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1. Introduction

It is well-known that the class of overlapping generations (henceforth, OLG) models is
a useful class of models for exploring properties of equilibrium over time. The aim of this
paper is to provide a proof of the existence of a stationary monetary equilibrium (henceforth,
SME) for a stochastic OLG model with a finite state space, which was studied by Magill
and Quinzii (2003, henceforth, MQ). MQ, of course, showed the existence of a SME. They,
however, referred to the paper by Gottardi (1996) for the fixed point argument and did
not provide a complete proof of the existence of a SME. Since Gottardi dealt with a more
complicated OLG model with heterogenous agents and several securities, it is worthwhile
to provide a simple and complete proof of the existence that is tailored to the simple, but
rather canonical, model of monetary OLG economy studied by MQ.

This paper shows the existence of a SME by applying the Brouwer fixed-point theo-
rem.1 While Gottardi and MQ applied the Frobenius theorem to show that all the prices
are positive, this paper shows it without the Frobenius theorem.2 Moreover, this paper
demonstrates that we can find a SME for a broader range of OLG models than MQ’s.

2. The Model

2.1. Fundamentals

We consider the same model as that of Magill and Quinzii (2003), that is, a one-good,
pure-exhange overlapping generations economy in which agents live for two periods and
have random endowments. The uncertainty is modeled by the realization of one of finite
number of the shocks at the beginning of each period, s ∈ S = {1, . . . , S}, s0 being the
initial shock. Let st = (s0, . . . , st) ∈ S1+t denote the history of the shocks occurred from
period 0 to period t and let Σt := S1+t denote the set of all such histories up to date t.
Note that Σ0 = S and Σ∞ = S∞. Also let Σ := ∪∞

t=0Σt denote the collection of all such
histories for all periods. s = (s0, . . . , st, . . .) ∈ Σ is denoting a typical path of the event-tree
Σ. We assume that shocks follow a first-order Markov process and denote by P the induced
probability on the event-tree Σ.

In each period t ≥ 0, a new generation enter the economy after the resolution of the
period t uncertainty. Therefore, it is impossible for the young and the old to enter into risk
sharing contracts. We assume that there is only one agent per generation and that all agents
born in and after the initial period, called “newly born agents,” share the same endowment
and preference structures. At date-event st ∈ Σ, a newly born agent is endowed with the
random endowment stream ω(st) = (ω1(st), (ω

2(st, s
′))

s′∈S) ∈ R+ × RS
+. We assume that

the endowment stream depends only on the shock st realized when the agent is young, i.e,
ω(st) ≡ ω(st) = (ω1

st
, (ω2

sts′
)
s′∈S) for st = (s0, . . . , st).

All newly born agents maximize the expected utility of their lifetime consumption
streams, with the same utility indices. A newly born agent born at date-event st ∈ Σ
ranks the possible consumption streams ct(st) = (c1(st), (c

2(st, s
′))

s′∈S) ∈ R+ × RS
+ ac-

cording to a utility function Ust : R1+S
+ → R.

To close the model, we introduce the old generation present in the initial period, which
we call the “initial old.” This generation contains one old agent, whom is endowed with

1See also Manuelli (1990). He showed the existence of a stationary monetary equilibrium for a stochastic
OLG model with a continuous state space by applying the Shauder fixed-point theorem.

2See Debreu and Herstein (1953) and Takayama (1974) for more details on the Frobenius theorem.
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ω0(s0) units of the consumption good at date-event s0. At date-event s0 ∈ Σ0, he/she ranks
the possible consumption plan c2

0(s0) ∈ R+ according to a utility function U0
s0

: R+ → R.

2.2. Assumptions on Fundamentals

Following Magill and Quinzii (2003), we impose the following system of assumptions on
the model.

Assumption 1 (Markov Structure). There exists a Markov transition matrix ρ =
[ρss′ ]s,s′∈S with ρss′ > 0 for all s, s′ ∈ S such that P (st+1 = s′|st = s) = ρss′ for all
s, s′ ∈ S.

Assumption 2 (Positive Endowment).

1. ω(s) = (ω1
s , (ω

2
ss′)s′∈S) ∈ R1+S

++ for all s ∈ S;

2. ω2
0(s0) ∈ R++ for all s0 ∈ S.

Assumption 3 (Preferences).

1. There exist increasing, concave, and differentiable functions u1, u2 : R+ → R with
limc↓0 u′

i(c) = ∞ for i = 1, 2 such that

Ust(c(st)) = u1(c
1(st)) +

∑
s′∈S

u2(c
2(st, s

′))ρss′

for all st ∈ Σ and all c(st) = (c1(st), (c
2(st, s

′))
s′∈S) ∈ R+ × RS

+;

2. −cu′′
2(c)/u

′
2(c) ≤ 1 for all c ∈ R++;

3. U0
s0

(c2
0(s0)) = c2

0(s0).

2.3. Equilibrium Price Processes (Vectors)

To define equilibria as consequences of intergenerational trade, we assume that there is
an infinitely-lived (outside) asset available in positive supply, normalized to 1, which yields
no dividends (usually called fiat money). The asset is initially held by the initial old and
is then exchanged (unless prices are zero) at each date between the old and the young. Let
q(st) ∈ R+ denote the price of the asset at date-event st ∈ Σ. A newly born agent at
date-event st chooses z(st) ∈ R to maximize Ust(ct(st)) subject to budget constraints

c1
t (st) = ω1(st) − q(st)z(st),

(∀s′ ∈ S) c2
t+1(st) = ω2(st, s

′) + q(st, s
′)z(st).

Under Assumption 3.1, the necessary and sufficient condition for this choice problem is
provided by

(∀st ∈ Σ) q(st)u
′
1(ω

1
st
− q(st)z(st)) =

∑
s′∈S

q(st, s
′)u′

2(ω
2
sts′ + q(st, s

′)z(st))ρsts′

Since, in any equilibrium, agents choice must be consistent with the market clearing condi-
tion, z(st) = 1 for all st ∈ Σ, we are then led to the definition of an equilibrium.
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Definition 1. (q(st))st∈Σ with q(st) ∈ R+ for all st ∈ Σ is an equilibrium price process if

(∀st ∈ Σ) q(st)u
′
1(ω

1
st
− q(st)) =

∑
s′∈S

q(st, s
′)u′

2(ω
2
sts′ + q(st, s

′))ρsts′ . (E)

We concentrate our attention on “stationary equilibrium” rather than equilibrium pro-
cesses. The next definition defines stationary equilibrium price vectors:

Definition 2. (q∗s)s∈S ∈ RS
+ is a (strongly) stationary equilibrium price vector if

(∀s ∈ S) q∗su
′
1(ω

1
s − q∗s) =

∑
s′∈S

q∗s′u
′
2(ω

2
ss′ + q∗s′)ρss′ . (E∗)

3. Results

One can easily find a trivial stationary equilibrium price vector.

Proposition 0. q̄ ≡ 0 is a stationary price vector.

Proof. q̄ ≡ 0, i.e., q̄s = 0 for all s ∈ S, obviously satisfies Eq.(E∗), so that it is a stationary
equilibrium price vector. Q.E.D.

We add an assumption to present a MQ’s result. Define the S × S matrix Π0 by

Π0 = [π0
ss′ ]s,s′∈S :=

[
u′

2(ω
2
ss′)ρss′

u′
1(ω

1
s)

]
s,s′∈S

.

Since, under Assumption 2, Π0 is a matrix with positive coefficients, it follows from the
Frobenius theorem that Π0 has a unique positive eigenvalue associated with a positive
eigenvector. Let λf (Π

0) denote this eigenvalue.

Assumption 4. λf (Π0) > 1.

Proposition 1 (Magill and Quinzii, 2003). Under Assumptions 1,2,3, and 4, a unique
positive stationary equilibrium price vector exists.

Proof. See the proof of Proposition 1 in Magill and Quinzii (2003). One can find that
the proof of the result that all the prices are positive crucially depends on the Frobenius
theorem. Q.E.D.

Notice that in the proof by Magill and Quinzii (2003), Assumption 2, i.e., the hypothesis
that ω2 À 0, plays an important role to apply the Frobenius theorem. However, if ω2

ss′ = 0
for some pair of s and s′, then Π0 is no longer well-defined, so that we can no longer ensure
that all the prices are positive by the Frobenius theorem. Here, we provide an existence
result that includes such cases.

We now describe our main result. Instead of Assumptions 2 and 4 of Magill and Quinzii
(2003), we impose the following assumptions.
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Assumption 2′. ω1
s ∈ R++ for all s ∈ S.

Assumption 4′. ω2
tt′ = 0 for some t, t′ ∈ S or min

s∈S
∑

s′∈S [u′
2(ω

2
ss′)/u

′
1(ω

1
s′)]ρss′ > 1.

Note that the model has presumed that ω2
ss′ is nonnegative for all s, s′ ∈ S. Hence,

ω2
ss′ must be positive for all s, s′ ∈ S and, under Assumption 4′, it must follow that

min
s∈S

∑
s′∈S [u′

2(ω
2
ss′)/u

′
1(ω

1
s′)]ρss′ > 1 whenever it is false that ω2

tt′ = 0 for some t, t′ ∈ S.
We then show that a nontrivial stationary equilibrium price vector exists and it is positive

without the Frobenius theorem.

Proposition 1′. Under Assumptions 1,2 ′,3, and 4 ′, a unique positive stationary equilib-
rium price vector exists.

Proof. (Existence) Our proof strategy is constructed from four steps:

1. Define some continuous mapping Φ of RS
++ to RS

++;

2. Find a compact and convex set A such that A ⊂ RS
++ and Φ maps A into itself;

3. Applying the Brouwer fixed-point theorem to Φ on A, we show the existence of a fixed
point a∗ ∈ A;3

4. Verify that we can construct a positive stationary equilibrium price vector from a∗.

1. Our first task is to define the continuous mapping Φ of RS
++ to RS

++. For each s ∈ S,
let Qs := [0, ω1

s ] and its interior be denoted by int.Qs. For all s ∈ S, define the function
fs : Qs×R+ → R by fs(q, a) := qu′

1(ω
1
s −q)−a for all (q, a) ∈ Qs×R+. Notice that, for all

s ∈ S and all a ∈ R+, fs( · , a) is continuous and increasing on int.Qs by Assumption 3.1.
Also notice that, for all s ∈ S and all a ∈ R++, fs(0, a) = −a < 0 and limq↑ω1

s
fs(q, a) =

∞ > 0. Hence, for all all s ∈ S and a ∈ R++, the intermediate value theorem ensures the
existence and the uniqueness of q̂s(a) ∈ int.Qs such that fs(q̂s(a), a) = 0. Moreover, since
∂fs/∂q = u′

1 − qu′′
1 > 0 and ∂fs/∂a = −1 < 0, the implicit function theorem implies that,

for all s ∈ S, q̂s( · ) is a continuous and increasing function on R++.
Define the mapping φ : RS

++ → RS
++ by φ(a) := (q̂s(as))s∈S for all a = (as)s∈S ∈ RS

++.
Also define the mapping ψ : RS

++ → RS
++ by ψ(q) := (

∑
s′∈S qs′u

′
2(ω

2
ss′ + qs′)ρss′)s∈S for

all q = (qs)s∈S ∈ RS
++. It is easy to verify that both φ and ψ are continuous on RS

++.
Moreover, φ is increasing and ψ is nondecreasing on RS

++. It is obvious that φ is increasing,
since q̂s( · ) is increasing for all s ∈ S. On the other hand, to see that ψ is nondecreasing,
notice that, for all s, s′ ∈ S, ∂[qu′

2(ω
2
ss′ + q)]/∂q = u′

2 + qu′′
2 ≥ u′

2 · (1 + (q + ω2
ss′)u

′′
2/u

′
2) ≥ 0,

where the first inequality follows from concavity of u2 and the fact that ω2
ss′ ≥ 0, and the

second inequality follows from Assumption 3.2. Hence, qu′
2(ω

2
ss′ + q) is nondecreasing in q

for all s, s′ ∈ S. Therefore, it follows that ψ(q0) ≤ ψ(q1) for all q0, q1 ∈ RS
++ such that

q0 ≤ q1.
Now, define the mapping Φ : RS

++ → RS
++ by Φ(a) := (ψ ◦ φ)(a) for all RS

++. It follows
from continuity and monotonicity of φ and ψ that Φ is continuous and nondecreasing on
RS

++.
2. Next, we find a compact and convex set A such that A ⊂ RS

++ and Φ maps A
into itself. Let As := [0, ω1

su
′
1(ω

1
s)] for all s ∈ S and A :=

∩
s∈S As. The interiors of As

3See, for example, Takayama (1974) for details on the Brouwer fixed-point theorem.
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and A are denoted by int.As and int.A, respectively. For all s, s′ ∈ S, define the function
zs(s

′, · ) : As′ → R++ by

(∀a ∈ As′) zs(s
′, a) :=

u′
2(ω

2
ss′ + a/u′

1(ω
1
s′))

u′
1(ω

1
s′ − a/u′

1(ω
1
s′))

.

Then, it follows from Assumption 3.1 that zs(s
′, · ) is continuous and decreasing on int.As′ .

Notice that it follows from the definition of q̂s( · ) and concavity of u1 that q̂s(a) = a/u′
1(ω

1
s −

q̂s(a)) ≤ a/u′
1(ω

1
s) for all s ∈ S and all a ∈ R++. Thus, it follows from concavity of u1 and

u2 that

(∀s, s′ ∈ S)(∀a ∈ int.As′) zs(s
′, a) ≤ u′

2(ω
2
ss′ + q̂s′(a))

u′
1(ω

1
s′ − q̂s′(a))

. (1)

Define the function ẑ : A → R++ by ẑ(a) := min
s∈S

∑
s′∈S zs(s

′, a)ρss′ for all a ∈ A.
By properties of zs(s

′, · ), ẑ is continuous and decreasing on int.A. Let ẑ(0) := lima↓0 ẑ(a).
If ω2

ss′ = 0 for some s, s′ ∈ S, then it follows from Assumption 3.1 that ẑ(0) = ∞ > 1.
On the other hand, if ω2

ss′ > 0 for all s, s′ ∈ S, then Assumption 4′ ensures that ẑ(0) > 1.
Hence, in all cases, we have ẑ(0) > 1. Since ẑ is continuous and decreasing on int.A, there
exists at least one a ∈ int.A such that ẑ(0) > ẑ(a) ≥ 1. Also let a := ω1u′

2(ω
2 + q), where

ω1 := max
s∈S ω1

s , ω2 := min
s,s′∈S ω2

ss′ , and q := min
s∈S q̂s(a) > 0. Notice that ω1 ≥ ω1

s′ ,

ω2 ≤ ω2
ss′ , and q ≤ q̂s′(a) for all s, s′ ∈ S and all a ≥ a. Therefore, it follows from concavity

of u2 that ∑
s′∈S

ω1
s′u

′
2(ω

2
ss′ + q̂s′(as))ρss′ ≤ a (2)

for all s ∈ S and all (as′)s′∈S such that as′ ≥ a for all s′ ∈ S.
We claim that a < a. To see this, notice that

(∀s′ ∈ S) a < ω1
s′u

′
1(ω

1
s′) ≤ ω1u′

1(ω
1
s′) = a

u′
1(ω

1
s′)

u′
2(ω

2 + q)
, (3)

where the first (strict) inequality follows from the fact that a ∈ int.A, the second inequality
follows from the fact that ω1

s′ ≤ ω1, and the last equality follows from the definition of ω1.
Then, it follows that

(∀s, s′ ∈ S) a > a
u′

2(ω
2 + q)

u′
1(ω

1
s′)

≥ a
u′

2(ω
2
ss′ + q̂′s(a))

u′
1(ω

1
s′)

≥ a
u′

2(ω
2
ss′ + q̂s(a))

u′
1(ω

1
s′ − q̂s(a))

≥ azs(s
′, a), (4)

where the first (strict) inequality follows from Eq.(3), the second follows from concavity
of u2 and the facts that ω2 ≤ ω2

ss′ and q̂s(a) ≥ q for all s, s′ ∈ S, the third follows from
concavity of u1 and the fact that q̂s(a) > 0, and the last inequality follows from Eq.(1).
Hence we have

(∀s ∈ S) a = a
∑
s′∈S

ρss′ > a
∑
s′∈S

zs(s
′, a)ρss′ ≥ aẑ(a) ≥ a,

where the first equality follows from the definition of ρ, the second (strict) inequality follows
from Eq.(4), the third follows from the definition of ẑ, and the last follows from the fact
that ẑ(a) ≥ 1. This establishes the claim.
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We also claim that a ≤ Φ(a) ¿ a for all a ∈ RS
++ with a ≤ a ≤ a, where a :=

(a, . . . , a),a := (a, . . . , a) ∈ RS
++. Notice that, for all a ∈ RS

++ with a ≥ a and all s ∈ S,∑
s′∈S q̂s′(as′)u

′
2(ω

2
ss′ + q̂s′(as′))ρss′ <

∑
s′∈S ω1

s′u
′
2(ω

2
ss′ + q̂s′(as′))ρss′ ≤ a, where the first

(strict) inequality follows from the fact that q̂s(a) < ω1
s for all positive a, and the second

inequality follows from Eq.(2). Hence, Φ(a) ¿ a for all a ∈ RS
++ with a ≥ a. On the

other hand, notice that ∑
s′∈S

q̂s′(a)u′
2(ω

2
ss′ + q̂s′(a))ρss′

= a
∑
s′∈S

u′
2(ω

2
ss′ + q̂s′(a))

u′
1(ω

1
s′ − q̂s′(a))

ρss′

≥ a
∑
s′∈S

u′
2(ω

2
ss′ + a/u′

1(ω
1
s′))

u′
1(ωs′ − a/u′

1(ω
1
s′))

ρss′

≥ aẑ(a)

≥ a,

where the first equality follows from the definition of q̂s′( · ), the second inequality follows
from Eq.(1), the third follows from the definition of ẑ, and the last follows from the fact
that ẑ(a) ≥ 1. This implies that Φ(a) ≥ a. Since Φ is nondecreasing, it follows that
Φ(a) ≥ Φ(a) ≥ a for all a ∈ RS

++ with a ≥ a. This establishes the claim.
Let A := [a, a]S. A is obviously compact and convex and it is a subset of RS

++. Moreover,
we have verified that Φ is continuous on A and Φ(A) ⊂ A.

3. We apply the Brouwer fixed-point theorem to Φ on A.4 Since A is compact and
convex, Φ is continuous, and Φ(A) ⊂ A, it follows from the Brouwer fixed-point theorem
that Φ has a fixed point a∗ = (a∗

s)s∈S in A, i.e., there exists some a∗ ∈ A such that
Φ(a∗) = a∗. Since a∗ ∈ RS

++, it follows that q̂s(a
∗
s) ∈ int.Qs for all s ∈ S.

4. We omit the proof of Step 4, since it is easy to verify that q∗ := (q̂s(a
∗
s))s∈S is a

positive stationary equilibrium price vector. This establishes the proof of “existence” part
of Proposition 1′.

(Uniqueness) Define the mapping Π : RS
++ → RS×S

++ by Π(q) := [πss′(q)]
s,s′∈S , where

(∀s, s′ ∈ S)(∀q ∈ RS
++) πss′(q) :=

u′
2(ω

2
ss′ + qs′)ρss′

u′
1(ω

1
s − qs)

.

We have verified that at least one positive stationary equilibrium vector exists in the above
argument. Notice that, for arbitrary positive stationary equilibrium price vector q∗ ∈ RS

++,
we have the Frobenius root λf (Π(q∗)) = 1, since Π(q∗)q∗ = q∗ (See the definition of
equilibrium price vector). Also notice that q, q′ ∈ RS

++ with q > q′, we have πss′(q) ≤
πss′(q

′) with at least one strict inequality. This follows immediately from concavity of ui

for i = 1, 2. The rest of the proof of the “uniqueness” part is the almost same as that of
Magill and Quinzii (2003), so that see their work for more details. Q.E.D.

4One can apply the Tarski fixed-point theorem instead of the Brouwer fixed-point theorem, since A is a
complete partial order set and Φ is nondecreasing. In this case, we no longer need to require continuity of
Φ, i.e., continuity of φ and ψ. See, for example, Ok (2007) for the details of the Tarski fixed-point theorem.
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4. Concluding Remarks

The proof of the existence of a stationary monetary equilibrium (SME) for a complicated
overlapping generations (OLG) model with heterogeneous agents and several securities has
been already provided. However, a simple and complete proof of the existence of SME for a
simple, but rather canonical, model of monetary OLG economy presented in this paper has
not provided yet. The main contribution of this paper is to provide a simple and complete
proof of the existence of a SME for such a simple and canonical OLG model.

While previous studies applied the Frobenius theorem to show that all the prices are
positive, this paper has shown it without the Frobenius theorem. This indicates that a
simple OLG framework does not necessarily require the Frobenius theorem to ensure that
all the prices are positive.

Also remark that we can no longer show that all the prices are positive by the Frobenius
theorem when the amount of the second-period endowment is zero in some state, i.e., when
ω2

ss′ = 0 for some s, s′ ∈ S, since the matrix Π0 is no longer well-defined under Assumption
3.1. In such cases, therefore, we can no longer verify that prices of money are positive by
a similar procedure to the one adopted by previous studies. On the other hand, this paper
provided the existence result that includes such cases. This indicates that this paper has
shown the existence of a SME for a broader range of models than that of previous studies
such as Magill and Quinzii (2003).
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