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Abstract

The present paper sheds further light on a well-known (alleged) violation of the expec-
tations hypothesis of the term structure (EHT) - the frequent finding of unit roots in
interest rate spreads. We show that the EHT implies (i) that the nonstationarity stems
from the holding premium, which is hence (ii) cointegrated with the spread. In a stochas-
tic discount factor framework we model the premium as being driven by the integrated
variance of excess returns. Introducing the concept of mean-variance cointegration we
actually find cointegration relations between spreads and premia in US data.
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1 Introduction

The relation between interest rates of different maturities plays a key role in macroeco-
nomics and finance. For monetary policy the transmission mechanism from short rates
to long rates is of particular importance. An obvious and plausible approach is given
by the expectations hypothesis of the term structure (EHT) which remains both one of
the most examined and rejected theories.4 The present paper focuses on the common
implication of the EHT that interest rate spreads should be stationary and provides
an explanation why this property is so often not found in empirical studies. We show
that this notorious lack of evidence can be attributed to a nonstationary term premium
modeled by means of a stochastic discount factor model. Using our newly introduced
mean-variance cointegration test this explanation is verified by econometric results from
unit root and cointegration analysis.

The implication of stationary spreads was first shown by Campbell and Shiller (1987).
A popular linearized version of the EHT states that the spread equals expected future
short rate changes plus a constant term premium, θ . Considering the two-period case it
is easy to see that for interest rates integrated of order one (I(1)), stationarity of the
right-hand side in Y (2)

t −Y (1)
t = 1/2 E[∆Y (1)

t+1|It ] + θ goes hand in hand with cointegration
on the left-hand side. Here, Y (n)

t denotes the yield on an n-period bond and E[ · |It ] is the
expectations operator conditioning on the information available up to time t, It .

However, much evidence contradicts the implication of mean-reverting spreads. Among
many others, Hall et al. (1992), Pagan et al. (1996) and Hansen (2003), find that
stationarity of the spreads is often not reflected in US data. The larger the difference in
maturity the more often this outcome occurs. Wolters (1995, 1998) and Carstensen

(2003) come to the same result for German bond data. A number of authors argued that
the assumption of a constant term premium may be inappropriate. Evidence for a time-
varying premium is provided by Mankiw and Miron (1986), Engle et al. (1990) and
Evans and Lewis (1994), to name just a few. However, the term premium is unobserv-
able and the EHT does not provide any guidance of how such a time-varying premium
should be modeled.

By now, a great deal of literature has been produced that is concerned with the question
of what exactly drives the commonly accepted time-variation in the term premium. One
way of summing up the ongoing academic effort is to classify the different approaches

4Comprehensive surveys covering early work are provided by Melino (1988), Shiller (1990) and
Campbell and Shiller (1991).
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within the broad class of stochastic discount factor (SDF) models. Detailed discussion of
SDF models is provided by Cochrane (2001) and Balfoussia and Wickens (2007).
In essence, assets are priced as the expected discounted value of their future pay-offs.
Yet, we emphasize that a time-varying but stationary premium that may be modeled by
any particular SDF model does not change the EHT implication of stationary spreads.

The present paper argues that violation of this implication can only be reconciled with
the EHT if integrated spreads come along with integrated term premia (Hypothesis i).
In that case the nonstationarity puzzle would be rationalized if spreads and premia were
cointegrated; that is what we label mean-variance cointegration (Hypothesis ii).

In our analysis we apply the most simple observable one-factor SDF model that is able
to describe such an extremely persistent premium: the Sharpe-Lintner CAPM. The term
premium is specified as the product of risk and its market price, equalling the expected
excess return. Thereby, the conditional second moment of excess returns serves as risk
measure.5 We estimate the term premium via a generalized autoregressive conditional
heteroskedasticity (GARCH) model (Engle 1982, Bollerslev 1986) and show that
the null of integrated conditional variance cannot be rejected. This result survives the
inclusion of structural breaks under the alternative hypothesis. Finally, we propose a
cointegration test and simulate the appropriate distribution of the test statistic. Empiri-
cally, we actually find cointegration relations between premia and spreads in US interest
rate data. This explains the (seeming) violation of the necessary condition for the EHT
to be valid - the frequent finding of nonstationary spreads.

The paper proceeds as follows. Section 2 discusses stochastic discount factor models
for term premia, looks at the EHT and derives two testable hypotheses. In section 3 we
introduce the econometric methodology. In particular, we propose a procedure to test for
mean-variance cointegration. This is followed by the presentation of the empirical results
and several robustness checks. The final section summarizes and contains concluding
remarks.

2 Term Premium Models and the Expectations Hypothe-

sis

In this section, firstly, the general framework of the SDF approach for modeling term
premia is briefly outlined. This is followed by the presentation of the specific SDF model

5Common examples for that approach are Engle et al. (1987) and Bollerslev et al. (1988).
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that we employ. In a second step, we turn to the relation between term premium and
interest rate spread. Showing that the empirical finding of unit-root behavior in spreads
can only be explained by integrated term premia we derive two testable hypotheses. In
the third part, it is illustrated how this explanation carries over from the SDF model to
a (linearized) version of the EHT, which is prevalent in a large strand of literature.

2.1 The Stochastic Discount Factor Model and a CAPM-motivated

Pricing Kernel

The SDF model relates the price of an asset to the expected present value of the future
pay-off

Pt = E[Mt+1Xt+1|It ] , (1)

where Pt denotes the price at time t. Xt+1 represents the pay-off at t + 1, Mt+1 is the
discount factor or pricing kernel (0 ≤ Mt+1 ≤ 1) and E[ · |It ] indicates the conditional
expectation operator where the information set It contains all information available up
to time t. As we are interested in the return Rt+1 = Xt+1/Pt−1 it is noted that

1 = E[Mt+1(1 + Rt+1)|It ] . (2)
By definition

E[Mt+1(1 + Rt+1)|It ] = E[Mt+1|It ]E[1 + Rt+1|It ]+Cov[Mt+1,(1 + Rt+1)|It ]

holds. Applying equation (2), the expected future gross return can be expressed as

E[1 + Rt+1|It ] =
1−Cov[Mt+1,(1 + Rt+1)|It ]

E[Mt+1|It ]
.

The return at t + 1 from a riskless investment, denoted by rt , is known at t and is hence
included in the information set It . Therefore, regarding (2), this return produces the
relation

E[Mt+1|It ] =
1

1 + rt
.

The latter equation now allows us to write the expected excess return over the risk-free
rate as

E[Rt+1|It ]− rt =−(1 + rt)Cov[Mt+1,(1 + Rt+1)|It ] . (3)

Equation (3) represents the characteristic relation between risk and return. In SDF
models risk is measured as the covariance of the return with the variables that represent
the discount factor Mt+1, or, in other words, the factors that enter the pricing kernel.
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Smith and Wickens (2002) show in their survey that the SDF model can be seen as the
umbrella framework that includes the most prominent asset pricing models. The SDF
models proposed and investigated in the literature greatly differ in the specification of
the discount factor. One possible classification relates to the nature of the factors as
either observable or latent variables.

In bond pricing, a recently widely used class is given by affine factor models. They assume
the discount factor to be a linear function of the observable or unobservable factors. The
Vasicek (1977) and the Cox, Ingersoll and Ross (1985) (CIR) models represent two
of the most popular latent variable affine factor approaches. Dai and Singleton (2000)
compare several multi-factor CIR models. In their influential study Ang and Piazzesi

(2003) augment a multi-factor Vasicek model by additional observable macroeconomic
factors, thereby highlighting the importance of macroeconomic sources of risk for the
short end and that of latent factors for the long end of the term structure. Cochrane

and Piazzesi (2005) show that one observable factor, a linear function of certain forward
rates, can account for a huge part of the term premium. In the recent literature on affine
factor models the intersection of macroeconomics and finance plays a prominent role;
see Gürkaynak and Wright (2010) for a survey.

Moreover, there are two prime examples of implicit observable one-factor models: the
CAPM (Sharpe 1964, Lintner 1965) and the CCAPM (Rubinstein 1976, Lucas

1978). Both models have a long tradition in finance capturing the risk-return trade-off
(see, e.g., Ghysels et al. 2005, Lundblad 2007 and Bali and Engle 2010). The CAPM
represents the model of choice in the present paper. It implicitly assumes the factor to be
the return on the market. The CAPM allows for an appealing economic interpretation
due to the connection of risk as non-diversifiable return volatility. We will show that it
fits well the purpose of the underlying study, i.e. explaining nonstationarity of spreads
and introducing the concept of mean-variance cointegration. Combining this approach
with more comprehensive risk models represents an attractive path for future research.

The CAPM can be classified as an implicit observable one-factor model and represents a
very parsimonious choice. However, as will be seen below, it is well suited to account for
the phenomenon of extremely persistent premia. The CAPM states that excess returns
are described by

E[Rt+1− rt |It ] = b ·Cov[Rm
t+1,Rt+1|It ] . (4)

In (4) Rm
t+1 indicates the return on the market and

b =
E[Rm

t+1− rt |It ]
Var[Rm

t+1|It ]
.
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Comparing the well-known equation (4) to (3) it becomes obvious that the CAPM may
be understood as an implicit one-factor model with the discount factor

Mt+1 =− b
1 + rt

(1 + Rm
t+1) . (5)

2.2 Stationarity Properties of Spreads and Premia: Testable Hypothe-

ses

The present work is concerned with the term structure of interest rates and the explana-
tion of nonstationary spreads. Hence we shall proceed by deriving theoretical implications
and by taking a closer look at the exact form of (4) in case of bond pricing and for the
specific type of interest rate data that we investigate. In order to focus primarily on the
nonstationarity puzzle, we initially abstract from cross-asset and cross-market dependen-
cies. Therefore, we consider a stylized financial market that comprises only two assets,
i.e. one risky asset, a coupon-carrying n-period bond with a yield to maturity (interest
rate) of Y (n)

t and one riskless asset, a one-period bond offering Y (1)
t . Let H(n)

t+1 denote the
return that one realizes at t +1 from holding the n-period bond for one period, i.e. from
t to t + 1

H(n)
t+1 =

P(n−1)
t+1 −P(n)

t + C

P(n)
t

. (6)

Here P(n)
t denotes the price that was paid at t and P(n−1)

t+1 refers to the price of the bond
at t + 1, which has now existed for one period and hence has only n−1 periods left till
maturity. C is the coupon payment. Since later we investigate holding returns constructed
from yield data on bonds that are sold at par, we note that for these bonds by definition
P(n)

t = 1 and Y (n)
t = C = yield to maturity. For these data in view of (6) the definition of

excess holding returns takes the form

H(n)
t+1−Y (1)

t = P(n−1)
t+1 −1 +Y (n)

t −Y (1)
t = ct+1 + st , (7)

with the capital gain (loss) that accrues during the holding-period as ct+1 = P(n−1)
t+1 − 1

and the interest rate spread as st = Y (n)
t −Y (1)

t . The expected excess holding return is also

5



referred to as the holding premium6, that we denote by

E[H(n)
t+1−Y (1)

t |It ] = φ
(n)
t+1︸︷︷︸

I(d)

= E[ct+1|It ]︸ ︷︷ ︸
I(0)

+ st︸︷︷︸
I(d)

. (8)

Usually, the econometrician cannot observe expectations. However, from the right-hand
side of (4) we know how they can be modeled. For the above described two-asset case, the
conditional covariance with the market becomes the conditional variance of the excess
holding return on the n-period bond itself. Hence, applying (7) to the SDF model (4)
yields

φ
(n)
t+1︸︷︷︸

I(d)

= b ·Var[ct+1 + st |It ] = b ·Var[ct+1|It ]︸ ︷︷ ︸
I(d)

, (9)

the SDF-CAPM model. From (8) and (9) we draw two testable hypotheses.

Hypothesis (i): Equal Degree of Integration Given E[ct+1|It ]∼ I(0) and interest
rate levels are integrated of order one, the spread st and the holding premium φ

(n)
t+1 are

either both stationary (d = 0) or both nonstationary (d = 1).

Hypothesis (ii): Mean-Variance Cointegration If spread and holding premium
are nonstationary (d = 1) they must be cointegrated. The cointegrating vector of st and
Var[ct+1|It ] equals (1, −b).

Hypothesis (i) follows from (8). If E[ct+1|It ] ∼ I(0)7 for the equation to be balanced
the degrees of integration of spread and holding premium must be equal. Hypothesis
(ii) follows from (9). According to the SDF-CAPM model the holding premium equals
b ·Var[ct+1|It ] and hence it is the conditional second moment of excess returns that must
be cointegrated with the conditional first moment of the spread. We emphasize that the
interest rate spread as the second component of excess holding returns plays no role for
the conditional variance, as it is included in the information set It . Thus, if the interest
rate spread is integrated of order one, it must in fact be cointegrated with the conditional
variance of the corresponding capital gain series. This is what we label mean-variance
cointegration. The cointegrating vector of st and Var[ct+1|It ] is (1, −b). In the present
model b may be interpreted as the market price of risk (PoR).

6The literature sometimes confusingly uses ”term premium” as an umbrella term for forward, holding
and rollover premium. Since for the following work it is important to use exact definitions we apply those
from the notes of Shiller (1990).

7Theoretically, ct+1 can be considered as a series of price changes. Since prices normally behave like
random walks or slightly more general I(1) processes, agents would expect ct+1 to be I(0). Indeed, as will
be seen later, this property of capital gains is found in the data.

6



2.3 Linkage to the Linearized Expectations Hypothesis

It is now briefly outlined how Hypotheses (i) and (ii) just derived from the SDF-CAPM
model carry over to the frequently used linearized version of the EHT. The reasoning
that nonstationary spreads can be explained by nonstationary holding premia is shown
to be consistent with the EHT.

The well-known form of the EHT is essentially only a linearization of stochastic equations
that define returns (prices) in a financial market in the absence of arbitrage. Following
the considerations of Shiller (1979), the holding return - expressed in terms of yields to
maturity - can be linearized by means of a Taylor expansion of order one. The linearized
holding return is then simply substituted for H(n)

t+1 in the definition of the holding premium
E[H(n)

t+1−Y (1)
t |It ] = φ

(n)
t+1. The solution of the resulting first order difference equation yields

the familiar expression that relates the interest rate spread to expected future short rate
differences plus a rollover premium (for details see Appendix A):

≡st︷ ︸︸ ︷
Y (n)

t −Y (1)
t︸ ︷︷ ︸

I(1)

=
n−1

∑
k=1

ω
′(k)E[∆Y (1)

t+k|It ]︸ ︷︷ ︸
I(0)

+

Rollover Premium︷︸︸︷
θt︸︷︷︸

I(1)

, (10)

θt =
n−1

∑
k=0

ω(k)φ
(n−k)
t+k+1 (11)

and ω(k) = γ k 1−γ

1−γ n respectively ω ′(k) = γ k 1−γ n−k

1−γ n with γ = 1/(1+Ȳ ), 0 < γ < 1 .

Equation (10), the linearized expectations model, was the theoretical starting point of
numerous empirical investigations of the expectations hypothesis of the term structure
of interest rates. The conclusion that spreads should be stationary can directly be drawn
from the above representation of the spread as a weighted average of expected future
short rate changes in (10). Given interest rate series are integrated of order one, agents
would expect the changes in ∑

n−1
k=1 ω ′(k)E[∆Y (1)

t+k|It ] to be I(0). If furthermore the rollover
premium θt is assumed to be stationary, the same holds for the spread (Campbell and
Shiller 1991).

7



As can be seen from (11), the rollover premium θt can be written as a weighted sum
of successive holding premia, where the first summand equals φ

(n)
t+1 from (9); see also

Shiller (1990). Therefore, theoretically, the orders of integration of the two different
kinds of premia, φ

(n)
t+1 and θt , are equal. The conclusion drawn from (8) that nonsta-

tionary spreads can be explained by nonstationary holding premia is consistent with the
linearized expectations model in (10) that would include an integrated rollover premium.
Following the CAPM-motivated SDF model (9) allows us to derive an estimable specifica-
tion for the premium depending on the conditional variance of capital gains, Var[ct+1|It ].
The results then carry over to the linearized expectations model in (10) which takes no
independent stance on how θt might be measured.

3 Econometric Modeling

The methodology to be introduced follows three steps designed to empirically investigate
Hypotheses (i) and (ii):

Equal Degree of Integration

(a) We determine the order of integration of interest rate spreads (respectively, condi-
tional means) to obtain evidence of whether assuming stationary premia is appropriate.

(b) If spreads are I(1), testing for integrated premia (respectively, conditional variances)
will follow.

Mean-Variance Cointegration

(c) If premia are actually found to be nonstationary8, too, we will test for cointegration
with the spreads and estimate the proportionality coefficient as well as the adjustment
speed.

Hence, at first, we discuss how to test for unit roots in the conditional mean of a time
series (the spread) that potentially exhibits heteroskedasticity. Secondly, the same will
be done with respect to nonstationarity of the conditional variance of a time series (the
capital gain). At last, we introduce the mean-variance cointegration approach to test for
cointegration between spread and premium.

8The term stationarity always refers to weak covariance stationarity.
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3.1 Testing for Integrated Interest Rate Spreads

Herein we conduct step (a). Whether there can be unit roots in interest rates is de-
batable due to the zero lower bound and some upper bound that applies under regular
circumstances. Nonetheless, in limited samples the I(1) property is often found to be
empirically reasonable. Eventually, irrespective of the persistence of the true data gener-
ating process (DGP) of interest rates, the conclusion of Campbell and Shiller (1987)
holds: spreads must be stationary.

Since the present data exhibits heteroskedasticity, a usual property of financial time
series, we allow innovations to follow GARCH processes. However, unit root tests under
conditional heteroskedasticity should be carried out with caution. With regard to the
impact of neglected GARCH on the (augmented) Dickey-Fuller (ADF, Dickey and
Fuller 1979) test see, e.g., Kim and Schmidt (1993), Ling and McAleer (2003) and
the literature surveyed therein. Due to the invariance principle, the ADF test proves
to be asymptotically robust to covariance stationary GARCH errors. Yet, small-sample
properties were conjectured to be affected in case of very persistent variance processes.
Seo (1999), for instance, proposes a more powerful test9. The distribution in his test
depends on a nuisance parameter, the relative weight 0≤ τ ≤ 1, and is bounded between
the DF distribution (τ = 1) and the standard normal (τ = 0). We will later double-check
the standard least squares ADF test results by the Seo test. The well-known ADF test
equation (respectively the mean equation in the Seo test) is given by

∆xt+1 = δ + ψxt +
q

∑
i=1

δi∆xt+1−i + ut+1 , (12)

where q denotes the lag length and ut+1 is (possibly heteroskedastic) white noise. Under
the null of a unit root, the lagged level in (12) has no effect on ∆xt+1. The test statistic
is given by the t value of ψ̂.

9The test from Seo (1999) uses the information arising from conditional heteroskedasticity by means
of joint maximum likelihood estimation (MLE) of the autoregressive and the GARCH parameters. Yet,
Charles and Darné (2008) find that for many practically relevant GARCH parameter values (i.e. for a
sum of the ARCH and GARCH coefficients between 0.8 and 1 and for a GARCH parameter larger than
the ARCH parameter) the DF test performs better than the Seo test with respect to power and size.
Recent work from Kourogenis and Pittis (2008) explicitly analyzes integrated GARCH (IGARCH)
innovations in the context of standard unit root tests. In their Monte Carlo simulations the DF test is
included as the special case of uncorrelated innovations and appears to perform surprisingly well in the
IGARCH case.
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3.2 Testing for Integrated Holding Premia

Spreads found to be I(1) in unit root tests could only be consistent with EHT if the
conditional variance of capital gains was nonstationary (Hypothesis i, step b). To set
up an according test procedure, the conditional mean of capital gains is specified as an
AR(pc) process with GARCH(1,1) errors εc, t+1:

ct+1 = ac +
pc

∑
i=1

ac,ict+1−i + εc, t+1 ,

hc, t+1 = ωc + αcε
2
c, t + βchc, t ,

(13)

where Var[ct+1|It ] = E[ε2
c, t+1| It ]≡ hc ,t+1. The parsimonious (I)GARCH(1,1) specification is

known to capture variance dynamics of most financial time series fairly well. This is also
true for the present data. The IGARCH(1,1) hypothesis (see Engle and Bollerslev

1986), meaning that the slope coefficients in the conditional variance equation sum up
to one, is usually checked by likelihood ratio (LR) tests. Yet, Lumsdaine (1995) shows
within a Monte Carlo investigation that the LR test is quite oversized in small samples.
Busch (2005) proposes a robust LR test based on quasi MLE (QMLE). His test statistic
proves to be well behaved in small samples. The correction term k = 0.5(E[ξ 4

t ]−1) with
ξt = εt/

√
ht is calculated under the alternative of a covariance stationary GARCH process.

In that case the test statistic

λ =−2
k

(
l(θ̂θθ r)− l(θ̂θθ u)

)
(14)

has actual size close to nominal size, even for skewed disturbances.10 In (14), θ̂θθ r and
θ̂θθ u are the restricted and the unrestricted QMLEs for the parameter vector θθθ . However,
since persistence in variance is a central question in the present work, we additionally
conducted a small-sample simulation experiment. That is, we simulated the respective
distribution of λ under the null of a DGP according to (13) with parameter vector θ̂θθ r

(αc +βc = 1). The resulting critical values will be applied in addition to the χ2 quantiles.
Moreover, we will provide evidence from test variants allowing for structural breaks
under the alternative hypothesis.

10For further details see Busch (2005).
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3.3 Testing for Mean-Variance Cointegration

We continue by discussing the methodological approach to examine Hypothesis (ii): If
spreads and holding premia are both nonstationary they must be cointegrated (step c).
Thus, a test for cointegration between mean of the spread series and variance of the
capital gain series is presented.

While one might test for cointegration by checking the residuals from a static regression
for stationarity, this approach is known to produce biased estimates and lack efficiency.
In order to overcome these problems, we proceed from the dynamic cointegration test
proposed by Stock (1987). The test equation naturally follows from our approach in
the previous subsection by augmenting the above ADF test equation (12) for st by the
integrated variance series hc, t+1 from (13) (i.e., under the restriction that αc + βc = 1):

∆st+1 = a + ρst + γhc, t+1 +
p

∑
i=1

ai∆st+1−i + εt+1 . (15)

Additionally, we control for GARCH effects in εt+1. Hence, (15) and the process for
ε2

t+1 are estimated simultaneously by (Q)ML. Relation (15) describes an ECM for the
interest rate spread. Note that the capital gain variance-in-mean of (15) is conditional
on the information available at t. In view of (8) and (9), that is exactly what follows
from economic theory - cointegration between st and hc, t+1 ≡ Var[ct+1|It ]. For simplicity,
lagged differences of hc, t+1 are not included since they turn out to be insignificant. The
established reasoning when testing for cointegration in an error correction framework
applies (Stock 1987): In case of cointegration, the common nonstationary factor of the
two variables cancels out so that the linear combination zt ≡ (1, γ/ρ)(st , hc, t+1)′ represents
a stationary time series. If so, the relation in levels should significantly contribute to the
explanation of ∆st+1. On the contrary, under the null zt is nonstationary and thus ρ is
zero.

As concerns the critical values to be applied, one might first think of those provided
by Banerjee et al. (1998) for the case of one exogenous variable. Yet, in contrast to
usual cointegration testing in an error correction framework, the proposed test equation
(15) contains a latent regressor, the IGARCH series hc, t+1 (the capital gain variance)
estimated in a preceding step. Hence, (15) can be seen as a quasi IGARCH-in-Mean
cointegration test as the variance that enters the mean equation is driven by the squared
residuals ε2

c,t+1 that originate from a different mean equation - relation (13). Although
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hc, t+1 is a martingale, it is known that the properties of such a series deviate in many
aspects from those of a random walk (see Nelson 1990). Besides, the innovations εt+1 in
(15) themselves are highly heteroskedastic11, as it turned out in specification tests. To the
best of our knowledge, a theory on testing for cointegration between a conditional mean
and an estimated conditional variance series has not yet been developed. In order to fill
this gap we derive the distribution of the test statistic (the t-value of ρ̂) via simulation
(see Appendix B).

At this point a further property of realized excess holding returns on par bonds is note-
worthy. As can be seen from their definition in (7), excess returns on coupon-carrying
bonds consist of two components, the capital gain ct+1 and the interest rate spread st .
Excess returns are generally known to exhibit only very slight autocorrelation. However,
as follows from Evans and Lewis (1994), this empirical result may also occur in case
spreads are nonstationary since the variation of capital gains is usually very high rel-
ative to st . Then, the persistence of ct+1 and ct+1 + st is statistically indistinguishable.
Put differently, due to a very low signal-to-noise ratio, statistical tests fail to detect
the true order of integration of excess returns in case of st being I(1). This fact may
also underlie the general difficulties of empirical finance to find a significant risk-return
trade-off when trying to explain (statistically) strongly mean reverting excess returns
by highly persistent second moments. Importantly, our theoretical result remains: the
orders of integration of st and φt+1 must be equal. Therefore, if there is cointegration, the
ECM (15) estimates the PoR b = γ

ρ
superconsistently, determining the long-run relation

between the nonstationary component of excess returns, st , on the conditional variance
of excess returns, hc, t+1 ≡ Var[H(n)

t+1−Y (1)
t |It ] = Var[ct+1|It ].

4 Empirical Results

4.1 Data

The subsequent analysis is based on weekly yields from 1/03/1992 to 12/29/2006 pro-
vided by the US Federal Reserve Statistical Release. The 15 years of US interest rate
data should ensure a sufficient number of observations (783). All series are taken from
the Treasury Constant Maturity data which allows to directly compare these rates.12

The sample period includes the timespan after the early 1990s’ recession and cuts off the
11For a discussion of potential consequences of GARCH effects on standard cointegration tests see,

e.g., Seo (2007) and the literature cited therein.
12All yields represent bond equivalent yields for securities that pay semi-annual interest.
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ongoing financial crisis. We chose this period to reduce the probability of breaks in condi-
tional first and second moments often leading to artificial persistence (see Lamoureux

and Lastrapes 1990).13 Excess holding returns and capital gains are calculated as,
e.g., in Jones et al. (1998) or Christiansen (2000).14 The calculation method is also
described in Ibbotson and Associates (1994) and applied in Engle et al. (1987) for
the case of effectively infinitely-lived bonds.

Excess returns are defined as the return on holding a longer term bond over one period
in excess of the riskless rate. Longer term bonds have maturities of 5, 7 and 10 years.
The riskless rate is assumed to equal the standard 3-month Treasury rate, which is from
now on referred to as the short rate. This is a common assumption and considered to be
the best alternative against using a one week money market rate, which would imply,
amongst other issues, discontinuities or outliers on settlement days (see Nelson 1991 or
Jones et al. 1998)

As expected, mean excess holding returns increase with maturity of the long term bond
(0.032, 0.044 and 0.055). The same holds for the empirical standard deviations (0.488,
0.628 and 0.786). Capital gains as part of the excess returns are denoted by C5, C7 and
C10. They equal the change in the present value (price) from one week to another (see
Figure 1).
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Figure 1: Weekly Capital Gain Series C5, C7 and C10 for 5-, 7- and 10-Year Bonds

13Tzavalis and Wickens (1995) argued that the regime of strong volatility of the very high interest
rates in the early and mid-1980s was the cause of persistence in second moments of excess returns. In
1992 interest rates have returned to their pre-early 1980s level and hence our sample should not be
affected by that peak.

14For the present yield data on par bonds and on semi-annual basis capital gains are defined as ct+1 =

P(n−1)
t+1 − 1 = 1

(1+ 1
2 Y (n−1)

t+1 )2n
+ ∑

2n
i=1

1
2 Y (n)

t

(1+ 1
2 Y (n−1)

t+1 ) j
− 1; compare equations (6) and (7). The first term represents

the present value of the principle and the second term those of the coupon payments. Since Y (n−1)
t+1 is not

available Y (n)
t+1 can be used instead. There should be no measurable difference between the yield of 10-year

bond and that of a bond with 9 years and 51 weeks to maturity as pointed out by Shiller (1979), page
1197, footnote 8.
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Since we use weekly observations of annualized interest rates, spreads are calculated as
the fraction (1/52) of the difference between the respective long rate and the short rate,
that corresponds to a holding period of one week. Spread series are labeled S5, S7 and
S10 and. Exemplarily, S10 is depicted in annualized form in Figure 2 (S5 and S7 exhibit
a very similar shape).

-2

-1

0

1

2

3

4

5

92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

S10

Figure 2: Annualized Interest Rate Spread S10 between the 10-Year and the 3-Month Bond

4.2 Unit Root Tests for Interest Rate Spreads

In order to determine the integration order of interest rate spreads (Hypothesis i), the
ADF test is applied. Note that as far as levels are concerned the test equation includes
a constant whereas for the first differences there is no deterministic part. A linear trend
would not be meaningful for interest rate spreads and is also not supported by the data.
The number of lagged differences is chosen according to the Schwarz information criterion
(SIC). Hecq (1996) shows that even in the IGARCH case standard information criteria
can be applied and that the SIC performs best compared to the Hannan Quinn criterion
(HQC) and the final prediction error (FPE). Yet, since ADF test results are known to
be sensitive to the number of lagged differences in the test equation we double-checked
our results by using HQC and FPE. Table 1 summarizes the unit root test results.
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Table 1: ADF Tests for Interest Rate Spreads

Levels First differences

Variable t̂ q t̂ q

S5 −1.651 (0.456) 1 −22.916 (0.000) 0
S7 −1.466 (0.551) 1 −22.430 (0.000) 0
S10 −1.275 (0.643) 1 −22.021 (0.000) 0

Note: Test statistics are denoted by t̂. q refers to the number of lagged differences and
p-values are given in parentheses.

It can be seen that nonstationarity is far from being rejected. Thus, all three spread series
should be considered as integrated of order one.15 When we apply HQC and FPE, both
criteria suggest to include more lags but test statistics do barely change. Performing Seo
tests we obtain the same result; the null of a unit root cannot be rejected.16

4.3 IGARCH Tests for Holding Premia

So far it turned out that all spreads should be considered I(1). Since capital gains levels
are clearly I(0)17, following Hypothesis (i) - equal degree of integration - the EHT can
only be valid in presence of nonstationary holding premia. Since the SDF-CAPM model
defines the holding premium as φ

(n)
t+1 = b ·Var[ct+1|It ], testing Hypothesis (i) translates

into testing for integrated capital gain variances; step (b).

We fit AR(pc)-IGARCH(1,1) models to capital gain series. Thereafter, we test these
models against the alternative hypothesis of autoregressive processes with covariance
stationary variance series, that is against AR(pc)-GARCH(1,1) models. Table 2 summa-
rizes the test results.

15The integration order of the interest rate series has been checked, too. According to ADF test results
there is very strong evidence that all interest rate series can be considered as integrated of order one.

16As the stationarity properties of interest rate spreads are crucial for the following analysis, we
additionally conducted the KPSS test (Bartlett kernel and Newey-West bandwidth selection) with the
null hypothesis of stationarity. This is to assure that non-rejections of nonstationarity are not simply
due to the possible power problem of ADF-type unit root tests. Yet, for the present data this seems not
to be the case since the KPSS test clearly rejects stationarity. All test results being not reported can be
obtained upon request.

17ADF test statistics of −21.727, −13.363 and −13.290 for C5, C7 and C10 allowed for a strong rejection
of the null.
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Table 2: Robust Likelihood Ratio Tests for Integrated Holding Premia

Variable pc α̂c β̂c k̂ λ̂ χ2
0.90(1)

C5 1 0.035 0.951 1.598 2.648 2.706
[0.014] [0.022]

C7 1 0.037 0.948 1.406 2.699 2.706
[0.016] [0.025]

C10 1 0.033 0.953 1.241 2.163 2.706
[0.015] [0.024]

Note: Unrestricted model:

ct+1 = ac +
pc

∑
i=1

ac,ict+1−i + εc, t+1 ,

hc, t+1 = ωc + αcε
2
c, t + βchc, t .

We tested for nonstationary holding premia φ
(n)
t+1 = b ·Var[ct+1|It ], i.e. for integrated condi-

tional variances, Var[ct+1|It ], of the respective capital gains on 5-, 7- and 10-year bonds;

C5, C7 and C10. α̂c and β̂c refer to the unrestricted coefficient estimates. Under the null
that αc + βc = 1 the robust LR test statistic λ = 2

k

(
l(θ̂θθ u)− l(θ̂θθ r)

)
is χ2(1). The estimated

correction term is denoted by k̂.

Since the test statistic λ is χ2(1) and χ2
0.90(1) ≈ 2.706 the null of integrated variances

cannot be rejected even at the 10% level. In all three cases we choose pc = 1 follow-
ing the SIC. Additionally, we conducted a small-sample experiment: We simulated the
distribution of λ for C5, C7 and C10 with DGPs under the null equal to our estimated
AR(pc)-IGARCH(1,1) models. For conditional normal distribution, sample length of 783

observations and 100,000 replications the 90% quantiles turned out to be 3.418, 3.470

and 3.448. Thus, these results strengthened the test decision not to reject the null of
IGARCH. Yet, it is well known that spurious persistence can be caused by structural
breaks neglected in the model specification (Lamoureux and Lastrapes 1990). In our
robustness section below we account for possible breaks in the unconditional variance,
too.

4.4 Mean-Variance Cointegration Tests

So far, our results have shown that interest rate spreads are I(1). The last section demon-
strated that the three corresponding holding premia are nonstationary, too. In order to
test for Hypothesis (ii) - cointegration between spreads and premia, we apply the mean-
variance cointegration test introduced in Section 3.3.
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The following three ECMs were estimated:

∆S5t+1 =−0.0007
[−3.347]

− 0.022
[−3.967]

S5t + 0.005
[4.047]

ĥc, t+1 + 0.192
[5.685]

∆S5t + ε̂t+1 , (16)

∆S7t+1 =−0.0006
[−2.821]

− 0.016
[−3.455]

S7t + 0.003
[3.430]

ĥc, t+1 + 0.216
[6.001]

∆S7t + ε̂t+1 , (17)

∆S10t+1 =−0.0008
[−3.898]

− 0.017
[−4.116]

S10t + 0.002
[4.435]

ĥc, t+1 + 0.222
[6.025]

∆S10t + ε̂t+1 , (18)

Compared to the test statistics from ADF tests in Table 1, t-values of the lagged level st

considerably increased in (16), (17) and (18). Again, the lag length is chosen according
to the SIC18 and supported by specification tests for no residual autocorrelation. Fur-
thermore, we allowed the residuals in (16), (17) and (18) to be GARCH(1,1), too. Q
statistics of standardized squared residuals as well as LM tests for remaining GARCH
show that the parsimonious GARCH(1,1) specification proves to be reasonable.

Table 3 includes individual 1%, 5% and 10% simulated critical values for each of the
three models.19 There is only slight variation as the DGPs are very similar. Test results
are clear-cut: In models (16) and (18) the null of no cointegration can be rejected at the
1% level. In (17) we reject at the 5% level. This is considered as strong evidence in favor
of the existence of a cointegration relation. Economically, this means that there does
exist a long-run equilibrium between US interest rate spreads and the corresponding
one-period holding premia, as implied by EHT.

Table 3: Critical Values - Mean-Variance Cointegration Test

Model t̂ 1% 5% 10%

∆S5 −3.967 −3.842 −3.247 −2.946

∆S7 −3.455 −3.838 −3.249 −2.939

∆S10 −4.116 −3.830 −3.247 −2.949

Note: t̂ refers to the estimated t value of the lagged level st in (16), (17) and (18).

18Using different information criteria, all suggesting more lags, does not change cointegration test
results.

19As concerns the simulated critical values, some experiments made clear that these depend on the
conditional variance parameters of the DGPs of the capital gain variance and the spread series; see
Appendix B.
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Moreover, following our discussion in section 2, the coefficient b = γ

ρ
in the respective

attractor can be interpreted as the PoR. Recall that we do not estimate the PoR via
the standard GARCH-in-Mean model on the basis of excess return data but through
a cointegration relation between the nonstationary component of the excess return -
the spread - and the integrated variance of the capital gain - the component of excess
returns not included in the conditioning information set. Thereby, (super) consistency of
the estimator is guaranteed by the existence of cointegration. In (16), (17) and (18) we
estimated PoRs of 0.228, 0.164 and 0.127. Compared to other findings these coefficients
are relatively, but not implausibly small (see, e.g., Tzavalis and Wickens 1995, Bali

and Engle 2010). For example, investors holding 7-year Treasury bonds expect at t

that, on average, the excess return they will realize at t +1 equals about one sixth of its
variance.

Regarding the above ECMs, adjustment coefficients may at first glance appear quite
small. If, for instance, the spread S10t exceeds its equilibrium value by one unit (one
percentage point), then the spread decreases over the next week by 0.017 units (per-
centage points). However, after 13 weeks (one quarter) the initial equilibrium error has
reduced to 0.771 and the half-life of the shock implied by system (18) equals just 33
weeks.

Figure 3 illustrates the annualized attractor, i.e. the long-run relation s = a
ρ

+ γ

ρ
hc, in

the respective ECMs. Graphical analysis supports the statistical results: The general
impression from Figure 3 is quite a strong co-movement between the spreads and the
corresponding one-period holding premia. From the beginning of the sample till the New
Economy boom the average level of all spreads decreases along with the volatilities. We
see three noticeable peaks during that period, in 1994, between 1996 and 1997 as well as
around the turn of the millennium. Whereas the first one results from long rates rising
faster than the short rate, the second and third ones are triggered by increasing long rates
when the short rate remained roughly constant. In view of equation (8), rising spreads
are associated with growing holding premia and hence with rising capital gain variances.
Indeed, we clearly see that the variance movement features similar peaks. However, most
eye-catching is the period after 2001 when the short rate fell steeply for several years and,
accordingly, spreads went up. In support of the cointegration test results, this timespan
is also characterized by high volatility.
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Figure 3: Spreads and Corresponding One-Period Holding Premia

5 Robustness Checks

Finally, we conducted several robustness checks. Among other things we were concerned
with spurious persistence in the conditional variance due to neglected structural breaks,
with initial value issues and with the conditional normal distribution assumption.

Endogenous Structural Breaks and Persistence in Variance

At first, we would like to stress the point that persistence in conditional second moments
can be an artifact of neglected structural change in the variance. Lamoureux and

19



Lastrapes (1990) provide examples of that phenomenon. A specific example is also
found in Tzavalis and Wickens (1995) who show that the persistence in volatility of US
holding premia between 1970 and 1986 is the result of a structural shift during a period
of exceptionally high variances (October 1979 - September 1982). In general, the timing
of structural breaks is quite difficult. In order to avoid the arbitrariness of choosing break
dates exogenously, we conducted an endogenous break search. We therefore augmented
the unrestricted conditional variance equation by a shift dummy and selected the date
where the dummy has the highest t-value. As shown in the unit root literature (e.g.
Zivot and Andrews 1992), the additional step of estimating the break date affects the
distribution of the test statistic. Therefore, we simulated the distribution allowing for a
break in the GARCH constant under the alternative hypothesis. The results show that
for none of the three capital gain series the null of IGARCH can be rejected at the 10%
level. We also allowed for two level shifts with endogenous break dates. This improved
the likelihood under the alternative hypothesis only very little so that nonstationarity
was not rejected in this case, either.

Initial Values and the Shape of the Variance Series

The choice of initial values has no impact on our simulation results. However, the shape of
the estimated capital gain variance series varies slightly - particularly during the first year
(about 52 observations) when we initialize GARCH models using, for instance, backcast
exponential smoothing (where h0 = κN/N ∑

N
t=0 ε̂2

t + (1− κ)∑
N
j=0 κN− j−1ε̂2

N− j , 0 < κ ≤ 1)
instead of simply the mean of squares of residuals. Since after about one year the initial
value impact has essentially vanished, we re-estimated the ECMs starting the sample at
the beginning of 1993 using 731 observations.20 Compared to the estimates in (16), (17)
and (18), test statistics decreased (i.e. increased in absolute value) to −4.512, −4.476

and −4.402. The lower number of observations affects critical values only at the second
decimal place. We therefore reject the null of no cointegration at the 1% level in all
ECMs.

Distributional Assumption

At last, we investigated how the distributional assumption affects our test and simula-
tion results. First of all, we drew random samples for ξc, t+1 = εc, t+1/

√
hc, t+1 and ξs, t+1 =

εs, t+1/
√

hs, t+1 from Student t-distributions in both simulation experiments - the LR test for
IGARCH (section 3.2) and the mean-variance cointegration test (section 3.3). Degrees of

20Persistence in variances proves not to be affected by initial conditions.
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freedom are set equal to estimated values under the null and lie between 8 and 18. Most
of the estimated values are clearly larger than 10 indicating that the initial assumption
of normality is not violated too strongly for the present data. Since sample excess kur-
tosis of all series is relatively small (between 0.8 and 1.5), this is not surprising. So as
to analyze the effect of possibly incorrectly specified innovations our estimates become
actually QMLEs in the sense that Gaussian likelihoods are maximized even though we
have generated t-innovations. As expected, the smaller the number of degrees of freedom
the more the distribution of λ shifts to the right. Hence, the test decision not to reject
the null of integrated variances in section 4.3 is strengthened. Similarly, the distribution
of the t-value of ρ̂ also shifts to the right so that we can reject the null of no cointegration
in section 4.4 at an even higher significance level (since the t-values are negative).

6 Conclusion

The present paper empirically examines a well-known implication of the expectations hy-
pothesis of the term structure (EHT): interest rate spreads should be stationary. We shed
more light on the question why there is so much evidence that contradicts the implication
of mean-reverting spreads; see Hall et al. (1992) or Hansen (2003).21 This implication
has also been the pivotal element in many studies that analyze the spread’s predictive
power for short rate changes or other macroeconomic variables like inflation and GDP
growth (Mankiw and Miron 1986, Kugler 1988 or Caporale and Caporale 2008).
The consequences of theoretically implied stationarity properties of interest rate spreads
are obviously far-reaching. We are therefore concerned with the question why they are
so often not met and argue that an answer can be provided by nonstationary holding
premia.

The theoretical starting point is the one-period holding premium defined as the sum
of interest rate spread and expected capital gain. We derive two testable hypotheses.
Hypothesis (i): Given stationary capital gains, spread and holding premium must exhibit
the same order of integration. Hypothesis (ii): If this order equals one, spread and holding
premium must be cointegrated. With respect to the economic and econometric modeling
of spread and premium we refer to mean-variance cointegration.

21Further cointegration studies as, e.g., Shea (1992), Zhang (1993), Engsted and Tanggaard
(1994), Johnson (1994), Wolters (1995), Pagan et al. (1996), Wolters (1998), Carstensen (2003)
make the empirical finding of unit roots in interest rate spreads an almost stylized fact.
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We show that explaining a nonstationary spread by integrated holding premia is consis-
tent with the frequently used linearized version of the EHT. The latter would include a
nonstationary rollover premium that we explicitly link to the holding premium. When
it comes to modeling and estimating the holding premium we employ an observable
single-factor SDF model with a CAPM-motivated pricing kernel. The holding premium
is proportional to the conditional variance of excess returns. In order to test for Hypoth-
esis (i) unit root tests are applied for spreads and robust LR tests for IGARCH variances
of excess returns. So as to test for Hypothesis (ii) a mean-variance cointegration test in
an error correction framework is proposed and the small-sample distribution of the test
statistic is derived through simulation. Our approach may be seen as a quasi IGARCH-
in-Mean cointegration test as the variance that enters the mean equation is estimated in
a preceding step and is driven by the squared residuals from a different mean equation.

The empirical analysis is based on weekly observations of US Treasury Constant Maturity
data. We examine three different spreads between the short rate (3-month Treasury rate)
and long rates with maturities of 5, 7 and 10 years. Following the ADF test results, all
spreads should be considered nonstationary. Further unit root tests unanimously confirm
nonstationarity of the spreads, which is a result not uncommon in the empirical literature.
Subsequently, estimating conditional variances of excess returns, it turns out that the
null hypothesis of IGARCH cannot be rejected. Additionally, this result holds when
incorporating endogenous structural breaks. Hence, we conclude that holding premia
are also integrated. The most important step follows: Testing for cointegration between
premia and spreads. As the main result of the present work, we actually find highly
significant long-run relations between all spreads and corresponding premia.

Following the idea of arbitrage-free financial markets and rational expectations, the EHT
provides a simple and appealing description of the relation between interest rates of
different maturities. Long rates embody information on expected future short rates and
both rates are tied together within a long-term equilibrium relation. This equilibrium
can be captured by a cointegration relation. However, the modeling of the term premium
plays a key role. This third variable should be modeled carefully and sometimes - as in
the present case - even be included in the cointegration relation. The present paper has
shown that nonstationary spreads are not necessarily at odds with the EHT. If spreads
and premia are cointegrated, i.e. in case of mean-variance cointegration, this apparent
contrariness can be rationalized. The basic statement of the EHT on the relation between
interest rates of different maturities remains applicable when modeling the premium by
means of approaches from finance theory. While the present paper mainly focuses on
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the aspect of cointegration, it also underlines the relevance of the vast and still evolving
literature on identifying economically interpretable driving forces of the premium (as
e.g. Ang and Piazzesi 2003 or Gürkaynak and Wright 2011).

Two extensions of the present approach appear interesting: First, our approach could
be generalized to non-diversifiable risk (e.g. Bollerslev et al. 1988 or Balfoussia

and Wickens 2007): The frequent failure of the EHT would be explained by integrated
covariance series that could be obtained from multivariate GARCH models. This would
allow to control for cross-asset and cross-market dependencies. Second, since appropriate
modeling of the persistence of the premium proved to be crucial, a further possible
extension would be to allow for fractional integration in interest rates (Connolly et
al. 2007) and conditional variances (Baillie et al. 1996). If, for example, the order of
integration of spreads and premia is equal but appears to be less than one, cointegration
tests may be carried out in a fractionally (co)integrated framework. We leave these issues
for future research.

Appendix

Appendix A

The Linkage from the Holding Premium in the SDF-CAPM Model to the

Rollover Premium in the Linearized Expectations Model (section 2.3)

The conclusion drawn from the SDF-CAPM model that nonstationary spreads can be
explained by nonstationary holding premia is consistent with the familiar linearized
version of the EHT that would include an integrated rollover premium. The well-known
form of the EHT that will be derived now is essentially a linearization of equations that
define returns (prices) in a financial market in the absence of arbitrage.

To begin with, consider the definition of the yield to maturity of an n-period bond

P(n)
t =

C

(1 +Y (n)
t )

+
C

(1 +Y (n)
t )2

+ · · ·+ 1 +C

(1 +Y (n)
t )n

.

Most compactly, this can be written as:

P(n)
t =

C

Y (n)
t

+
Y (n)

t −C

Y (n)
t (1 +Y (n)

t )n
(19)

The one-period holding return defined in (6) can be expressed in terms of yields to
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maturity by using (19) so that

H(n)
t+1 =

C
Y (n−1)

t+1

+ Y (n−1)
t+1 −C

Y (n−1)
t+1 (1+Y (n−1)

t+1 )n−1
+C

C
Y (n)

t
+ Y (n)

t −C
Y (n)

t (1+Y (n)
t )n

−1 . (20)

According to the considerations of Shiller (1979) we linearize (20) via a Taylor expan-
sion of order one. Considering H(n)

t+1(Y (n)
t , Y (n−1)

t+1 , C) as a function of three variables, we
know from Taylor’s theorem that in the neighborhood of Y (n)

t = Y (n−1)
t+1 = C = Ȳ it holds

that

H(n)
t+1 ≈ H(n)

t+1(Ȳ , Ȳ , Ȳ )+
∂H(n)

t+1

∂Y (n)
t

|
Y (n)

t =Y (n−1)
t+1 =C=Ȳ

· (Y (n)
t − Ȳ )

+
∂H(n)

t+1

∂Y (n−1)
t+1

|
Y (n)

t =Y (n−1)
t+1 =C=Ȳ

· (Y (n−1)
t+1 − Ȳ )

+
∂H(n)

t+1

∂C
|
Y (n)

t =Y (n−1)
t+1 =C=Ȳ

· (C− Ȳ )≡ H
′(n)
t+1 .

Plugging in (20) and evaluating the derivatives finally yields

H
′(n)
t+1 = δnY (n)

t − (δn−1)Y (n−1)
t+1 , (20’)

where δn = 1 + Ȳ−1− (Ȳ (1 + Ȳ )n−1)−1. If one applies H
′(n)
t+1 ≈ H(n)

t+1 to the definition of the
holding premium, E[H(n)

t+1−Y (1)
t |It ] = φ

(n)
t+1, the resulting first order difference equation

with variable coefficients is

Y (n)
t = γn E[Y (n−1)

t+1 |It ]+ (1− γn)(φ
(n)
t+1 +Y (1)

t ) , (21)

where γn = (δn−1)/δn. The solution of (21) can be derived by recursive substitution. There-
fore, we initially use the law of iterated expectations and note that

E[Y (n−1)
t+1 |It ] =γn−1 E[Y (n−2)

t+2 |It ]+ (1− γn−1)E[φ (n−1)
t+2 +Y (1)

t+1|It ]

E[Y (n−2)
t+2 |It ] =γn−2 E[Y (n−3)

t+3 |It ]+ (1− γn−2)E[φ (n−2)
t+3 +Y (1)

t+2|It ]
...

E[Y (1)
t+n−1|It ] =γ1 E[Y (0)

t+n|It ]+ (1− γ1)E[φ (1)
t+n +Y (1)

t+n|It ] .
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Recursive substituting of the above expressions into (21) yields

Y (n)
t =

=0︷ ︸︸ ︷
γn · γn−1 · ... · γ1Y (0)

t+n +(1− γn)E[φ (n)
t+1 +Y (1)

t |It ]

+ γn · (1− γn−1)E[φ (n−1)
t+2 +Y (1)

t+1|It ]

+ γn · γn−1 · (1− γn−2)E[φ (n−2)
t+3 +Y (1)

t+2|It ]
...

+ γn · γn−1 · γn−2 · ... · γ2(1− γ1)E[φ (1)
t+n +Y (1)

t+n|It ] .

In more compact form this can be written as

Y (n)
t =

n−1

∑
k=0

ω(k)E[Y (1)
t+k|It ]+

n−1

∑
k=0

ω(k)φ
(n−k)
t+k+1 ,

with the weighting scheme ω(k) = γ k 1−γ

1−γ n . Via the identity Y (1)
t+k = Y (1)

t + ∑
k
i=1 ∆Y (1)

t+i we
obtain

Y (n)
t −Y (1)

t =
n−1

∑
k=1

ω(k)
k

∑
i=1

E[∆Y (1)
t+i |It ]+

n−1

∑
k=0

ω(k)φ
(n−k)
t+k+1 .

Rearranging terms produces the well-known expression for the interest rate spread, i.e.

≡s(n)
t︷ ︸︸ ︷

Y (n)
t −Y (1)

t =
n−1

∑
k=1

ω
′(k)E[∆Y (1)

t+k|It ] +

Rollover Premium︷︸︸︷
θt ,

where ω ′(k) = γ k 1−γ n−k

1−γ n and θt = ∑
n−1
k=0 ω(k)φ

(n−k)
t+k+1 with γ = 1/(1+Ȳ ), 0 < γ < 1. This shows

(10) and (11).

Appendix B

The Mean-Variance Cointegration Test: Simulating the Distribution of the

Test Statistic (section 3.3)

As concerns the simulated critical values, some experiments made clear that these depend
on the parameters of the DGPs of the capital gain variance and the spread series. Under
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the null, these are the equations in (13) with αc + βc = 1 and

∆st+1 =
ps

∑
i=1

as,i∆st+1−i + εs, t+1 ,

hs, t+1 = ωs + αsε
2
s, t + βshs, t ,

(22)

where the first-difference autoregression is implied by the unit root in the level of the
spread series; Var[st+1|It ] = E[ε2

s, t+1| It ] ≡ hs ,t+1. Hence, we simulated three different dis-
tributions of the test statistic in the error correction models (16), (17) and (18) with
parameters in (13) and (22) according to our empirical estimates. Figure 4 exemplarily
illustrates the dependence on the parameters of the variance process hc,t+1; the DGP
(13).
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Figure 4: Kernel Density Estimates of the Small-Sample Distribution of the Cointegration
Test Statistic

Note: The solid line shows the density of the test statistic in model (18) with αc = 0.033. The dotted
line describes the density for αc = 0.3 with all other parameters unchanged. Changing αc moves the
5% quantile from −3.247 to −3.149.
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It contains two Epanechnikov kernel density estimates22 of the distributions of the test
statistics for αc = 0.033 and αc = 0.3 (βc = 1−αc) with all other parameters unchanged
and equal to our estimates for C10 and ∆S10 in (13) and (22). It can be seen that
the increase in αc shifts the distribution to the right. The mean (variance) changes
from −1.841 (0.791) to −1.771 (0.765). Both distributions are slightly skewed (0.244

and 0.226) and exhibit kurtosis of 3.404 and 3.359. For αc→ 0 the distribution moves
leftwards but critical values change only at the second decimal place.

The subsequent steps sketch the simulation of the test statistic of the mean-variance
cointegration test proposed in section 3.3.

Step 1. Set initial values hc,0 and hs,0 in (13) and (22) equal to the mean of squares
of ε̂c, t+1 and ε̂s, t+1, respectively.23

Step 2. Draw two random samples of size N = 783 (equal to the number of obser-
vations in the present analysis) from a standard normal distribution. These
random shocks are denoted by ξc, t+1 and ξs, t+1.

Step 3. Generate data recursively according to (13) and (22) with εc, t+1 = ξc, t+1
√

hc, t+1

and εs, t+1 = ξs, t+1
√

hs, t+1.
Step 4. Estimate model (13) via ML (BHHH algorithm) and save ĥc, t+1.
Step 5. Estimate model (15) via ML using the generated spread series from Step 3

and the estimated capital gain variance from Step 4 and save the t-value
of ρ̂ based on robust standard errors following Bollerslev and
Wooldridge (1992).

Step 6. Repeat Step 1 to Step 5 100,000 times.
Step 7. Calculate the 1.00, 5.00 and 10.00 percentiles from the distribution of the

t-value of ρ̂.
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