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Abstract 

This paper characterizes the Nash equilibrium in a pay-as-bid (discriminatory), divisible-good, 
procurement auction. Demand by the auctioneer is uncertain as in the supply function 
equilibrium model. A closed form expression is derived. Existence of an equilibrium is ensured 
if the hazard rate of the perfectly inelastic demand is monotonically decreasing and sellers have 
non-decreasing marginal costs. Multiple equilibria can be ruled out for markets, for which the 
auctioneer’s demand exceeds suppliers’ capacity with a positive probability. The derived 
equilibrium can be used to model strategic bidding behaviour in pay-as-bid electricity auctions, 
such as the balancing mechanism of United Kingdom. Offer curves and mark-ups of the 
derived equilibrium are compared to results for the SFE of a uniform-price auction. 
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1. INTRODUCTION 

The debate between proponents of settlements based on market-clearing prices and pay-as-bid 

schemes has a long history, most prominently in the context of auctions of treasury securities 

(Wilson, 2008). In recent years the U.S. Treasury and several other central banks converted to 

settlements based on market-clearing prices. This was partly motivated by that the revenue of 

the auctioneer was thought to be higher with a uniform-price auction (UPA) than with a pay-

as-bid auction (PABA). If the auctioneer’s revenue is higher in a uniform-price sales auction, 

then the auctioneer’s procurement cost would be lower in a corresponding uniform-price 

procurement auction (Krishna, 2002). In spite of this, the conversion trend in electricity 

markets and treasury auctions tend to go in opposite directions, perhaps because bidders’ 

valuations and their uncertainties in treasury auctions do not mirror suppliers’ production costs 

and uncertainties in electricity markets. Most electricity auctions are organised as uniform-

price auctions (UPAs), but one market –  the balancing market in England & Wales – has 

converted from UPA to PABA and similar conversions have been considered in other regions, 

e.g. California (Kahn et al., 2001). It was the belief of the British regulatory authority (Ofgem) 

that the reform, which also abolished capacity payments and replaced the day-ahead auction 

with bilateral contracting, would decrease mark-ups in wholesale electricity prices (Fabra et al., 

2006). Prices have indeed fallen after the New Electricity Trading Arrangements (NETA) were 

introduced.  But it is uncertain whether this was because of the changed market design or 

because of added capacity and forced and voluntary divestitures at the same time (Evans and 

Green, 2005). This paper contributes to the on-going discussion by characterizing strategic 

bidding behaviour in divisible-good, pay-as-bid procurement auctions and by comparing 

bidding in UPA and PABA. The model is primarily intended for electricity auctions. But a 

sales version of the model without capacity constraints would be useful when analyzing 

strategic bidding behaviour in pay-as-bid treasury auctions with non-competitive bids.  

In this paper, the fundamental assumptions used in the supply function equilibrium (SFE) of 

UPAs are employed to derive a SFE of a PABA. As in Klemperer and Meyer’s (1989) model it 

is assumed that production costs are common knowledge and that the auctioneer’s demand is 

uncertain. In the Nash equilibrium of the static game, each supplier commits to the offer curve 

that maximizes its expected profit given competitors’ offer curves. It was originally observed 

by Green and Newbery (1992) and Bolle (1992) that the set-up of the SFE model has many 

similarities with the organisation of electricity markets. Because in most electricity auctions, 
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producers submit offer curves to a UPA and this is done before demand has been realised, i.e. 

demand is uncertain. Demand variation is added if offers are required to be valid for a whole 

day (long-lived bids), as was the case in the old electricity pool of England and Wales. 

Moreover, electricity production costs are fairly well-known. The validity of the SFE model 

has been questioned by von der Fehr and Harbord (1993), because smooth offer curves are 

assumed while they are stepped in most electricity markets, and at least theoretically this may 

drastically change the equilibrium bids. Still, three empirical studies of strategic bidding in the 

balancing market in Texas (ERCOT) suggest that the SFE model is approximately correct in 

describing the behaviour of the largest producers in this market (Hortacsu and Puller, 2008; 

Niu et al, 2005; Sioshansi and Oren, 2007).  

First-order conditions for the PABA version of the SFE have previously been derived by 

Rudkevich (2003) and Wilson (2008), the latter model also considers transmission constraints. 

One contribution of this paper is that I derive a closed form expression of the equilibrium for a 

PABA with perfectly inelastic demand and symmetric producers with general cost functions. 

Perfectly inelastic demand is a good approximation for electricity markets, especially real-time 

markets, while the symmetry assumption simplifies the analysis. A corresponding closed form 

expression for UPAs has been derived by Anderson and Philpott (2002) and Rudkevich et al. 

(1998). Another contribution of the paper is that I analyze under what circumstances an 

equilibrium exists, which turns out to be far from self-evident in a PABA. A symmetric SFE of 

a PABA always exists if the hazard rate of demand is monotonically decreasing and marginal 

costs are non-decreasing. On the other hand, a symmetric SFE does not exist if there is any 

level of demand, for which all of the following three conditions are satisfied: Mark-ups are 

positive (i), the hazard rate is locally increasing (ii) and marginal costs are locally constant (iii).  

As in a previous paper (Holmberg, 2008), it is considered that demand exceeds market 

capacity with a positive probability in electricity markets, i.e. the loss of load probability 

(LOLP) is positive. This is a realistic and very useful assumption, because multiple equilibria 

can be ruled out, also when the risk of power shortage is arbitrarily small. In practice, LOLP is 

estimated from the standard error in the demand forecast and from the probabilities of having 

production failures in individual plants Newbery (1998). Newbery shows that the LOLP 

estimated by the system operator in Britain decreases exponentially with the scheduled reserve 

margin. Using data provided in Newbery’s paper and adjusting for that the system operator 

consistently overestimated LOLP, I roughly estimate LOLP during an half-hour to 0.1% when 

the scheduled reserve margin is 10% and that it roughly decreases by a factor 100 for every 
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additional 10% of reserve capacity.3 However, this estimate is indeed very uncertain. It is only 

provided to give some feeling of the magnitude of LOLP and how it depends on the reserve 

capacity. It is no doubt that the LOLP is positive also for large levels of reserve capacity, and 

theoretically this is enough to provide uniqueness. An empirical question, however, is whether 

LOLP is too small for large reserve capacities, so that real producers do not consider it when 

submitting their offer curves.  

The results of this paper, the equilibrium and the calculated difference between producers’ 

expected profits in PABA and UPA, are used by Hästö and Holmberg (2006) to prove that 

average electricity prices in pay-as-bid procurement auctions are lower than average prices in 

uniform-price procurement auctions if demand is Pareto distributed of the second kind. 

Simulations in this paper suggest that the relative difference in mark-ups will be largest when 

the risk of power shortage is small. Earlier comparisons of SFE in UPA and PABA get the 

same ranking of the auctions, but for cases more restrictive in terms of industry costs and the 

number of firms. Federico and Rahman (2003) analyze a monopoly and perfectly competitive 

market with linear marginal costs considering a linear demand curve with uniformly distributed 

shocks. The treasury auction with non-competitive bids analyzed by Wang and Zender (2002) 

corresponds to an oligopoly market with constant marginal costs and no capacity constraints, in 

which the perfectly inelastic demand is given by an inverse Pareto distribution. In their case, 

demand has an increasing hazard rate and the SFE of the PABA can only exist for non-pivotal 

producers. Earlier studies by Fabra et al. (2006) and Son et al. (2004) also get the same ranking 

of average prices, using a multi-unit auction model of a duopoly market with constant marginal 

costs.   

This paper is structured as follows. Notation and assumptions are presented in Section 2 and 

the unique SFE of a PABA is derived in Section 3. Section 4 compares SFE of UPA and 

PABA. Section 5 presents the conclusions.  

 

2. NOTATION AND ASSUMPTIONS 

Assume that there are N≥2 symmetric producers. Each producer i submits an offer curve to the 

auction in order to maximize its expected profit E(πi). The offer consists of a monotonically 

increasing supply function Si(p), where p is the price.4 The inverse of the supply function is 

                                                 
3 The values are estimated from Fig. 5 in Newbery (1998) and that capacity payments in the old pool were 
proportional to LOLP. It is assumed that the system operator have overestimated the LOLP by a factor 50. This 
very uncertain factor is based on the reasoning in the appendix of Newbery (1998).  
4 Normally, electricity auctions do not accept decreasing supply functions. 
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denoted by pi(Si). S-i(p) and S(p) denote the combined supply of firm i’s competitors’ and total 

supply in the marketplace, respectively.  The marginal offer and system buy price —the 

average price the system operator pays the producers — both depend on total supply and they 

are denoted  and  respectively. In a UPA, all accepted offers are paid the clearing 

price, i.e. 

( )Sp

( )SU ≡

( ),ˆ Sp

( )Spp U
) , while   in the PABA. As in Klemperer and 

Meyer’s (1989) original work, only equilibria with twice continuously differentiable supply 

functions are considered. Thus in a symmetric equilibrium, pi(Si) is smooth for 

where  is the total supply of all producers offered at the price cap 

( ) ( ) SdxxpSp
S

/ˆ
0
∫≡

( )/*  , N,0Si ε∈ *ε p . If 

firms are withholding capacity then  is less than *ε ε , the total capacity of all producers. All 

firms have identical cost functions C(Si), which are increasing, convex, and twice continuously 

differentiable up to the capacity constraint. Let the marginal cost function be continuous from 

the left at the capacity constraint and assume that it fulfils pN)(C <′ /ε . The marginal cost is 

infinite beyond the capacity constraint.  

Denote perfectly inelastic demand by ε, its probability density function by f(ε), its 

distribution function by F(ε), and the inverse hazard rate, ( )
( )ε
ε

f
F−1 , by ( )εG . The density 

function is continuously differentiable and has support on the interval [ ],ˆ,0 ε  where ε̂  is 

maximum (unrationed) demand. It is assumed that ,ˆ εε ≥  i.e. the capacity constraints of all 

producers will bind with a positive probability, which is allowed to be arbitrarily small. 

Demand is zero above the reservation price (price cap). The system operator rations demand by 

forced disconnection of consumers. 

 

3. THE UNIQUE SYMMETRIC SFE OF A PAY-AS-BID AUCTION 

This section derives necessary and sufficient conditions for the SFE of a PABA. In Section 3.1, 

the first-order condition of a PABA is derived. It implies that each risk-neutral firm chooses a 

supply function that independently maximises expected profit for each of its units of 

production, given residual demand. This can be compared to the SFE of a uniform-price 

auction, in which a firm chooses a supply function that independently maximises profit for 

each demand outcome, given residual demand (Klemperer and Meyer, 1989). The first-order 

condition of the PABA is a differential equation which can be solved for general cost functions 

 5



and the solution has one integration constant. In Section 3.2, the first-order condition is 

compared to Ramsey pricing and non-linear pricing. The integration constant is identified in 

Section 3.3 by considering that the risk of power shortage is positive; the symmetric 

equilibrium offers of all firms must reach the price cap exactly when the aggregate capacity 

constraint binds. This forms the end-condition. 

The first-order condition and the end-condition must necessarily be satisfied in equilibrium. 

In Section 3.4, a sufficient second-order condition is derived.  Unlike a UPA with perfectly 

inelastic demand, it is not possible to prove that all increasing, smooth, symmetric supply 

functions satisfying the necessary conditions are supply function equilibria of a PABA. In 

particular, it turns out that if the hazard rate of demand is locally increasing and marginal costs 

are sufficiently flat, then symmetric pure strategy equilibria of a PABA do not exist. On the 

other hand, I show that a pure strategy equilibrium always exists if the hazard rate is 

monotonically decreasing and marginal costs are non-decreasing.  

In section 3.5 it is shown that the first-order condition becomes particularly simple if 

demand has a Pareto distribution of the second kind, for which the inverse of the hazard rate is 

linear.  

 

3.1. The first-order condition 

It is assumed that firm i’s competitors follow a symmetric equilibrium candidate. The first-

order condition derived below must necessarily be fulfilled if the strategy implied by the 

symmetric equilibrium candidate locally maximises firm i’s expected profit. To avoid 

differentiability problems, all considered deviations of firm i satisfy ( ) (00 ji pp = )  and 

( ) ( )NpNp ji // ** εε = .j∀  Hence, for the considered deviations we always have that 

 and that . These restrictions on the deviations are alright as 

long as we are calculating a necessary condition of a profit maximum. Sufficiency for a global 

maximum is checked later on, in Section 

00 =⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

− pS i
*ε

ε

( ) ( )

Npi /** εε =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

− εpi

S−

− S

3.4. For demand outcome ε≤ε*, the accepted output 

from firm i is given by . Note that firm i influences p(ε) by means of its chosen 

offer function pi(Si). The profit from an accepted offer of an infinitesimally small unit of supply 

is ( ) iii dSSCSp ′− . The firm’s profit for some shock outcome ε can be calculated by 

summing the profit from each unit. With infinitesimally small production units, the sum 

becomes an integral. 
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  ( ) ( ) ( )[ ]
( )( )

. if    
0

*∫
−−

≤′−=
εε

εεεπ
pS

iiiii

i

dSSCSp

The expected profit of firm i is calculated by integrating across all shock outcomes and by 

weighting each outcome by its probability density f(ε). 

  ( ) ( ) ( ) ( )[ ]
( )( )

( ) ( ) ( )[ ] .
ˆ /

00 0 *

**

∫ ∫∫ ∫ ′−+′−=
−− ε

ε

εε εε

εεεεπ
N

iiii

pS

iiiii ddSSCSpfddSSCSpfE
i

The second term of this expression represents the contribution from demand outcomes 

exceeding market supply, in which case the accepted supply from firm i is ε*/N. The domain of 

the integration is plotted in Fig. 1.  

 

ε 

Si 

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

−−= εε pSS ii  

NSi /ε=  

ε* ε̂  

ε*/N

 
Figure. 1. The domain of the integration in the calculation of the expected profit.  
 

Now the order of integration is reversed. The new integration limits follow from the domain of 

the integration shown in Fig. 1.  

  (1) 

( )[ ]{ } ( ) ( )[ ] ( )
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iiii

iiii
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∫ ∫∫ ∫

∫ ∫
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−

−

ε

ϕ
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This result can be interpreted as follows. A firm’s expected profit is given by a sum over the 

expected profit from each of its units of supply. In its turn, the expected profit of a unit is given 

by its mark-up ( ) ( )[ iii SCSp ′ ]−  times the probability that the unit’s offer is accepted, i.e. the 
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probability that demand exceeds ( )[ ]iiii SpSS −+ . Proceeding with the analysis, we note that 

firm i chooses the offer function pi(Si) such that its expected profit E[ iπ ] is maximised. That is, 

the firm faces a calculus of variation problem with the fixed terminal points  and ( ) ( )00 ji pp =

( ) ( )NpNp ji // ** εε = . As there are no occurrences of ( ii Sp )′   in the integrand, the Euler 

equation degenerates to the following equation (Chiang, 1992):  

 
( )( ) )( )

( ). /,0  

1

* NS

SSfSpSSpSF
p

i

iiiiii
i

i

ε

[ ] ( )( SpS iiii ( ) ( )SC i ( )( )[ ] ,0Siipi
ϕ

∈∀

+−=
∂
∂

− =+′−

( ) Sp i+

′− −

( ) ( )( )( pSCpp i′−

−

,0

(2) 

The functional represents the contribution to expected profit from an 

infinitesimally small unit of supply. Thus, the Euler equation implies that, given residual 

demand, expected profit from each unit is maximised independently of the firm’s other units. 

Because only equilibria with smooth and increasing supply functions are considered, (

( )[ iiii SpS ,ϕ ]

2) can be 

written as follows:  

  (3) ( ) ( )[ ] ) ( )[ ]
( ) ( )./,0:  

1
* NpSp

pSfSpSpSF

i

iiii

ε∈∀

=′−+− −−−

( ) ( ) (SN i )ppS i 1−In this paper only symmetric SFE are considered, i.e. ≡−

([ ] 0pi =

. Thus (3) can be 

further simplified to: 

  (4) ( )[ ] ( ) ) ( )  ,11 ppNSfSNpNSF ii ∀′−−− ( ) ( )( )( )pSCpp i′− ( ). /,0 * Nε∈: Si

A positive risk of power shortage implies that ( ) [ ]εε0 ∀>ε ,0∈F1 . Thus p>C’ and 

Si’(p)>0. Introducing the inverse hazard rate function, G(ε), (

−

( )( )( )

4) can be written as: 

 ( )[ ] ( ) ( ) ( ) ( )ppSNpNSG ii ,0  ,01 ε∀′−− N/*pSi: ∈pSCp i =′−

( )( )( ) .0≡′ pSi

. (5) 

This can be compared with the first-order condition of a UPA for symmetric producers and 

perfectly inelastic demand (Holmberg, 2008).  

  (6) ( ) ( ) ( )1 −′−− CppSNpS ii

( )NxG .x   Note that the two first-order conditions are identical if =

In Appendix it is shown that the solution to the first-order condition in (4) is: 

) ( ) ( )[ ]
 ( )

( ) (

( )[ ]
[ *

1

,0    
1

1/1

1

1

εε
ε

ε

ε

∈∀
−

−′−−

= −

−

∫ −

N
N

N
N

FN

duuFufNuCNA

p ], (7) 
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where A is an integration constant. 

 

3.2. The first-order condition as Ramsey prices and non-linear pricing 

In this section, I will show that the first-order condition is consistent with the inverse elasticity 

rule, i.e. Ramsey pricing (Tirole 2003), and that it has similarities with non-linear pricing. For 

a unit Si, (3) can be written in the following form: 

 
( )( ) ( )[ ]

( ) ( )[ ]
( )[ ]{ }
( )[{ ]} . 

1
/11

p
pSSF

ppSSF

pSSpfpS

pSSF
p

pSCp

ii

ii

iii

iii

∂
+−∂

+−
−=

+′
+−

=
′−

−

−

−−

−  (8) 

The probability that unit Si’s offer is accepted, ( )[ ]pSSF ii −+−1 , can be interpreted as the 

residual demand of this unit (Bulow and Klemperer, 1996). Thus (8) is the inverse elasticity 

rule applied to a unit Si facing a residual demand of ( )[ ]pSSF ii −+−1 .  

The first-order condition in (8) also has similarities with optimal nonlinear pricing for the 

continuum-of-types case (Tirole, 2003; Wilson, 1997). Let types be distributed according to the 

density f(θ). Then it can be shown that a monopolist’s optimal unit price for a unit q is given 

by:5 

  
( )[ ]

( ) ( )[ ]
, 

1
**

*

ppfp

pF
p

cp

qq

q

θθ

θ
′
−

=
−  (9)   

where  denotes the type of consumer that is indifferent between buying and not buying 

the q’th unit at price p. An important difference between nonlinear pricing and SFE of a PABA 

is that  is exogenous, while 

( )pq
*θ

( )pq
*θ ( )pS i−

*

 is endogenous. Another key difference is that the 

price per unit increases with supply in a SFE, whereas the price per unit decreases with supply 

in the non-linear pricing literature. If ( ) 0≤
″ pqθ , then it follows from (9) that the hazard rate 

must be increasing if the non-linear price is to decrease, and this is a standard assumption in 

the non-linear pricing literature (Tirole, 2003; Wilson, 1997). We will see later that increasing 

hazard rates are problematic for SFE, and this can be attributed to the fact that supply functions 

are required to be upward sloping.      

  

                                                 
5 Note that the relation can be further simplified to 

( )[ ]
( ) ( )[ ]pfp

pF
p

cp

qq

q
**

*1

θθ

θ−
=

− , because ( ) ( )
p

p
p q

q

*
* θ

θ =
′

 (Tirole, 

2003). The simplified expression is the one normally found in the non-linear pricing literature. 
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3.3. Determining the integration constant 

Analogous to the derivation of the SFE of a UPA, the integration constant A in (7) allows for a 

continuum of potential equilibria (Klemperer and Meyer, 1989). In this section, I argue that the 

integration constant can be uniquely determined if, as in (Holmberg, 2008), the capacity 

constraint binds with a positive probability.  

If ,* εε <  some capacity is withheld from the auction. However, it cannot be optimal to 

withhold power. Any offer is accepted with a positive probability and a producer will find it 

profitable to offer previously withheld units at or just below the price cap. Offering its whole 

capacity will increase the contribution to expected profit of demand outcomes  while 

the possible profit reduction associated with demand outcomes  can be made arbitrarily 

small.  

,*εε >

*εε ≤

The highest offer in the auction must equal the price cap, because demand is perfectly 

inelastic. Otherwise, the highest offer could be increased without lowering the probability that 

its associated unit is accepted. Moreover, as stated in Section 2, the analysis is confined to 

equilibria with twice continuously differentiable supply functions. Hence  implying 

that

( ) ,∞<′ pSi

( ) 0>′ εp .6 Thus by construction supply functions cannot have horizontal segments at the 

price cap.  

In summary, the price of the marginal unit must reach the price cap but not before the 

capacity constraint binds. Hence, the integration constant can be pinned down by the end-

condition ( ) pp =ε . It follows from (7) that 

( )
( )[ ] ( ) ( ) ( ) ( )[ ]

( )[ ]
[ εε

ε

ε

ε

ε

ε ,0   
1

1/11

1

11 1

∈∀
−

−′−+−

= −

−−

∫ −

N
N

N
N

N
N

FN

duuFufNuCNpFN

p ]

                                                

. (10) 

The same end-condition has been used to derive a unique SFE for UPAs (Baldick and Hogan, 

2001; Holmberg, 2008). In the multi-unit auction by von der Fehr and Harbord (1993), the 

market-clearing price also reaches the price cap for high demand outcomes in UPAs. Offering 

supply all the way up to the price cap also has empirical support. In U.S. markets it has been 
 

6 The assumption simplifies the proof but is not critical. Allowing for offers with perfectly elastic segments does 
not change the result because, as in a Bertrand game, it is profitable to deviate from a symmetric equilibrium 
candidate with horizontal segments by slightly lowering ones horizontal offer to undercut competitors’ horizontal 
segments (Holmberg, 2008), as long as the horizontal segment is above marginal cost. The deviation significantly 
increases the probability that an offer is accepted, while the price reduction can be made arbitrarily small.   
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observed that producers offer their last units of power at an extremely high price, a 

phenomenon called hockey-stick bidding (Hurlbot et al., 2004). There are often offers at the 

price cap (£9999/MWh) in the reformed market of Britain, and in some delivery periods such 

offers have even been accepted (Roques et al, 2005).   

 

3.4. The second-order condition 

Consider a symmetric equilibrium candidate satisfying the first-order condition in (4). For this 

candidate, let ( )εp(  be the marginal offer as a function of demand. The symmetric supply 

functions associated with the candidate are designated by ( ).pSi
(

 If the aggregate supply of 

competitors equals ,iS−

(
 then — as shown by (2) — the expected profit from any unit of firm i 

is at a local extremum if the firm submits ( ).pSi
(

 In equilibrium, it is necessary, but not 

sufficient, that the local extremum is a local maximum for each unit. Otherwise a producer 

could find a profitable unilateral deviation from ( ).pSi
(

 Conditions under which the expected 

profit is at a local maximum for each unit is stated in claim i) of Theorem 1 below. Note that it 

also applies to markets without capacity constraints. Claim ii) is a sufficient condition, which 

ensures that the local extremum is a global maximum for each production unit. In this case, the 

expected profit of the firm is also globally maximized and ( )pSi

(
 is a symmetric NE. 

 

Theorem 1  

Consider an equilibrium candidate satisfying the first-order condition in (4). 

i) ( ) ( )[ ] ( ) ( ) ( ) ( )εεεεεεε ,0 0// ∈∀≥′′+′′− NCGGNCp(  is a necessary condition for it to be a 

SFE.  

ii) If ( ) [ ], ,0 0 εεε ∈∀>′G  then the solution to equation (10) is a SFE (sufficient condition).  

Proof: See Appendix. 

   

The derivative of the hazard rate is equal to ( )
( ) .2 xG

xG′−  Hence, an increasing inverse hazard rate 

is equivalent to a decreasing hazard rate. It now follows from claim i) of Theorem 1 that if the 

hazard function is locally upward sloping, then smooth symmetric equilibria with positive 

mark-ups can be ruled out if marginal costs are sufficiently flat. That SFE with positive mark-
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ups do not exist in PABA with constant marginal costs and increasing hazard rates generalizes 

a result by Wang & Zender (2002). Their treasury auction model corresponds to a pay-as-bid 

procurement auction, in which producers have constant marginal costs and no capacity 

constraints. If demand is given by the inverse Pareto distribution, which has an upward sloping 

hazard rate, they prove that the only possible SFE is that firms’ offer curves are equal to their 

marginal costs, i.e. mark-ups must be zero. In a market with capacity constraints that bind with 

a positive probability, mark-ups are positive for some demand outcomes and also the Bertrand 

solution can be ruled out if the hazard rate is locally increasing. There is some intuition behind 

the non-existent equilibrium. In the PABA, an increasing hazard rate, i.e. decreasing inverse 

hazard rate, implies that increasing solutions ( )pSi

(
 must be very concave, ( ) 0<<″ pSi

(
, if the 

symmetric first-order condition in (5) is to be satisfied, especially if marginal costs are 

constant. This means that the residual demand of each firm becomes very convex. Existence is 

problematic under those circumstances, see for example non-existence results for monopolists 

or Cournot players facing sufficiently convex (residual) demand (Gravelle and Rees, 1996).     

 

3.5. The Pareto distribution of the second kind 

As shown below, the Pareto distribution of the second kind has the useful property that its 

inverse hazard rate is linear, which implies that the first-order condition becomes particularly 

simple. The probability distribution is 

 ( ) ( )αα βαβ
11

1
−

+−= xxF  (11) 

and the probability density 

 ( ) ( ) .111 −−
+= αα βαβ xxf  (12) 

Hence, the inverse of its hazard rate is  

 ( ) ( )
( ) .1 βα +=

−
= x

xf
xFxG   (13) 

The parameter β  determines  as illustrated in Figure ( )0f 2. When α is large, f has a steep 

negative slope for small arguments and a thick tail for large arguments, vice versa for small α.  

The density function is decreasing and strictly convex for all α,β>0. Thus the Pareto 

distribution of the second kind may be a reasonable approximation of the auctioneer’s demand 

in balancing markets, in which small imbalances are more likely than large imbalances.  
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Figure 2. The effect of α and β on the probability density function f(x). 

 

It follows from (13) that the inverse hazard rate of the Pareto distribution is non-decreasing 

for α≥0, which according to Theorem 1 implies that pure-strategy SFE of PABA exists as long 

as marginal costs are non-decreasing.  

With the Pareto distribution of the second kind, the first-order condition of the PABA in (4) 

can be simplified to 

  ( ) ( ) ( ) ( )( )( ) ,01 ≡′−′−−+ pSCppSNpNS iii βα

which resembles the first-order condition of the UPA in (6). It follows from (10) that the 

equilibrium marginal offer in a PABA with a Pareto distribution of the second kind is  

 ( )
( ) ( ) ( )( )

( )
.

/1

1

11
1

N
N

N
N

N
N

N

duuNuCNpN
p

α

αα

βαε

βαβεα
ε

ε

ε
−

−−

+

+′−++
=

∫ −

 (14) 

 

4. Comparing pay-as-bid and uniform-price auctions 

4.1. Comparison of bid curves 

In this section equilibrium offers in pay-as-bid and uniform-price auctions are compared for a 

simple example. Demand is assumed to be perfectly inelastic and marginal costs are assumed 

to be constant and equal to c.  

Using (14), it is straightforward to calculate the equilibrium marginal offer in PABA. 
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 ( ) ( )( )
( )

ccpp
N

N

N
N

p +
+

+−
= −

−

α

α

βεα

βαεε 1

1

 

or equivalently 

 ( )
( )

( )
,

1

1
1

1

c
cp

p
N

N

N
N

p +
+

⎟
⎠
⎞

⎜
⎝
⎛ +−

= −

−

α

α

μ
ε
με

ε  (15) 

where .
β
εαμ =  From this equation it can be shown that  

 ( )
( )

( )
( )

.
111

11
ˆ

1

1 1

0 c

N
N

cp
dttp

p
N

N

N
N

p

p +
+⎟

⎠
⎞

⎜
⎝
⎛ +

−

−⎟
⎠
⎞

⎜
⎝
⎛ +

−==
−

− +

∫
α

α

μ
αε

με
ε
με

ε
ε

ε

 (16) 

This is the system buy price in PABA, i.e. the average price paid to the producers at the 

demand level ε.  

The equilibrium marginal offer for symmetric firms in a UPA can be calculated from 

(Holmberg, 2008), 

 ( ) ( ) ( ) [ ε,
u

duNuCNpp N
N

N

N

U 0    /1 1
1

1

∀
′

−+= ∫−
−

− ε

ε

ε
ε

εε ].   (17) 

In the special case of constant marginal costs, this can be simplified to: 

 ( ) ( ) .
1

ccpp
N

U +⎟
⎠
⎞

⎜
⎝
⎛−=

−

ε
εε  (18) 

The offer curves implied by (15), (16) and (18) are compared in Fig. 3 and Fig. 4. In a UPA, 

the marginal offer (and system buy price) equals the marginal cost at zero supply (Klemperer 

and Meyer, 1989).  The unit with the lowest marginal cost still contributes to profits, as it is 

paid the marginal offer for ε>0. It is also true in general that the lowest offer in the pay-as-bid 

auction is higher than the marginal cost, at least if G(0)>0. This is realised from the first-order 

condition in (5).  Accordingly, the system buy price is generally higher in PABA when demand 

is sufficiently small. In both procurement auctions, all units except for the most expensive one 

are offered below the price cap. Thus the system buy price in a PABA is always below the 

price cap. In the uniform-price auction, on the other hand, the system buy price equals the price 

cap when demand equals or exceeds market capacity.  Hence, the system buy price is generally 

lower in the PABA when demand is sufficiently high. That the minimum system buy price is 

higher and the maximum system buy price is lower in PABA compared to UPA is in 
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agreement with the experimental finding that price volatility is lower in PABAs than in UPAs 

(Rassenti et al., 2003).        
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Price cap
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Figure 3. Prices as a function of demand are compared for the uniform-price auction (UPA) 
and pay-as-bid auction (PABA). N=2, μ=1 and α=1. 

 

In Fig. 3 the marginal offer in PABA is higher than or equal to the marginal offer in UPA. 

As stated below this is generally true for non-decreasing marginal costs if G(Nx)≥x.   

 

Theorem 2. For the same level of demand, the marginal offer in PABA is higher than or 

equal to the marginal offer in UPA if G(ε)≥ ε/N for [ ]εε ,0∈ .   

Proof: See Appendix. 

 

The mark-up at zero supply in PABA is determined by G(0)=β. Increasing μ reduces β, and 

the mark-up decreases; compare Fig. 3 and 4. The intuition here is that reducing β increases the 

probability of having low demand outcomes (see Fig. 2) and accordingly producers put more 

weight on low demand outcomes when calculating their optimal pay-as-bid offers.    
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Figure 4. Prices as a function of demand are compared for the uniform-price auction (UPA) 

and pay-as-bid auction (PABA). N=2, μ=10 and α=1. 

 

When the power imbalance is negative, i.e. power production exceeds demand, the system 

operator needs to sell back power to producers in the balancing market, which becomes a sales 

auction (Holmberg, 2008). Firms’ alternative to not buying back power is to pay the marginal 

cost to meet their contracted production. Thus to make money on their balancing-down bids, 

firms offer to buy back power below their marginal cost. As the imbalance is perfectly 

inelastic, a price floor, p , is needed to prevent the price from becoming arbitrarily small. Let 

the negative constant ε  represent the total down-regulation capacity in the market. The supply 

function equilibrium of the sales auction is anti-symmetric to a corresponding procurement 

auction. Imagine a procurement auction for which  , * cc −= pp −=
*  and .

*
εε −=  Moreover, 

assume that the probability density of system demand in the fictional procurement auction is 

equal to the probability density of the system sales. Then the equilibrium of the sales auction is 

anti-symmetric to the equilibrium of the fictional procurement auction, i.e.  An 

equilibrium with both positive and negative imbalances is shown in Fig. 

( ) ( ). * pSpS jj −−=

5. Note that the 

marginal offer/bid and system buy/sell price in PABA is discontinuous at zero demand, while 

they are continuous in a UPA.   
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Figure 5. Prices as a function of the imbalance are compared for the uniform-price auction 

(UPA) and pay-as-bid auction (PABA). N=2, μ=10, α=1, 1=ε , 1−=ε , 0=p , and pc 3.0= . 

   

4.2. Comparing expected revenues of producers 

In this paper, demand is assumed to be perfectly inelastic. As a result, total production in a 

pay-as-bid and uniform-price auction are identical. Furthermore, only symmetric equilibria are 

considered. This means that for every demand outcome, the most cost-effective generators will 

be accepted in both procurement auctions. Hence, production costs are the same in both 

auctions for all outcomes. System buy prices and mark-ups will differ, however. Producers’ 

mark-ups in the two auction formats are ordered by comparing their expected revenues.  

It follows from (1) that the total expected revenue for all firms in a PABA is  

 ( )( ) ( ) ( )( ) ( ) .11
00
∫∫ −=−=
εε

εεε dpFdSSpSFRp  (19) 

For constant marginal costs and the Pareto distribution of the second kind, (11) and (14) can be 

used to derive the following expression (Holmberg, 2005).  

 ( ) ( ) ,,,
0

11

∫
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ε

εβαεβ
β
εααε αα dcNgcpR PP  (20) 

where 
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11
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1

1

1
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α

β
εα

β
εαβ

εαα

α

β
εα

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

  (21) 

It can be shown that ( )∫
−

+
ε

εβαεβ αα

0

11

dc  in (20) is the expected production cost (Holmberg, 

2005). Thus ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β
εααε ,, Ngcp P  is a measure of the mark-up.  

The total expected revenue for firms in a UPA is7 

 ( ) ( ) ( )( ) . 1
0
∫ −+=
ε

εεεεεε pFdpfR UU  (22) 

The second term is the contribution from demand outcomes exceeding market capacity. The 

following can be shown for constant marginal costs and the Pareto distribution of the second 

kind (Holmberg, 2005): 

 ( ) ( ) ,,,
0

11

εβαεβ
β
εααε

ε
αα dcNgcpR UU ∫
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=   (23) 

where  

 ( ) ( ) .d 1,,
0

11
tttNNg N

NU ∫ −−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β
εα

α

β
εα

α β
εα  (24) 

Subtracting (20) from (23) yields: 

 ( ) .,,,,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−

β
εαα

β
εααε NgNgcpRR PUPU  (25) 

The contour plot of 
( ) ( )

( )β
εα

β
εα

β
εα

α

αα

,,

,,,,

Ng

NgNg

U

PU −
 in Figure 6 illustrates the relative decrease 

of mark-ups when switching from a UPA to a PABA. The plot is not very sensitive to the 

number of firms. As the ratio is positive over a wide range of parameters, it seems that 

                                                 
7 Analogously ( ) ( ) ( )( ) ( ). ˆ1ˆ

0
∫ −+=
ε

εεεεεεε pFdpfRp By means of integration by parts and the definition of ( )εp̂  it 

is straightforward to verify that this expression is equal to ( ).  19
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.0≥− PU RR  Indeed, using (21), (24) and (25) this inequality is proven in a companion paper 

(Hästö and Holmberg, 2006). 

Figure 6 shows that switching from a UPA to a PABA almost eliminates mark-ups, i.e. 

U

PU

g
gg −

≈1, in the area for which both βε >>  and 1<α , which corresponds to that in which 

G(ε) is small. As can be seen in Figure 7, this area also corresponds to a very low risk of power 

shortage. In the extreme case when α→0 and β→0, demand is zero with certainty. On the other 

hand, mark-ups are roughly the same, i.e. 
U

PU

g
gg −

≈0, for either large α (fat tail of the 

probability density function) or small ε  (small capacity), both of which imply a high risk of 

power shortage. 
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Hästö and Holmberg (2006) prove that firms’ expected revenues are weakly larger in UPA 

than in PABA also for increasing marginal costs if the perfectly inelastic demand is Pareto 

distributed of the second kind. Firms’ total expected revenues are the same in both auctions 

under perfect competition and monopoly (Holmberg, 2005).  The perfectly inelastic demand is 

independent of the auction design. Thus larger producer-revenues in UPA imply that the 

demand-weighted average price is weakly lower in PABAs than in UPAs. Furthermore, as 

production costs are the same in both procurement auctions, average mark-ups are weakly 

lower in PABAs than in UPAs. Lower average prices in PABA imply a reduced procurement 

cost of the auctioneer compared to UPA. In a corresponding sales auction, the revenue of the 

auctioneer is higher in PABA (Krishna, 2002). Thus the auctioneer (and electricity consumers) 

will prefer the PABA auction both when it is buying and selling power if both positive and 

negative imbalances are given by the Pareto distribution of the second kind.  

 

5. CONCLUSIONS 

The supply function equilibrium (SFE) framework for uniform-price auctions (UPAs) is 

similar to the organisation of most electricity markets and is often employed to model strategic 

bidding in such markets. This paper derives a SFE for a pay-as-bid auction (PABA), such as 
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the balancing market of Britain. Some of the results are also relevant for pay-as-bid treasury 

auctions with random non-competitive bids.  

In contrast to SFE of UPA, SF equilibria of PABA depend on the probability distribution of 

demand, and so does the existence of pure strategy equilibria.  It is shown that a SFE of a 

PABA always exists if the hazard rate of the perfectly inelastic demand is monotonically 

decreasing and marginal costs are non-decreasing.  On the other hand, a SFE does not exist if 

there is any level of demand, for which all of the following three conditions are satisfied: 

Mark-ups are positive (i), the hazard rate is locally increasing (ii) and marginal costs are locally 

constant (iii).  These circumstances are rather restrictive, especially as most standard 

probability distributions, such as the normal and uniform distribution, have increasing hazard 

rates. In particular, there is a considerable risk that these non-existence conditions are satisfied 

in balancing markets, because system imbalances are approximately normally distributed 

(Garcia and Kirschen, 2006), and marginal electricity production costs are roughly stepped, i.e. 

approximately locally constant. That SFE with positive mark-ups do not exist in PABA with 

constant marginal costs and increasing hazard rates generalizes a result by Wang & Zender 

(2002). Applying their results for pay-as-bid treasury auctions to a corresponding procurement 

auction, they would imply that firms without capacity constraints would offer their supply at 

the constant marginal cost if demand follows an inverted Pareto distribution, which has an 

increasing hazard rate.  With capacity constraints that bind with a positive probability also the 

Bertrand solution can be excluded and no SFE would exist in PABA. The paper by Fabra et al. 

(2006) also indicates that there is a larger risk to lack a pure strategy equilibrium in the PABA. 

Generally, the system buy price is higher in PABAs compared to UPAs when the realized 

demand outcome is sufficiently low, but lower when realized demand is sufficiently high. This 

seems to be in agreement with the experimental finding that price volatility is lower in PABAs 

than in UPAs (Rassenti et al., 2003). The UK experience, however, is that price volatility 

increased after the introduction of NETA, at least initially. One explanation is that bids were 

long lived in the pool and that they are short lived in the new balancing mechanism. Moreover, 

the original NETA design was flawed, because penalty charges encouraged producers to retain 

their own balancing capacity to avoid imbalances in their own production instead of offering 

the balancing capacity to the market (Roques et al., 2005). This reduced the liquidity and 

increased the volatility in the balancing market. The volatility reduced considerably after this 

problem was fixed.  

A companion paper (Hästö and Holmberg, 2006) uses the results derived in this paper to 

prove that electricity consumers prefer PABA to UPA if demand is perfectly inelastic and 
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given by Pareto distribution of the second kind. 8 Simulations in this paper suggest that the 

relative mark-up difference in the two auction formats is largest when the risk of power 

shortage is very small, but then mark-ups should be so small, due to excess capacity, that they 

do not matter anyway. The relative difference is small when the loss of load probability 

(LOLP) is very high, i.e. when mark-ups would really hurt. It has been proven that mark-ups in 

the two auction formats are identical under monopoly pricing and perfect competition. In 

summary, the results suggest that switching to PABA will be most beneficial when the risk of 

power shortage is neither extremely small nor extremely large and when competition is 

imperfect without being extremely bad. The ranking result agrees with previous theoretical 

studies (Fabra et al. 2006; Federico and Rahman, 2003; Son et al., 2004; Wang and Zender, 

2002) but contradicts the findings of an experimental study (Rassenti et al., 2003) and an agent 

based simulation (Bower and Bunn, 2001). The experimental set-up differs to most of the 

theoretical set-ups in that demand was certain in the experiment (even if the players had to 

figure it out by themselves), and this may explain the different ranking results. Certain demand 

implies infinitely many equilibria, so the experimental results, unlike the theoretical results, 

were driven by equilibrium selection. Market prices were not publicly available in the agent 

based simulation, so agents with a large market share gained a significant informational 

advantage in a discriminatory auction, thereby facing less competitive pressure (Bower and 

Bunn, 2001). But market prices are publicly available in electricity markets, so Bower and 

Bunn’s result may not be so relevant for such markets. An empirical study by Evans and Green 

(2005) show that the change in the NETA design had little impact on average prices. One could 

take this as evidence that average prices are similar in UPA and PABA, which does not 

necessarily contradict the theoretical findings. But one has to be somewhat careful, because 

NETA did not only change the auction format but also changed other aspects of the market 

design – capacity payments were abolished, for example.  

A general assumption of the theoretical analyses is that firms are risk-neutral. Introducing 

risk aversion does not change the SFE of a UPA, as firms receive the best price for every 

demand outcome, given the bids of competitors. A risk-averse firm in a PABA, however, 

would put less weight on high-demand outcomes when profits are high and more weight on 

low-demand outcomes when profits are low. Hence, given the bids of competitors, risk-averse 

                                                 
8 In the balancing market, the auctioneer (and electricity consumers) will prefer PABA to UPA if both positive 
and negative imbalances are given by the Pareto distribution of the second kind. For positive imbalances, when 
the system operator is buying additional power from producers, the average price is lower in PABA compared to 
the UPA For negative imbalances, when the system operator is selling back power to producers, the average price 
is higher in the PABA compared to the UPA.   
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firms decrease their bids to increase profits for low-demand outcomes. Intuitively this would 

also be true in equilibrium. It appears that with risk-averse bidders, the advantages (from the 

auctioneer’s viewpoint) of PABAs are likely to increase.  Another advantage of PABAs is that 

the risk for tacit collusion is lowered compared to UPAs. This is shown by both Fabra (2003) 

and Klemperer (2002).  

But PABA also has disadvantages compared to UPA. Federico and Rahman (2003) find that 

under perfect competition and elastic demand, output and welfare is lower in PABA compared 

to UPA, even if consumer surplus is larger in PABA. As noted earlier PABA has a higher risk 

of lacking a pure strategy equilibrium. It could be a disadvantage for both consumers and 

producers, as prices might vary unpredictably, either because of chaotic bidding or mixed 

strategy bidding as in Genc (2008). Kahn et al. (2001) also point out that in a UPA it is optimal 

for small firms to simply bid their marginal costs while in a PABA, all firms must forecast 

market prices if they are to receive any contributions to profits.  This introduces an additional 

fixed cost for small firms, which could be disadvantageous to competition in the long-run.  
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APPENDIX 

 

Solving the first-order condition 

In order to solve the differential equation in (4), it is transformed into an equation in terms of 

( )εp , the price of the marginal unit as a function of the demand, instead of  The same 

transformation is applied when solving the differential equation associated with the SFE of a 

UPA (Anderson and Philpott, 2002; Holmberg, 2008; Rudkevich et al., 1998). In the 

symmetric equilibrium, 

( ).pSi

( )( )εε pNSi=  and ( ) ,
1
εpN

Si ′
=′  if .  Thus *εε <

 ( ) ( )
( ) ( ) ( )[ ] ( ) ( )*0,    0/11 εεεεε
ε

ε ∈∀=′−
′
−

−− fNCp
pN

NF ,  

and 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )./111
N

fNCNFp
N

fpN εεεεεε ′−
=−′−

−  

This differential equation can be solved by means of the integrating factor, ( )[ ] 11
1 −−
− N

N
F ε , to 

yield 
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( ) ( ) ( ) ( )[ ]

( )[ ]
[ *

1
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1

1/1

1

1

εε
ε

ε

ε

∈∀
−

−′−−

= −

−

∫ −

N
N

N
N

FN

duuFufNuCNA

p ],  

where A is an integration constant. 

 

Proof of Theorem 1 

It follows from (1) that for a given Si, the expected profit from a marginal unit of firm i is 

 ( ) ( )[ ] ( )( )[ ,1, iiiiiii dSpSSFSCpdSpS − ]+−′−=ϕ  (26) 

where p=pi(Si) is the offer of the marginal unit. Because competitors follow the symmetric 

equilibrium candidate ,iS
(

 (2) can be rewritten as 
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 (27) 

Let ( )ii Spp (=* . The first-order condition of the PABA in (4) ensures that 
( )

.0
,

*
=

∂
∂

= pp

ii
p

pSϕ
 

The profit of a unit, ( )pSii ,ϕ , is globally maximized at  if *p ( )pSii ,ϕ  is quasiconcave in p or 

equivalently that it is single peaked. As f>0 and ( ) ,0,* Spη =i  this would be the case if 

( ) 0, >iSpη  for ( )[ )*,0 pp(∈p 9  and ( ), 0<iSpη  for ( ].  Now it will be analysed 

under what circumstances this occur. The following is known from (

ppp ,*∈

27):  

 ( ) ( )[ ] ( ) ( )( . , iiiii SCppSSpSGSp ′−′−+= −− )((
η  (28) 

From the first-order condition in (5) it follows that  

 ( ) ( )[ ]
( )( )

. 
pSCp

pSGpS
i

i (

(
(

′−
=′

−   

                                                 
9 It is never profitable to offer a unit below ( ),0p(  as the unit is always accepted at this price.  
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Thus (28) can be written.  
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It follows from (4) that ( )iSCp
(

′>  for increasing supply functions. Further, marginal costs are 

non-decreasing and G(x)>0, as the hazard rate is never negative. To prove claim ii) consider 

the case when G(x) is monotonically increasing. If ( )[ )*,0 ppp (∈ then ( )⇒> pSS ii
(

 

( ) ( )(  pSCSC ii )(
′≥′   and ( )( ) ( )( ). pSGSipSG i

((
>+−  Thus it follows from (29) that ( ) 0, >iSpη  

Analogously, it can be proven that   ( )[ ). ,0 *ppp (∈∀ ( ) 0, <iSpη ( ]. ,* ppp∈∀ The result is 

true for all Si. Thus the profit of each unit of a firm is globally maximized, and there are no 

profitable unilateral deviations. Accordingly, the existence of a SFE is guaranteed for 

monotonically increasing G(x), which proves claim ii. 

There will certainly be deviations if the expected profit of some unit is locally minimised. 

Thus a necessary condition for a SFE is that all Si are at a local profit maximum. Accordingly, 

it is necessary that ( ) 0,
*

≤
∂

∂

= pp

i

p
Spη  for all Si. It follows from (29) that 10 
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10 Note that the differentiation involves the differentiation formulas for products and quotients, but most terms are 
zero because ( )*pSiS i

(
=

] ( )[ ]pSGSi

.  Thus there are only contributions when the derivative operates on either 

( )[ pSG i
((

−+−  or ( ) ( )( )pSCSC ii
(

′−′ . 
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Thus if the expected profit should be maximised for each of the firm’s units, then it is 

necessary that 

 ( )( )[ ] ( )[ ] ( )[ ] ( )( ) 0≥′′+′′− pSCpSGpSGpSCp ii

(((( ( ) ( )NpSp i /,0: ε∈∀ ,  

which proves claim i).   

 

 

Proof of Theorem 2 

From (5) it follows that the slope of a supply function in a PABA is given by: 

 
[ ]

( ) ( )( ) .1 i

i
i SCpN

NSG
S

′−−
=′  (30) 

From (6) it follows that the slope of a supply function in a UPA is given by: 

 ( ) ( )( ) .1 i

i
i SCpN

S
S

′−−
=′  (31) 

Comparing this slope with the slope in PABA we can conclude that if G(Nx)>x then the 

marginal offer in PABA is more price-responsive ( ′
iS  is higher) for every pair (p,Si). As both 

supply functions fulfil the end-condition ( ) pp =ε , this means that the marginal offer in PABA 

is higher than the marginal offer in UPA for [ )εε ,0∈ if G(ε)> ε/N.      
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