vf (f)
Vf (c+)+Vf (f)

c� if Vf (f) � 0
Vf (c+)

Vf (c+)�Vf (f)f +
�Vf (f)

Vf (c+)�Vf (f)c+ if Vf (f) < 0:

Then Vf (e(f+)) > Vf (f+) = 0 because Vf is linear. It follows that U(f+) = U(e(f+)) > 0.
Similarly, the act

f� =

8<:
U(c+)

U(c+)+U(f)
f + U(f)

U(c+)+U(f)
c� if U(f) � 0

U(c+)
U(c+)�U(f)f +

�U(f)
U(c+)�U(f)c+ if U(f) < 0
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satis�es U(f�) = 0 > Vf (f�). For su¢ ciently small � > 0, take

f� =
2�

U(f+)
f+ +

�

�Vf (f�)
f� +

�
1� 2�

U(f+)
� �

�Vf (f�)

�
c0:

Then U(f�) = 2� > Wf (f�) = � > 0 > Vf (f�) = ��. By (A.1), ff�g � ff�; c0g � fc0g. �

The next lemma shows that all representations (A.1) agree on C.

Lemma A.3. If f; g 2 H are temptable, then (i) �f = �g, and (ii) there are temptable acts
f 0 2 Hf and g0 2 Hg such that for all menus B 2 A,

U(ff 0g [B) = U(fg0g [B): (A.3)

Proof. Fix temptable acts f and g. Take a su¢ ciently small � > 0, and construct acts f� 2 Hf

and g� 2 Hg as in the proof of A.2 so that

U(f�) = U(g�) = 2� > Wf (f�) =Wg(g�) = � > 0 > Vf (f�) = Vg(g�) = ��:

By (A.1), ff�g � fg�g � fc0; f�g � fc0; f�; g�g � fc0; g�g � fc0g. By SSB,

fc0; f�g [B � fc0; f�; g�g [B � fc0; g�g [B

for all menus B 2 A. Take 
 > 0 such that Wf (c0 + 
) < Wf (f�) and Wg(c0 + 
) < Wg(g�).
Let B = fc0 + 
g. Then by (A.1),

Wf (f�)� Vf (c0 + 
) = U(fc0; f�; c0 + 
g) = U(fc0; g�; c0 + 
g) =Wg(g�)� Vg(c0 + 
):

Thus Vf (c0 + 
) = Vg(c0 + 
) and �f = �g.

Turn to (ii). For a su¢ ciently small � > 0, take f 0 2 Hf and g0 2 Hg such that U(f 0) =
U(g0) = Wf (f

0) = Wg(g
0) = � and Vf (f 0) = Vg(g0) = 0. These acts can be constructed similar

to f� in the proof of A.2:

f 0 =
�

U(f+)
f+ +

�
1� �

U(f+)

�
c0 and g0 =

�

U(f+)
f+ +

�
1� �

U(f+)

�
c0:

Take any 
 > 0 such that Wf (f
0 � 
) > 0 and Wg(g

0 � 
) > 0. By (A.1),

ff 0 + 
g � ff 0 + 
; c0g � fc0g and

ff 0 � 
g � fg0 � 
g � fc0; g0 � 
g � fc0; g0 � 
; f 0 � 
g � fc0; f 0 � 
g � fc0g:

Here fc0; g0 � 
g � fc0; f 0 � 
g because �f = �g. Note that both f 0 and g0 are temptable. SSB
implies that for all menus B,

ff 0 + 
g [B � ff 0 + 
; c0g [B;
fc0; g0 � 
g [B � fc0; g0 � 
; f 0 � 
g [B � fc0; f 0 � 
g [B; and hence,

ff 0 + 
; g0 � 
g � ff 0 + 
; c0; g0 � 
g � ff 0 + 
; c0; f 0 � 
g � ff 0 + 
g:
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Thus ff 0+ 
g � ff 0+ 
; g0� 
g � fg0� 
g: Analogously, fg0+ 
g � fg0+ 
; f 0� 
g � ff 0� 
g:
By SSB, for all menus B,

ff 0 + 
g [B � ff 0 + 
; g0 � 
g [B
fg0 + 
g [B � fg0 + 
; f 0 � 
g [B:

Let 
 ! 0; then ff 0g [B � ff 0; g0g [B � fg0g [B by Continuity. �

Fix � 2 (0; 1) such that �f = � for all temptable acts f 2 H. Such � exists by Lemma A.3.
Moreover, if there are temptable acts f 2 H, then � is unique; otherwise, � is arbitrary.

For every act g 2 H and menu A 2 A, let

V (g) =

(
Vg(g) if g is temptable
�
1��U(g) if g is not temptable

W (g) = U(g) + V (g) =

(
U(g) + Vg(g) if g is temptable
1

1��U(g) if g is not temptable

UWV (A) = max
g2A

W (g)�max
g2A

V (g):

Later we show that V is continuous and hence, the maxima in the de�nition of UWV are obtained
even if A is not �nite.

The following lemma asserts that the function UWV extends the representations (A.1) to
arbitrary �nite menus.

Lemma A.4. For all �nite menus A, U(A) = UWV (A):

Proof. To prove this lemma, consider several cases.
Case 1. A 2 Af , and f 2 H is not temptable. Then all acts g 2 Hf are not temptable

because � is strategically rational on Hg � Hf . Accordingly, V (�) = �
1��U(�) and W (�) =

1
1��U(�) on Hf . By strategic rationality,

U(A) = max
g2A

U(g) = max
g2A

�
U(g) + �

1��U(g)
�
�max

g2A
�
1��U(g) = UWV (A):

Case 2. A 2 Af , and f 2 H is temptable. Take any g = �f + (1 � �)c 2 Hf . If � = 0,
then g = c is not temptable, and V (c) = �

1��U(c) =
�f
1��f U(c) = Vf (c): If � > 0, then g is

temptable because a violation of strategic rationality on Af can be translated into a similar
violation on Ag by Collinear Independence. The function Vf satis�es the representation (A.1)
restricted to Hg � Hf . As Vg is unique, V (g) = Vg(g) = Vf (g). It follows that V (�) = Vf (�) and
W (�) =Wf (�) on Hf . By (A.1),

U(A) = max
g2A

Wf (g)�max
g2A

Vf (g) = max
g2A

W (g)�max
g2A

V (g) = UWV (A):

Note that both V (�) = �
1��U(�) on Hf in Case 1, and V (�) = Vf (�) on Hf in Case 2 satisfy

C-independence. In other words, for all f 2 H, c 2 C, and 
 2 [0; 1],

V (
f + (1� 
)c) = 
V (f) + (1� 
)V (c): (A.4)
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Similarly, W is C-independent.

Case 3. A = ff; gg, and f is not temptable. Then for all 
 2 (0; 1),

ff + 
g � ff + 
; e(f)� 
g � fe(f)� 
g
fe(f) + 
g � fe(f) + 
; f � 
g � ff � 
g

because � is strategically rational on Af . By SSB,

ff + 
g [ fgg � ff + 
; e(f)� 
g [ fgg
fe(f) + 
g [ fgg � fe(f) + 
; f � 
g [ fgg:

Let 
 ! 0; by Continuity ff; gg � ff; e(f); gg � fe(f); gg: By Cases 1 and 2, as V (f) = V (e(f)),
W (f) =W (e(f)), and fe(f); gg 2 Ag, then

U(ff; gg) = U(fe(f); gg) = UWV (fe(f); gg) = UWV (ff; gg):

Case 4. A = ff; gg, and both f and g are temptable. Take temptable acts f 0 2 Hf and
g0 2 Hg as in Lemma A.3. Then g0 = 
g + (1� 
)c for some 
 > 0 and c 2 C. Lemma A.3 and
Case 2 above imply that

U(
A+ (1� 
)fcg) = U(f
f + (1� 
)c; g0g) = U(f
f + (1� 
)c; f 0g =
UWV (f
f + (1� 
)c; f 0g = UWV (f
f + (1� 
)c; g0g):

By Collinear Independence,

U(
A+(1� 
)fcg) = U(
fe(A)g+(1� 
)fcg) = 
u(e(A))+ (1� 
)u(c) = 
U(A)+ (1� 
)u(c);

where e(A) 2 C is such that A � fe(A)g. As V and W are C-independent,

UWV (f
f + (1� 
)c; g0g) = UWV (f
f + (1� 
)c; 
g + (1� 
)cg) = 
UWV (A) + (1� 
)u(c):

Therefore, 
U(A) + (1� 
)u(c) = 
UWV (A) + (1� 
)u(c), that is U(A) = UWV (A):

Case 5. A is an arbitrary �nite menu. Take gA 2 argmaxf2AW (f) and hA 2 argmaxf2A V (f).
Then for all f 2 A,

UWV (fgA; fg) � UWV (fgA; hAg) � UWV (ff; hAg):

Cases 3 and 4 imply that U(fgA; fg) � U(fgA; hAg) � U(ff; hAg); that is, fgA; fg � fgA; hAg �
ff; hAg. SSB implies by induction with respect to the size of the set A that

A =
[
f2A

fgA; fg � fgA; hAg �
[
f2A

ff; hAg = A;

that is, A � fgA; hAg. Thus, U(A) = U(fgA; hAg) = UWV (fgA; hAg) = UWV (A):

The following lemma obtains the desired structure for the temptation function V .
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Lemma A.5. There exists a convex and closed set Q of probability measures on S such that
for all f 2 H,

V (f) = �
1�� minq2Q

q � u(f): (A.5)

Moreover, Q is unique and p 2 Q.

Proof. The function V is non-constant because � > 0, and satis�es C-independence (A.4). Next,
show that V is monotonic, continuous, and quasi-concave.

Monotonicity. Take acts f and g such that f dominates g. By Monotonicity, for all � 2 (0; 1),
ff + �g � ff + �; g � �g � fg � �g By Lemma A.4, V (f + �) � V (g � �), and

�V (c+) + (1� �)V (f) � �V (c�) + (1� �)V (g)

because V satis�es C-independence (A.4). Take �! 0 to deduce that V (f) � V (g):
Continuity. Let a sequence of acts fn converge to f as n ! 1. There exist sequences �n and
�n both converging to zero such that f + �n dominates fn, and fn dominates f � �n. As V is
monotonic and C-independent,

�nV (c+) + (1� �n)V (f) � V (fn) � �nV (c�) + (1� �n)V (f):

It follows that V (f) = limn!1 V (fn).

Quasi-Concavity. Suppose that V (f) = V (g) > V (�f + (1� �)g). Take c 2 C such that

V (f) = V (g) > V (c) > V (�f + (1� �)g):

Then by (A.2), V (e(f)) � V (f) > V (c) and V (e(g)) � V (g) > V (c). By monotonicity of V ,
U(f) > U(c), U(g) > U(c) and hence, U(�f+(1��)g) > U(c). By Lemma A.4, ffg � ff; cg �
fcg and fgg � fg; cg � fcg, but f�f + (1 � �)gg � f�f + (1 � �)g; cg � fcg; contradicting
Concave Temptation.

The preceding shows that the ranking on H represented by V satis�es all the axioms of
Gilboa and Schmeidler�s multiple-priors model [12]. Thus V has the form (A.5), and Q is
unique. The inclusion p 2 Q follows from the fact that for all f 2 H, V (f) � V (e(f)) = p �u(f).
�

To complete the proof of the theorem, show that U � UWV on all of A. Take an arbitrary
menu A, and a sequence of �nite menus A1; A2; : : : that converges to A in the Hausdor¤metric.
By Lemma A.4, U(Ai) = UWV (Ai) for all i. As the functions U , V and W are continuous, then
U(A) = UWV (A).

To show the required uniqueness of (u; p; �;Q) in representation (2.1)-(2.3), suppose that
this tuple can be replaced by (u0; p0; �0; Q0). Then u0 is a positive linear transformation of u, and
hence, (u; p; �;Q) can be replaced by (u; p0; �0; Q0) as well. Note that if there are no temptable
acts in H, then V is a positive linear transformation of U , and � is strategically rational. Thus,
if � is not strategically rational, then there exist temptable acts, and the uniqueness statements
in Lemmas A.1, A.2 and A.5 imply that p = p0, � = �0, and Q = Q0.
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B. Appendix: Proofs for Comparative Pessimism

Proof of Theorem 4.2: Let�� and� conform to our model with corresponding tuples (u�; p�; Q�; ��)
and (u; p;Q; �). For all vectors a 2 RS , let

Q � a = min
q2Q

q � a and Q� � a = min
q2Q�

q � a: (B.1)

Suppose that neither preference is strategically rational. Then �; �� > 0 and su¢ ciency of
(4.2) and (4.3) is immediate:

ffg � ff; gg ) [p � u(f) > p � u(g)] and [Q � u(g) > Q � u(f)] )
[p� � u�(f) > p� � u�(g)] and [Q� � u�(g) > Q� � u�(f)] ) ffg �� ff; gg:

For necessity, let �� exhibit greater pessimism than �.

Lemma B.1. p = p�, and u is a positive linear transformation of u�.

Proof. Adopt the same notation c+; c�; c0; f + 
; f � 
 as in the proof of the main represen-
tation result. Wlog let u(c+) = 1, u(c�) = �1, and u(c0) = u�(c0) = 0.

Fix an act f 2 H which is temptable for the preference �. This act exists because � is not
strategically rational. Wlog U(f) = 0 > V (f).

Show that for all acts g 2 H,

U(g) = 0 ) U�(g) � 0: (B.2)

Take any g 2 H such that U(g) = 0. If g is temptable, then for su¢ ciently small 
 > 0,
fgg � fg; c0 � 
g � fc0 � 
g. Thus, fgg �� fg; c0 � 
g �� fc0 � 
g, and by continuity,
U�(g) � u�(c0) = 0: If g is not temptable, then W (g) = V (g) = U(g) = 0. Fix any � > 0, and
let f� = �f + (1 � �)c0. Then for all su¢ ciently small 
 > 0, ff� + 
g � ff� + 
; gg. Thus
ff� + 
g �� ff� + 
; gg and V �(g) > V �(f� + 
). As � and 
 can be taken arbitrarily small,
V �(g) � V �(c0) and hence, U�(g) � u�(c0) = 0.

Show that for all acts g 2 H,

U(g) = 0 ) U�(g) = 0: (B.3)

By (B.2), if c 2 C and c � c0, then c �� c0. Analogously, if c � c0, then c0 �� c. Thus u(c) = 0
implies u�(c) = 0. Take any g 2 H such that U(g) = 0. Let h 2 H such that u

�
g+h
2

�
= 0,

that is, g(s)+h(s)2 � c0 for all s 2 S. The act h exists because the range of the function u is
[�1; 1]. By Monotonicity, U

�
g+h
2

�
= u(c0) = 0, and hence, U(h) = 0. By (B.2), U�(g) � 0 and

U�(h) � 0. Note that g(s)+h(s)
2 �� c0 for all s 2 S. By Monotonicity, U�

�
g+h
2

�
= u�(c0) = 0.

It follows that U�(g) = U�(h) = 0.
Show that u is a positive linear transformation of u�. By (B.3), ffg �� fc0g. Take 
 > 0

such that ffg � ff; c0 � 
g. Then ffg �� fc0 � 
g, that is, fc0g �� fc0 � 
g. It follows
that fc+g �� fc0g �� fc�g. Normalize u� so that u�(c+) = 1 and u�(c�) = �1. Fix any
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c 2 C. Let c0 = 1�u(c)
2 c+ +

1+u(c)
2 c�: Then u

�
c+c0

2

�
= 0 and by (B.3), u�

�
c+c0

2

�
= 0. Thus

u�(c) = �u�(c0) = � 1�u(c)
2 u�(c+)� 1+u(c)

2 u�(c�) = u(c).
Show that p = p�. By (B.3), for all g 2 H, if p � u(g) = 0, then p� � u�(g) = p� � u(g) = 0.

It follows that for all vectors a 2 [�1; 1]S , p � a = 0 implies p� � a = 0. Thus p� = 
p for some

 2 R, and p = p� because both are probability measures. �

To prove that Q = (1� �) fpg + �Q� for some 0 < � � 1; we adopt a method analogous to
the one used by Kopylov [16]. Let D be the set of all points a 2 RS where the functions Q � a
and Q� � a are both di¤erentiable. For every a 2 D, let

q(a) = r(Q � a) and q�(a) = r(Q� � a)

be the derivatives of Q � a and Q� � a respectively. Then q(a) 2 Q and q�(a) 2 Q� are the unique
probability measures in Q and in Q� respectively such that

Q � a = q(a) � a and Q� � a = q�(a) � a: (B.4)

To show (B.4), take any q 2 Q such that Q � a = q � a. For all b 2 RS and � 2 R,

Q � a+ �(q � b) = q � (a+ �b) � Q � (a+ �b) = Q � a+ �(q(a) � b) + o(�);

and hence, q � b = q(a) � b. Thus q = q(a). Similarly, for q�(a).
Let ~1 = (1; : : : ; 1) 2 RS . The set D and the functions q; q� are preserved under transforma-

tions �a+ 
~1 for � > 0 and 
 2 R. Indeed, for all b 2 RS ,

Q � b = �
�
Q �

�
b�
~1
�

��
+ 
:

By the chain rule, Q � b is di¤erentiable at b = �a+ 
~1, and q(�a+ 
~1) = q(a). Similarly, Q� � b
is di¤erentiable at b = �a+ 
~1, and q�(�a+ 
~1) = q�(a). Thus �a+ 
~1 2 D:

The following lemma delivers the required �.

Lemma B.2. There exists � 2 [0; 1] such that q(a) = �q�(a) + (1� �)p for all a 2 D.

Proof. We claim that for all a; b 2 RS ,

[p � a > p � b] and [Q � b > Q � a] ) Q� � b > Q� � a. (B.5)

Fix any a; b 2 RS such that p � a > p � b and Q � b > Q � a. Take � > 0 such that j �a(s) j; j
�b(s) j � 1 for all s 2 S. Then �a = u(f) and �b = u(g) for some f; g 2 H. (Here u(f) and
u(g) are vectors in RS .) Then

[p � a > p � b] and [Q � b > Q � a] ) [p � u(f) > p � u(g)] and [Q � u(g) > Q � u(f)] )
ffg � ff; gg ) ffg �� ff; gg ) Q� � u(g) > Q� � u(f) ) Q� � b > Q� � a:

Next we claim that for any b 2 D, there is �b 2 [0; 1] such that q(b) = �bq�(b) + (1 � �b)p.
Suppose that for some b no such �b exists. Let x 2 RS separate q (b) from the segment [q� (b) ; p]
so that q�(b) � x > 0, p � x > 0, but q(b) � x < 0. Then for su¢ ciently small � > 0,

p � (b+ �x) > p � b and Q � b = q (b) � b > q (b) � (b+ �x) � Q � (b+ �x)
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but also Q� � (b+ �x) = Q� � b+ �(q�(b) � x) + o(�) > Q� � b. This is a contradiction with (B.5)
for a = b+ �x.

To complete the proof of the lemma, show that for all a; b 2 D, �a = �b. Take a; b 2 D such
that q�(a) 6= p and q�(b) 6= p. (Note that if q�(a) = p, then the equality �a = �b can be satis�ed
because �a is arbitrary. Similarly, if q�(b) = p.) As q�(a) 6= p and p = p� 2 Q�, then by (B.4),
Q� � a < p � a. Similarly, Q� � b < p � b. Let

a0 =
a� (p � a)~1
p � a�Q� � a and b0 =

b� (p � b)~1
p � b�Q� � b :

Then q�(a0) = q�(a), q�(b0) = q�(b), and

q(a0) = q(a) = �aq
�(a) + (1� �a)p and q(b0) = q(b) = �bq

�(b) + (1� �b)p:

By construction, p �a0 = p � b0 = 0, Q� �a0 = Q� � b0 = �1, Q �a0 = ��a, and Q � b0 = ��b. Suppose
that �a 6= �b; wlog let �a > �b. Then for su¢ ciently small 
 > 0,

p � (a0 + 
~1) = 
 > p � b0; Q � (a0 + 
~1) = ��a + 
 < ��b = Q � b0;

but Q� � (a0 + 
~1) = �1 + 
 > Q� � b0. This contradicts (B.5). Thus �a = �b. �

Conclude that Q � a = �(Q� � a) + (1 � �)(p � a) for all a 2 D. By [25, Theorem 25.5], the
complement of the set D has measure zero. Thus D is dense. Then by continuity,

Q � a = �(Q� � a) + (1� �)(p � a) = (�Q� + (1� �)p) � a

for all a 2 RS . It follows that Q = �Q�+(1� �)p. As � is not strategically rational, then � > 0.
This completes the proof of Theorem 4.2.

Proof of Theorem 4.3: Let�� and� conform to our model with corresponding tuples (u�; p�; Q�; ��)
and (u; p;Q; �). Suppose that neither preference is strategically rational.

Let P = (1� �)fpg+ �Q and P � = (1� ��)fp�g+ ��Q�. The conditions (4.2), (4.3), and
�� � �� imply

P =
�
1� ��

��

�
fpg+ ��

��
P �:

Su¢ ciency of these conditions now follows from:

ffg � ff; gg � fgg ) [p � u(f) > p � u(g)] and [P � u(g) > P � u(f)] )
[p� � u�(f) > p� � u�(g)] and [P � � u�(g) > P � � u�(f)] ) ffg �� ff; gg �� fgg:

For necessity, let �� be more panicky than �. Then �� exhibits greater pessimism, and
Theorem 4.3 implies (4.2) and (4.3). Moreover, for all a; b 2 RS ,

[p � a > p � b] and [P � a > P � b] ) P � � b > P � � a. (B.6)

To prove this claim, �x any a; b 2 RS . Take � > 0 and f; g 2 H such that �a = u(f) and
�b = u(g). Then

[p � a > p � b] and [P � a > P � b] ) [p � u(f) > p � u(g)] and [P � u(g) > P � u(f)] )
ffg � ff; gg � fgg ) ffg �� ff; gg �� fgg ) P � � u(g) > P � � u(f) ) P � � b > P � � a.
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Use the condition (B.6) to replace Q and Q� by P and P � in Lemma B.2 and obtain
0 < � � 1 such that P = (1� �)fpg+ �P �. In particular, P � P � and therefore also

(1� ��)fpg+ ��Q� � (1� ��)fpg+ ��Q�:

As Q� is a nonsingleton, �� � ��. �
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