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Abstract

This paper studies nonparametric estimation of conditional moment models in which the
residual functions could be nonsmooth with respect to the unknown functions of endogenous
variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation,
and a difficult nonlinear ill-posed inverse problem with an unknown operator. We first propose
a penalized sieve minimum distance (SMD) estimator of the unknown functions that are iden-
tified via the conditional moment models. We then establish its consistency and convergence
rate (in strong metric), allowing for possibly non-compact function parameter spaces, possibly
non-compact finite or infinite dimensional sieves with flexible lower semicompact or convex
penalty, or finite dimensional linear sieves without penalty. Under relatively low-level sufficient
conditions, and for both mildly and severely ill-posed problems, we show that the convergence
rates for the nonlinear ill-posed inverse problems coincide with the known minimax optimal
rates for the nonparametric mean IV regression. We illustrate the theory by two important ap-
plications: root-n asymptotic normality of the plug-in penalized SMD estimator of a weighted
average derivative of a nonparametric nonlinear IV regression, and the convergence rate of a
nonparametric additive quantile IV regression. We also present a simulation study and an
empirical estimation of a system of nonparametric quantile IV Engel curves.

KEYWORDS: Nonsmooth residuals, nonlinear ill-posed inverse, penalized sieve minimum dis-
tance, modulus of continuity, average derivative of a nonparametric nonlinear IV regression, non-
parametric additive quantile IV regression.

JEL Classification: C13, C14, D12.

1 Introduction

Many semi/nonparametric structural models are special cases of the following conditional moment

models containing unknown functions:

E[ρ(Y,Xz; θ0, h01(·), ..., h0q(·))|X ] = 0, (1.1)

in which Z ≡ (Y ′, X ′
z)

′, Y is a vector of endogenous (or dependent) variables, Xz is a subset of the

conditioning (or instrumental) variables X , ρ() is a vector of generalized residual functions whose

functional forms are known up to the unknown vector of finite dimensional parameters (θ0) and the

1This is a slightly updated version of Cowles Foundation Discussion Paper 1650. Earlier versions were presented
in August 2006 European Summer ES Meetings, March 2007 Oberwolfach Workshop on Semi/nonparametrics, June
2007 Cemmap Conference on Measurement Matters, and econometric seminars at Northwestern, Vanderbilt, Boston
University, Indiana, Yale, Boston College and Toulouse School of Economics. We thank participants of these confer-
ences and seminars for comments. We are grateful to V. Chernozhukov, J. Horowitz, S. Lee and W. Newey for their
critical comments that lead us to work much harder to produce a much improved paper. We thank R. Blundell for
sharing the UK Family Expenditure Survey data set, and J. Florens, I. Komunjer, Z. Liao, O. Linton, E. Mammen, J.
Powell, A. Santos, E. Tamer for helpful suggestions. Chen acknowledges financial support from the National Science
Foundation. Any errors are the responsibility of the authors.

2Department of Economics, Yale University, 30 Hillhouse, Box 208281, New Haven, CT 06520, USA. E-mail:
xiaohong.chen@yale.edu

3Department of Economics, New York University, 19 West 4th Street, 6FL, New York, NY 10011, USA. E-mail:
dgp219@nyu.edu
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unknown functions (h0 ≡ (h01(·), ..., h0q(·))), where each real-valued function h0ℓ(·), ℓ = 1, ..., q,may

depend on different arguments. The conditional distribution, FY |X , of Y given X is not specified;

hence the functional form of the conditional expectation, E[ρ(Z, θ0, h0)|X ], of ρ(Z, θ0, h0) given X

is unknown.

Assuming that the parameters of interest (θ0, h0) are identified by the general conditional

moment models (1.1), Newey and Powell (hereafter NP, 2003) and Ai and Chen (hereafter AC,

2003) propose Sieve Minimum Distance (hereafter SMD) estimation of (θ0, h0). Under the as-

sumptions that the residual function ρ(Z, θ, h(·)) is pointwise Hölder continuous in the parameters

(θ, h) ∈ Θ × H, the parameter space Θ ×H is compact, and the sieve parameter space Θ ×Hn is

finite dimensional compact, NP (2003) obtain consistency of the SMD estimator of (θ0, h0), and

AC (2003) establish root-n asymptotic normality and efficiency of the SMD estimator of the finite

dimensional parameters θ0. However, neither paper studies the optimal rates of convergence for the

SMD estimator of h0.

When h0(·) in the general framework (1.1) depends on the endogenous variables Y , it is difficult

to establish point identification of h0, consistency and convergence rate of any estimator of h0

under the so-called “strong metric” || · ||s, which is a metric that is not continuous with respect to

the quadratic form E
[
(E[ρ(Z, θ, h(·))|X ])

′
(E[ρ(Z, θ, h(·))|X ])

]
, and the problem becomes a nasty

nonlinear ill-posed inverse problem with an unknown operator.

There are some recent papers on identification and consistent estimation of a real-valued h0(Y )

for two important special cases of (1.1). The first case is the nonparametric mean instrumental

variables (NPIV) regression model:

E[Y1 − h0(Y2))|X ] = 0. (1.2)

See NP (2003), Darolles, Florens and Renault (hereafter DFR, 2006), Blundell, Chen and Kris-

tensen (hereafter BCK, 2007), Carrasco, Florens and Renault (2007), Severini and Tripathi (2006)

and Florens, Johannes and van Bellegem (FJvB, 2007) for identification; NP (2003) for consis-

tency, Hall and Horowitz (hereafter HH, 2005), DFR (2006), BCK (2007), Chen and Reiss (2007)

and Gagliardini and Scaillet (GS, 2007) for convergence rates of their respective estimators of the

NPIV model (1.2). The second important case is the nonparametric quantile instrumental variables

(NPQIV) regression model:

E[1{Y1 ≤ h0(Y2)}|X ] = γ ∈ (0, 1), (1.3)

where 1{·} denotes the indicator function. See Chernozhukov and Hansen (2005) and Chernozhukov,

Imbens and Newey (hereafter CIN, 2007) for identification;4 CIN (2007) for consistency, and

Horowitz and Lee (hereafter HL, 2007) for consistency and convergence rate of their respective

estimators of the NPQIV model (1.3). Recently, Chernozhukov, Gagliardini and Scaillet (CGS,

4See Chesher (2003) and Matzkin (2007) for additional identification results on nonsmooth nonseparable models.
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2008) send us their unpublished manuscript about the convergence rate and pointwise limiting

distribution of their penalized estimator for the NPQIV model.

To the best of our knowledge, except for the NPIV and the NPQIV models, there is no published

work that establishes convergence rate of any estimator of h0 ≡ (h01(·), ..., h0q(·)) for the general

conditional moment models (1.1) when some of the h0ℓ(·), ℓ = 1, ..., q depend on Y . Moreover, even

for the NPIV and the NPQIV models, the above mentioned papers establish convergence rates for

their respective estimators under different sets of regularity conditions that are very difficult to

compare.

In this paper, we first propose a general class of penalized SMD estimators for h0 ≡ (h01(·), ..., h0q(·))
satisfying the following nonparametric conditional moment models:5

E[ρ(Y,Xz;h01(·), ..., h0q(·))|X ] = 0, (1.4)

in which some of the h0ℓ(·), ℓ = 1, ..., q depend on Y . Our penalized SMD procedure is very flexible.

It allows for (i) nonlinear and possibly nonsmooth residual function ρ(); (ii) mildly ill-posed or

severely ill-posed problems; (iii) possibly non-compact (under || · ||s) infinite dimensional parameter

space, (iv) possibly non-compact (under ||·||s) finite or infinite dimensional sieve spaces, and (v) any

“lower semicompact” (see Section 3 for its definition) or any convex penalization. Our penalized

SMD procedure using finite dimensional linear sieves and “lower semicompact” or convex penalty

is essentially the same as the original SMD procedure using finite dimensional compact sieves that

has been previously studied in NP (2003), AC (2003), BCK (2007), CIN (2007) and Ai and Chen

(2007), except that we establish consistency and convergence rates under the “strong metric” || · ||s
without assuming the || · ||s−compactness of the entire parameter space. This result is of great

interest to those who like to implement the original SMD procedure using finite dimensional sieves,

as they no longer need to worry about whether the entire parameter space is compact under || · ||s.
Our penalized SMD procedure using infinite dimensional linear sieves and “lower semicompact” or

convex penalty extends the current Tikhonov regularization procedures of DFR (2006), HH (2005),

GS (2007), FJvB (2007) and others for the NPIV model, and HL (2007) and CGS (2008) for

the NPQIV model to allow for any model belonging to the class (1.1), and more flexible penalty

functions (not restricted to Tikhonov regularization using square integrable norm of h or square

integrable norm of first or higher order derivatives of h).

Secondly and more importantly, we establish consistency and convergence rates (in “strong

metric” || · ||s) of the penalized SMD estimator for h0() of the nonparametric conditional moment

models (1.4), allowing for the above (i) - (v). Our large sample results are derived under any

5In Chen and Pouzo (2008), we obtain the semiparametric efficiency and the root-n asymptotic normality of the

penalized SMD estimator θ̂n of θ0 for the general semiparametric conditional moment models (1.1) when ρ(Z, θ, h(·))
is not pointwise smooth in (θ, h). The results in Chen and Pouzo (2008) depend crucially on the consistency and

convergence rates of the penalized SMD estimator ĥn of h0, which are the main focuses of our this paper.
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nonparametric consistent estimator of the conditional mean functions E[ρ(Y,Xz;h)|X = ·]. Some

of the results allow for possibly non-uniqueness of h0() satisfying the general model (1.4), although

we present sufficient conditions such that the model (1.4) and the penalty jointly identify h0().

We show that for both mildly and severely ill-posed problems, the convergence rates are closely

related to the notion of “modulus of continuity” (see Section 4 for its definition). More precisely,

for the penalized SMD estimator using infinite dimensional sieves, the convergence rate is given by

the “modulus of continuity”. For the penalized SMD estimator using finite dimensional sieves, the

convergence rate is determined by balancing the sieve approximation error rate of h0() and the “sieve

modulus of continuity”, which is a natural generalization of the “sieve measure of ill-posedness”

introduced in BCK (2007) for the NPIV model (1.2). We also provide low-level sufficient conditions

to bound the sieve modulus of continuity and the modulus of continuity. When we specialize our

convergence rate results to the NPIV model (1.2), our rates coincide with the known minimax

optimal rates derived in HH (2005) and Chen and Reiss (2007).6 In addition, our rates for the

general problems of nonlinear and nonsmooth residual functions ρ also coincide with the optimal

ones for the linear ill-posed inverse problems.

Although we establish consistency and convergence rates for the penalized SMD estimator al-

lowing for both finite dimensional sieves and infinite dimensional sieves, our sufficient conditions

for the ones using finite dimensional sieves are slightly weaker than those for the penalized SMD

estimators using infinite dimensional sieves. In addition, based on our simulation studies and those

reported in BCK (2007) and Chen and Pouzo (2008), the penalized SMD estimator using a finite

dimensional linear sieve and a flexible penalty is not only easy to compute but also performing well

in finite samples. When h0 enters the residual function ρ() linearly such as in the NPIV model

(1.2), the infinite dimensional Tikhonov regularized estimators can be computed in closed-forms,

and their asymptotic properties are relatively easy to analyze; see, e.g., DFR (2006) and HH (2005).

However, when h0 enters the residual function ρ() nonlinearly and non-smoothly, such as in the

NPQIV model (1.3), the infinite dimensional regularized estimators are impossible to compute. In

fact, in their simulation study of the NPQIV model (1.3), HL (2007) actually approximate the

unknown function h0(·) by a Fourier series with lots of terms; hence they could ignore the Fourier

series approximation error, and view their implemented procedure as the one of infinite dimen-

sional sieve Tikhonov regularization. Similarly, GS (2007) and CGS (2008) use finite many spline

and polynomial series terms to approximate unknown h in their simulation and empirical imple-

mentations of their Tikhonov first derivative regularized estimators for the NPIV and the NPQIV

models.

Finally, we illustrate the usefulness of the consistency and convergence rate (in strong metric

6The rates also coincide with those in Efromovich and Koltchinskii (2001) and Hoffmann and Reiss (2008) for
statistical linear ill-posed inverse problems with unknown operators, and in Cavalier et al. (2002) and the references
therein for known operators.
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||·||s) results by deriving the root-n asymptotic normality of the plug-in penalized SMD estimator of

a weighted average derivative of h0(Y ) identified through the general model E[ρ(Y,Xz, h0(Y ))|X ] =

0, in which ρ() could be nonlinear and non-pointwise smooth in h0. This result is very important

in its own right, as the weighted average derivatives are widely used in testing various economic

hypothesis of h0 when h0(Y ) may enter ρ() nonlinearly; see, e.g., Chen and Ludvigson (2004).

Previously, Ai and Chen (2007) establish root-n asymptotic normality of the plug-in SMD estimator

of a weighted average derivative of h0 for the NPIV model (1.2): E[Y1 − h0(Y2))|X ] = 0. Thanks

to the linearity of the NPIV model in h(Y ), they obtain the normality result without requiring

convergence rate of their SMD estimator ĥn under the strong norm (||h||s =
√
E[{h(Y2)}2] for

the NPIV model). Here we extend their results to allow for possibly nonlinear and non-pointwise

smooth ρ() in h(Y ), without imposing || · ||s−compactness of the entire function parameter space.

Unfortunately, when h(Y ) enters ρ() nonlinearly such as in the NPQIV model (1.3), in order to

achieve root-n asymptotic normality of a plug-in estimate of a weighted average derivative of h0(Y ),

we now need certain convergence rate of our penalized SMD estimator ĥn under the strong norm

|| · ||s.
The rest of the paper is organized as follows. Section 2 presents the penalized SMD procedures,

a small Monte Carlo study of the NPQIV model (1.3), and an empirical illustration of the NPQIV

estimation of system of Engel curves using British Family Expenditure Survey (FES) data. Section 3

establishes consistency, and discusses the implications of regularity conditions for the original SMD

with finite dimensional sieve without explicit penalty, the penalized SMD with lower semicompact

penalty, and the penalized SMD with general convex penalty. Section 4 derives convergence rates

in terms of sieve modulus of continuity, and Section 5 presents sufficient conditions to bound

sieve modulus of continuity. Section 6 provides two important applications of the general results.

The first application obtains the consistency and convergence rate for the nonparametric additive

quantile IV model: E[1{Y3 ≤ h01(Y1)+h02(Y2)}|X ] = γ ∈ (0, 1) where h0 = (h01, h02). The second

application establishes the root-n asymptotic normality of the plug-in penalized SMD estimator of

a weighted average derivative of h0() for the general nonlinear model E[ρ(Y,Xz, h0(Y ))|X ] = 0.

Section 7 briefly concludes. Appendix A presents a brief review of some functional spaces and sieve

bases, and the rest of the appendices contain the proofs.

In this paper, we denote fA|B(a; b) (FA|B(a; b)) as the conditional probability density (cdf)

of random variable A given B evaluated at a and b, and fAB(a, b) (FAB(a, b)) the joint density

(cdf) of the random variables A and B. Denote Lp(Ω, dµ) as the space of measurable functions

with ||f ||Lp(Ω,dµ) ≡ {
∫
Ω
|f(t)|pdµ(t)}1/p < ∞, where Ω is the support of the sigma-finite positive

measure dµ (sometimes Lp(dµ) and ||f ||Lp(dµ) are used for simplicity). For any sequences {an} and

{bn}, an ≍ bn means that there exists two constants 0 < c1 ≤ c2 <∞ such that c1an ≤ bn ≤ c2an;

an = OP (bn) means that Pr (an/bn ≥M) → 0 as n and M go to infinity; and an = oP (bn) means
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that for all ε > 0, Pr (an/bn ≥ ε) → 0 as n goes to infinity. For any vector-valued x, we use ||x||E
denote its Euclidean norm (i.e., ||x||E ≡

√
x′x, although sometimes we also use |x| = ||x||E without

too much confusion).

2 Penalized SMD Estimators and Empirical Illustration

Suppose that the observations {(Yi, Xi) : i = 1, 2, . . . , n} are drawn independently from the distri-

bution of (Y,X) with support Y×X , where Y is a subset of Rdy and X is a compact subset of Rdx .

Denote Z ≡ (Y ′, X ′
z)

′ ∈ Z ≡ Y×Xz and Xz ⊆ X . Suppose that the unknown distribution of (Y,X)

satisfies the conditional moment restriction given by (1.4), where ρ : Z × H → Rdρ is a known

mapping, up to an unknown vector of parameters, h0 ∈ H. We assume that H ≡ H1 × · · · × Hq,

with each Hj , j = 1, ..., q, being a space of real-valued measurable functions whose arguments vary

across different applications.

Denote m(x, h) ≡
∫
ρ(y, xz , h(·))dFY |X=x(y) as the conditional mean function of ρ(Y,Xz, h(·))

given X . Under the assumption that model (1.4) identifies h0, we have

h0 = arg inf
h∈H

E [m(X,h)′m(X,h)] . (2.1)

Since the functional forms of FY |X and m(X,h) are not specified, NP (2003) and AC (2003) propose

to estimate h0 by the SMD procedure:

ĥn = arg inf
h∈Hn

1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h), (2.2)

where m̂(X,h) is any nonparametric consistent estimator of m(X,h), and Hn ≡ H1
n × · · · × Hq

n is

a finite dimensional sieve parameter space whose complexity grows with sample size and becomes

dense in the original functional space H ≡ H1 × · · · × Hq; see, e.g., Grenander (1981), Shen and

Wong (1994), Van de Geer (2000) and Chen (2007).

Let ||·||c denote a metric on H, which is a metric that may or may not be continuous with respect

to the quadratic form E [m(X,h)′m(X,h)] on H. To obtain consistency of the SMD estimator ĥn

under the metric || · ||c, NP (2003), AC (2003), CIN (2007) and BCK (2007) assume that the

original space H and the sieve spaces Hn are compact under the metric || · ||c. Although the

compact function space H is a reasonable assumption for some applications (see BCK (2007) for

such an example), it would be nice to relax this assumption in other applications when the criterion

function E [m(X,h)′m(X,h)] is convex with respect to h ∈ H.

2.1 Penalized SMD Estimators

In this paper we consider the following penalized SMD :

ĥn = arg inf
h∈Hn

{
1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) + λnP̂n(h)

}
, (2.3)
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where the penalization parameter λn ≥ 0 and λn → 0 as n→ ∞, the penalization function P̂n(h) is

typically a non-negative convex function in h given the data. Here the sieve space Hn ≡ H1
n×···×Hq

n

could be finite-dimensional, infinite-dimensional, compact or non-compact. When the original space

H is infinite-dimensional compact (under || · ||c), and the sieve space Hn is finite-dimensional or

infinite-dimensional compact (under || · ||c), then one can set λn = 0 and (2.3) reduces to (2.2).

When the original space H is a closed (but not compact under ||·||c), infinite-dimensional subset of a

separable Banach space (under the metric || · ||c), if one chooses the sieve space Hn to be some finite-

dimensional compact sets, then one could still set λn = 0; however, if one set the sieve space Hn to be

some infinite-dimensional non-compact sets, such as Hn = H, then one needs λnP̂n(h) > 0. When

Hn = H and P̂n(h) = ||h−h⋆||2c with h⋆ ∈ H being an initial guess, this procedure (2.3) becomes the

minimum distance estimation with nonlinear Tikhonov regularization. For example, when H is the

space of square integrable functions against a sigma-finite measure dµ, L2(dµ), we can let || · ||c be

the L2(dµ)−norm, and P̂n(h) = ||h−h⋆||2L2(dµ) for a known measure dµ, or P̂n(h) = ||h−h⋆||2L2(dµ̂)

for an empirical measure dµ̂ when dµ is unknown. When H is a mixed weighted Sobolev space

{h : ||h||2L2(dµ) + ||∇kh||2L2(leb) <∞}, where ∇kh is the k-th derivative of h for some integer k ≥ 1,

we can again let || · ||c be the L2(dµ)−norm and P̂n(h) = ||h−h⋆||2L2(dµ) + ||∇kh−∇kh⋆||2L2(leb). As

we shall illustrate later on, one could also take P̂n(h) = ||∇kh−∇kh⋆||2L2(leb) in some applications.

When n−1
∑n

i=1 m̂(Xi, h)
′m̂(Xi, h) is convex in h ∈ H and H is a closed convex (but not compact

under || · ||c) space, it is computationally attractive to choose the penalization function P̂n(h) as a

convex function, and to choose the sieve space Hn as a convex set, say Hc
n = {h ∈ H : P̂ 1

n(h) ≤ Bn}
with Bn → ∞ slowly as n→ ∞. Then the penalized SMD procedure (2.3) is equivalent to compute

inf
h∈Hc

n

n−1
n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) + λnP̂n(h). (2.4)

Let clsp(Hc
n) denote the closed linear span of Hc

n under the metric || · ||c. Then the optimization

problem (2.4) is equivalent to

inf
h∈clsp(Hc

n)
n−1

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) + λnP̂n(h) + λ1nP̂

1
n(h), (2.5)

where λ1n is chosen such that P̂ 1
n(ĥn) = Bn; see Eggermont and LaRiccia (2001). For most

applications, it suffices to have either λn > 0 or λ1n > 0.

Remark 2.1. To compute the penalized SMD estimator ĥn for h0, one could use any nonparametric

estimator m̂(X,h) for m(X,h) ≡ E[ρ(X,h)|X ], such as the series least squares (LS) estimator

m̂(X,h):

m̂(X,h) = pJn(X)′(P ′P )−
n∑

i=1

pJn(Xi)ρ(Zi, h), (2.6)

where {pj()}∞j=1 is a sequence of known basis functions that can approximate any square inte-

grable functions of X well, Jn → ∞ slowly as n → ∞, pJn(X) = (p1(X), ..., pJn
(X))′, P =

7



(pJn(X1), ..., p
Jn(Xn))′, and (P ′P )− is the generalized inverse of the matrix P ′P . To simplify pre-

sentation, we let pJn(X) be a tensor-product linear sieve basis, which is the product of univariate

linear sieves. For example, let {φij
: ij = 1, ..., Jj,n} denote a B-spline (wavelet, Fourier series,

power series) basis for L2(Xj , leb.), with Xj a compact interval in R, 1 ≤ j ≤ dx. Then the tensor

product {∏dx

j=1 φij
(Xj) : ij = 1, ..., Jj,n, j = 1, ..., dx} is a B-spline (wavelet, Fourier series, power

series) basis for L2(X , leb.), with X = X1 × ... × Xdx
. Clearly the number of terms in the tensor-

product sieve pJn(X) is given by Jn =
∏dx

j=1 Jj,n. See Newey (1997) and Huang (1998) for more

details about tensor-product B-splines and other linear sieves.

Remark 2.2. The penalized SMD procedures introduced in this section can be trivially extended to

estimate all the parameters of interest α0 ≡ (θ0, h0) of the general semi/nonparametric conditional

moment models (1.1). For instance, we can extend the procedure (2.3) to

α̂n = arg inf
α=(θ,h)∈Θ×Hn

{
1

n

n∑

i=1

m̂(Xi, α)′[Σ̂(Xi)]
−1m̂(Xi, α) + λnP̂n(h)

}
, (2.7)

where α ≡ (θ, h) ∈ Θ × H and Θ is a compact subset of Rdθ with fixed dθ < ∞, m̂(X,α) is

any nonparametric estimator of m(X,α) ≡
∫
ρ(y,Xz, α)dFY |X(y), and Σ̂(X) is any nonparametric

estimator of a positive definite weighting matrix Σ(X) that is used for the purpose of semiparametric

efficient estimation of θ0 ∈ Θ. In Appendix B, we provide a general consistency theorem (Lemma

B.1) that is also applicable to this penalized SMD estimator α̂n = (θ̂n, ĥn). In the main text of the

paper, however, we focus on nonparametric convergence rate of various penalized SMD estimators

of the unknown functions h0. To avoid tedious notations, we shall state properties of the penalized

SMD estimators ĥn given in (2.3) only. See Chen and Pouzo (2008) for root-n asymptotic normality

and semiparametric efficiency of smooth functionals of the penalized SMD estimator α̂n = (θ̂n, ĥn)

given in (2.7).

2.2 Monte Carlo Simulation

We report a small Monte Carlo (MC) study of penalized SMD estimation for the NPQIV model

(1.3):

Y1 = h0(Y2) + U, Pr(U ≤ 0|X) = γ ∈ {0.25, 0.5, 0.75}.

The MC is designed to mimic the real data application in the next subsection as well as that in

BCK (2007). First, we simulate (Y2, X̃) according to a bivariate Gaussian density whose mean

and covariance are set to the ones estimated from the UK Family Expenditure Survey Engel curve

data set (see BCK (2007) for more details). Second, we let X = Φ−1
(

X̃−µx

σx

)
and h0(y2) =

Φ
(

y2−µ2

σ2

)
where Φ denotes the standard normal cdf, and the means µx, µ2 and the variances σx,

σ2 are the estimated ones. Third, we generate Y1 from Y1 = h0(Y2) + U , where U = C2[V −
Φ−1

(
γ + C1{E[h0|X̃] − h0(Y2)}

)
], with V ∼ N(0, 1), C2 =

√
0.075 and C1 = 0.01. The number of
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observation is set to n = 500. We have also tried to draw (Y2, X̃) from the kernel density estimator

using the BCK data set, and to draw U from other distributions such as Pareto distribution. The

simulation results are very similar to the ones reported here.

In this MC study and for the sake of concreteness, we estimate h0() using the penalized SMD

estimator ĥn given in (2.3), with m̂(X,h) being the series LS estimator (2.6) of m(X,h), and Hn

being a finite dimensional (dim(Hn) ≡ k(n) < ∞) linear sieve. An example of a typical finite

dimensional sieve of dimension k(n) is a polynomial spline sieve, denoted as P-spline(q,r) with q

being the order and r being the number of knots, then k(n) = q(n) + r(n) + 1. See Appendix A for

other sieves such as wavelets and Hermite polynomials sieves.

There are three kinds of smoothing parameters in the penalized SMD procedure (2.3): one

(k(n)) for the sieve approximation of H by Hn, one (λn) for the penalization, and one (say Jn)

for the nonparametric estimation m̂(X,h). In the subsequent theoretical sections, we show that we

could obtain optimal rate in either the “sieve dominating case” (the case of choosing k(n) ≍ Jn,

k(n) < Jn properly and letting λn = 0 or λn ց 0 fast), or the “sieve penalization balance case”

(the case of choosing k(n) ≍ Jn, k(n) ≤ Jn and λn ≍ Jn

n properly), or the “penalization dominating

case” (the case of choosing λn ≥ Jn

n properly and letting k(n) = ∞ or k(n) >> Jn and k(n) ր ∞
fast). In this MC study, we compare the finite sample performance of the “sieve dominating case”

and the “sieve penalization balance case”.

Figure 2.1 summarizes the results for three quantiles γ ∈ {0.25, 0.5, 0.75}, each with 500 Monte

Carlo repetitions. The first row corresponds to the “sieve dominating case” and the second row

the “sieve penalization balance case”. To compute the estimator ĥ, we use P-Spline(2,5) (hence

k(n) = 8) for Hn and λn = 0.003 in the “sieve dominating case”, and P-Spline(5,10) (hence

k(n) = 16) for Hn and λn = 0.006 in the “sieve penalization balance case”, and in both cases, we

use P-Spline(5,10) (hence Jn = 16) for m̂ and P̂n(h) = ||∇h||2L2(leb). We have also tried other sieve

bases such as Hermite polynomials for ĥ, Fourier basis, B-spline basis and Hermite basis for m̂,

and L1 norm (against leb. or against empirical measure dµ̂) of first or second derivative penalty

P̂n(h). As long as the choice of k(n), λn and Jn are similar to the ones reported here, the simulation

results are similar; hence we do not report them due to the lack of space. In Figure 2.1, each panel

shows the true function (solid thick line), the corresponding estimator (solid thin), the Monte Carlo

95% confidence bands, and a sample realization of Y1 (that is arbitrarily picked from the last MC

iteration). Both estimators perform very well for all the quantiles, with the “sieve dominating case”

estimator performing slightly better. Nevertheless, we note that it is much faster to compute the

“sieve dominating case” procedure. For example, using a AMD Athlon 64 processor with 2.41 GHz

and 384 MB of RAM, the MC experiment written in FORTRAN took (approximately) 105 minutes

to finish for the “sieve dominating case”, whereas it took (approximately) 390 minutes to finish for

the “sieve penalization balance or penalization dominating case”.
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Table 2.1 shows the integrated square bias (I−BIAS2), the integrated variance (I−V AR) and

the integrated mean square error (I−MSE), which are computed using numerical integration over

a grid ranging from 2.5% and 97.5%. Figure 2.2 shows corresponding estimated curves and MC

confidence bands. Here for simplicity we have only reported the estimated quantile with γ = 0.5

and 250 MC replications. The first three rows belong to the “sieve dominating case”; the rest of the

rows deal with “sieve penalization balance or penalization dominating cases”. For this MC study,

the “sieve dominating cases” (the first three rows) perform well in terms of I−BIAS2 and I−V AR
(hence I−MSE), and are much more economical in terms of computational time. Secondly, within

the latter two cases derivative-based penalization perform better than “level-based” penalization.
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Figure 2.1: h0 (solid thick line), ĥn (solid thin), MC 95% confidence bands (dashed), a sample of
Y1 (dots), sieve dominating (1st row), sieve penalization balance (2nd row)

Table 2.1: MC simulation Results
(k(n), Jn) I −BIAS2 I − V AR I −MSE Pen λn time (in min.)

(6, 16) 0.00259 0.00349 0.00609 || · ||2L2 0.00001 23
(6, 16) 0.00256 0.00423 0.00680 ||∇2 · ||L1 0.00001 25
(6, 16) 0.00272 0.00401 0.00674 ||∇2 · ||2L2 0.00001 25
(8, 16) 0.00108 0.02626 0.02731 || · ||2L2 0.00010 43
(8, 16) 0.00131 0.01820 0.01954 ||∇2 · ||L1 0.00010 48
(8, 16) 0.00030 0.01853 0.01855 ||∇2 · ||2L2 0.00010 40
(16, 16) 0.00170 0.05464 0.05631 || · ||2L2 0.00050 82
(16, 16) 0.00015 0.03704 0.03714 ||∇2 · ||2L2 0.00050 84
(16, 31) 0.00011 0.02801 0.02813 ||∇2 · ||2L2 0.00100 235

Finally, we need to point out that our theoretical results in the subsequent sections allow for

k(n) = ∞ and/or k(n) >> Jn, and P̂n(h) = ||h||2L2(leb) or ||h||2L2(dµ̂) in the “penalization dominating
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Figure 2.2: Table 2.1 experiments. “Sieve dominating” (1st row), sieve penalization balance (2nd
row), “Penalization dominating” (3rd row).

case”. However, at least in our MC study, the numerical implementations of such choices are too

unstable to report.

2.3 Empirical Illustration

We apply the penalized SMD to nonparametric quantile IV estimation of Engel curves (or consumer

demand functions) using the UK Family Expenditure Survey data. The model is

E[1{Y1il ≤ h0l(Y2i)}|Xi] = γ ∈ (0, 1), l = 1, ..., 7,

where Y1il is the budget share of household i on good l (in this application, 1 : food-out, 2 : food-in,

3 : alcohol, 4 : fares, 5 : fuel, 6 : leisure goods, and 7 : travel). Y2i is the log-total expenditure

of household i that is endogenous, and Xi is the gross earnings of the head of household, which is

the instrumental variable. We work with the no kids sample that consists of 628 observations. The

same data set has been studied in BCK (2007) for the NPIV model (1.2). See Koenker (2005) for

the linear quantile regression and nonparametric quantile regression (E[1{Y1il ≤ h0l(Xi)}|Xi] = γ)

of Engel curves when the total expenditure is exogenous (i.e., Y2 = X).

As illustration, we apply the penalized SMD using a finite-dimensional polynomial spline sieve

to construct the sieve space Hn for h, with different types of penalty functions. We have tried

||∇kh||jLj(dµ̂) ≡ n−1
∑n

i=1 |∇kh(Y2i)|j for k = 1, 2 and j = 1, 2, and Hermite polynomial sieves,

cosine sieves and polynomial splines sieves for the series LS estimator m̂. All combinations yielded

very similar results; hence we only present figures for one “sieve dominating case”. Due to the

lack of space, in Figure 2.3 we report the estimated Engel curves only for three different quantiles
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γ = {0.25, 0.50, 0.75} and for four selected goods, using P-Spline(2,5) as Hn and P-Spline(5,10) for

m̂. Figure 2.3 presents the estimated Engel curves using P̂n(h) = ||∇2h||2L2(dµ̂) with λn = 0.001

and P̂n(h) = ||∇2h||L1(dµ̂) with λn = 0.001 in the first and second rows; P̂n(h) = ||∇h||2L2(dµ̂) with

λn = 0.001 (third row), and λn = 0.003 (fourth row); and P̂n(h) = ||∇h||2L2(leb) with λn = 0.005

(fifth row). By inspection, we see that the overall estimated function shapes are not very sensitive to

the choices of λn and P̂n(h), which is again consistent with the theoretical results for the penalized

SMD estimator in the “sieve dominating case”.
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Figure 2.3: Engel curves for quantiles γ = 0.25 (dash), 0.50 (solid), 0.75 (dot-dash). P̂n(h) =
||∇2h||2L2(dµ̂) with λn = 0.001 (1st row); P̂n(h) = ||∇2h||L1(dµ̂) with λn = 0.001 (2nd row); P̂n(h) =

||∇h||2L2(dµ̂) with λn = 0.001 (3rd row), λn = 0.003 (4th row); P̂n(h) = ||∇h||2L2(leb) with λn = 0.005

(5th row).

3 Consistency

Lemma B.1 in Appendix B provides a general consistency lemma for an approximate penalized

sieve extremum estimator that applies to both well-posed and ill-posed problems. Here in the main
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text we provide some concrete sufficient conditions for consistency of the penalized SMD estimators

(2.3).

Assumption 3.1. (i) {(Yi, Xi)}n
i=1 is a random sample; (ii) H ⊆ H, and H ≡ H1 × · · · × Hq

is a separable Banach space under the metric ‖h‖c ≡ ∑q
ℓ=1 ‖hℓ‖c,ℓ; (iii) E[ρ(Z, h0)|X ] = 0, and

‖h0 − h‖c = 0 for any h ∈ H with E[ρ(Z, h)|X ] = 0.

Assumption 3.2. (i) {Hk : k ≥ 1} are the sieve spaces satisfying Hk ⊆ Hk+1 ⊆ H, and there exists

Πnh0 ∈ Hk(n) such that ||Πnh0 − h0||c = o(1); (ii) E[m(X,Πnh0)
′m(X,Πnh0)] = o(1).

Given m(X,h0) = 0 and assumption 3.2(i), assumption 3.2(ii) is implied by assumption 3.2(ii)’:

E[m(X,h)′m(X,h)] is continuous at h0 under ‖·‖c.

Assumption 3.3. (i) m̂(x, h) and P̂n(h) are measurable functions of the data {(Yi, Xi)}n
i=1 for

almost all x ∈ X and all h ∈ Hk(n); (ii) ĥn ∈ Hk(n) is well-defined with probability approaching

one.

See Remark B.1 in Appendix B for general sufficient conditions for assumption 3.3.

Assumption 3.4. either (a) or (b) holds: (a) λn = 0; (b) λn > 0, λn suph∈Hn
|P̂n(h) − P (h)| =

OP (λn) = oP (1), with P (·) a non-negative real-valued measurable function of h ∈ H, P (h0) < ∞
and λn|P (Πnh0) − P (h0)| = O(λn) = o(1).

3.1 Well-posed case

Although our main focus is on the ill-posed problems, for the sake of comparison, we first present a

consistency theorem for the well-posed cases (i.e., the ||h− h0||c metric is continuous with respect

to the criterion E [m(X,h)′m(X,h)] near zero). Let N(δ,Hn, || · ||c) denote the minimal number of

radius δ covering balls of Hn under the || · ||c metric.

Assumption 3.5. (i) There are a measurable function b(X) with E[b(X)] <∞ and a finite constant

κ > 0 such that for all δ > 0 we have

sup
{h,h′∈Hn:||h−h′||c≤δ}

||m(x, h) −m(x, h′)||E ≤ b(x)δκ;

(ii) either (a) suph∈Hn
||m(X,h)||E ≤ K <∞ almost all X; or (b) E[|b(X)|2] and E

[
suph∈Hn

‖m(X,h)‖2
E

]

are bounded; (iii) suph∈Hn
n−1

∑n
i=1 ‖m̂(Xi, h) −m(Xi, h)‖2

E = oP (1); (iv) log
(
N(ǫ1/κ,Hn, || · ||c)

)
=

o(n) for all ǫ > 0.

We note that assumptions 3.1(i) and 3.5 imply condition (3.1.2) in the next theorem.

Theorem 3.1. Let ĥn be the penalized SMD estimator with λn ≥ 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h). Let assumptions 3.1(ii)(iii), 3.2, 3.3 and 3.4 hold. Suppose that

the following condition (3.1.1) and condition (3.1.2) (or assumptions 3.1(i) and 3.5) hold:
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(3.1.1) for any sequence {hk ∈ Hk} with lim infk→∞ E [m(X,hk)′m(X,hk)] = 0, it holds ||hk −
h0||c → 0 as k → ∞; (3.1.2) suph∈Hn

∣∣n−1
∑n

i=1 ||m̂(Xi, h)||2E − E
[
||m(X,h)||2E

]∣∣ = oP (1).

Then: ||ĥn − h0||c = oP (1).

3.1.1 Compact parameter space case

We now specialize Theorem 3.1 to the case when the original parameter space H is compact under

|| · ||c. We impose the following sufficient conditions for assumptions 3.3 and 3.5(iv), conditions

(3.1.1) and (3.1.2):

Assumption 3.6. (i) the sieve spaces Hn are compact under || · ||c; (ii) λn suph∈Hn
P (h) = o(1).

Assumption 3.7. (i) the parameter space H is compact under || · ||c; (ii) E[m(X,h)′m(X,h)] is

lower semicontinuous on H under ‖·‖c.

Corollary 3.1. Let ĥn be the penalized SMD estimator with λn ≥ 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h). Let assumptions 3.1, 3.2, 3.4, 3.5(i)(ii)(iii), 3.6 and 3.7 hold.

Then: ||ĥn − h0||c = oP (1).

Under assumptions 3.6(i) and 3.7(i), assumption 3.5(iii) is satisfied by commonly used nonpara-

metric regression estimators of m(X,h), such as the kernel estimator, the local linear regression, and

the series least square (LS) estimator m̂(X,h) defined in (2.6). See, e.g., Newey (1991), Andrews

(1995), NP (2003), AC (2003) and CIN (2007) for details.

3.2 Ill-posed case

We next present consistency results that allow for ill-posed problems (i.e., the ||h− h0||c metric is

not continuous with respect to the criterion E [m(X,h)′m(X,h)] near zero) and without assuming

|| · ||c−compactness of H. We first strengthen the speed of convergence of m̂(X,h) to m(X,h):

Assumption 3.8. (i) suph∈Hn
E
[
‖m̂(X,h) −m(X,h)‖2

E

]
= Op(δ

2
m,n) = oP (1); (ii) E

[
||m̂(X,h)||2E

]
≍

n−1
∑n

i=1 ||m̂(Xi, h)||2E uniformly over h ∈ Hn.

Many commonly used nonparametric estimator of the conditional mean function m(X,h) can

be shown to satisfy assumption 3.8. For example, under the following two mild assumptions 3.9

and 3.10, the series LS estimator m̂(X,h) satisfies assumption 3.8 with δ2m,n = max{Jn

n , b
2
m,Jn

}, and

suph∈Hn
n−1

∑n
i=1 ‖m̂(Xi, h) −m(Xi, h)‖2

E = OP (δ2m,n); see Lemmas B.2 and B.3 in the Appendix.

Assumption 3.9. (i) X is a compact connected subset of Rdx with Lipschitz continuous boundary,

and fX is bounded and bounded away from zero over X ; (ii) The smallest and largest eigenvalues

of E
[
pJn(X)pJn(X)′

]
are bounded and bounded away from zero for all Jn; (iii) Denote ξn ≡

supX∈X

∥∥pJn(X)
∥∥

E
. Either ξ2nJn = o(n) or Jn log(Jn) = o(n) for polynomial spline pJn(X) sieve.
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If pJn(X) is the spline or cosine/sine or wavelet sieves, then ξn ≍ J
1/2
n ; see e.g. Newey (1997)

or Huang (1998).

Assumption 3.10. (i) suph∈Hn
supx V ar[ρ(Z, h)|X = x] ≤ K < ∞; (ii) for any g ∈ {m(·, h) : h ∈

Hn}, there is pJn(X)′π such that, uniformly over h ∈ Hn, either (a) or (b) holds: (a) supx |g(x)−
pJn(x)′π| = O(bm,Jn

) = o(1); (b) E{[g(X) − pJn(X)′π]2} = O(b2m,Jn
) for pJn(X) sieve with ξn =

O(J
1/2
n ).

Assumption 3.10(ii) is satisfied by typical smooth function classes of {m(·, h) : h ∈ Hn} and typ-

ical linear sieves pJn(X). For example, if {m(·, h) : h ∈ Hn} is a subset of Λγm
c (X ) (or W γm

2,c (X , leb.))
with γm > 0, then assumption 3.10(ii) (a) and (b) hold with bm,Jn

= J−rm
n where rm = γm/dx and

tensor product polynomial splines, wavelets or Fourier series sieves.

Before we present consistency results for the ill-posed case, we state a general lemma about the

property of penalty function λnP (ĥn). The following assumption is a stronger version of assumption

3.4(b):

Assumption 3.11. λn > 0, λn suph∈Hn
|P̂n(h) − P (h)| = oP (λn), with P (·) a non-negative real-

valued measurable function of h ∈ H, P (h0) <∞ and λn|P (Πnh0) − P (h0)| = o(λn).

Under assumption 3.2(i), λn > 0 and P (h0) < ∞, a sufficient condition for λn|P (Πnh0) −
P (h0)| = o(λn) is that P (·) is continuous at h0 under ‖·‖c. Note that assumptions 3.4(b) and 3.11

are trivially satisfied when Hn = H and P̂n = P .

Lemma 3.1. Let ĥn be the penalized SMD estimator satisfy assumption 3.3 with λn > 0, λn = oP (1),

and m̂(X,h) any consistent estimator of m(X,h) satisfying assumption 3.8 at h = Πnh0.

(1) Under assumption 3.4(b) and max{δ2m,n, E[||m(X,Πnh0)||2E ]} = O(λn), P (ĥn) = OP (1).

(2) Under assumption 3.11 and max{δ2m,n, E[||m(X,Πnh0)||2E ]} = o(λn), P (ĥn) ≤ P (h0) +

oP (1).

3.2.1 Finite dimensional sieve dominating case

Assumption 3.12. There are a positive non-increasing function B(k) and a non-decreasing lower

semicontinuous function gm() with gm(0) = 0, gm(ε) > 0 for ε > 0, such that

E [m(X,h)′m(X,h)] ≥ B(k)gm(||h− h0||c) for all h ∈ Hk, all k ≥ 1.

Theorem 3.2. Let ĥn be the penalized SMD estimator with λn ≥ 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS

estimator m̂(X,h)). Suppose that assumptions 3.1, 3.2, 3.3, 3.4, and 3.12 hold. If

max
{
δ2m,n, E(‖m(X,Πnh0)‖2

E), λn

}
= o (B(k(n))) ,

then ||ĥn − h0||c = oP (1), and if λn > 0 then P (ĥn) = OP (1).
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Theorem 3.2 allows for λn = 0; hence it establishes consistency for the original SMD esti-

mator proposed in NP (2003) and AC (2003) without assuming || · ||c−compactness of H and

Hk(n). This theorem also allows for any kinds of penalty function P (h) with λn > 0, λn =

O(max{δ2m,n, E(‖m(X,Πnh0)‖2
E)}) = o (B(k(n))) as long as it satisfies the mild assumption 3.4(b).

3.2.2 Lower semicompact penalty

In this subsection we present a consistency result when the original parameter space H is not

known a priori compact under || · ||c but the penalty function is lower semicompact (i.e., the set

{h ∈ H : P (h) ≤M} is compact under || · ||c for all M <∞).

Assumption 3.13. (i) The set {h ∈ H : P (h) ≤ M} is compact under || · ||c for all 0 ≤ M < ∞;

(ii) the sieve spaces Hn are closed under || · ||c.

The next consistency result indicates that the lower semicompact penalty converts an ill-posed

problem to a well-posed one.7 It also demonstrates that one can replace assumption 3.12 by some

stronger condition on the penalty function. To present an easy-to-verify consistency result we also

replace assumption 3.3 by some simply sufficient conditions.

Theorem 3.3. Let ĥn be the penalized SMD estimator with λn > 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS

estimator m̂(X,h)). Suppose that assumptions 3.1, 3.2, 3.4(b), 3.7(ii), and 3.13 hold. If

max
{
δ2m,n, E{‖m(X,Πnh0)‖2

E}
}

= O (λn) = o(1),

then: ||ĥn − h0||c = oP (1) and P (ĥn) = OP (1).

Remark 3.1. When P (h) is convex, under assumptions 3.1(iii) and 3.13, the penalized SMD

estimator ĥn using a closed finite dimensional linear sieve Hk(n) is equivalent to the original SMD

estimator using a finite dimensional compact sieve:

ĥn = arg inf
h∈Hk(n):P̂n(h)≤Mn

1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h), with Mn → ∞ slowly.

Therefore, Theorem 3.3 also establishes the consistency of the original SMD estimator using fi-

nite dimensional compact sieves of the type {h ∈ Hk(n) : P̂n(h) ≤ Mn} without assuming the

|| · ||c−compactness of the original parameter space H. In particular, this immediately implies con-

sistency of the SMD estimators of the NPIV model (1.2) E[Y1−h0(Y2)|X ] = 0 studied in NP (2003),

AC (2003) and BCK (2007), and the NPQIV model studied in CIN (2007), without requiring that

H is a compact subset of the space L2(fY2).

7We are grateful to Victor Chernozhukov for pointing out the nice property of lower semicompact penalty. See
Remark 3.3 for further discussion.
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3.2.3 Penalization dominating case with general penalty

In this and the next two subsections we present consistency results for general penalty functions

that may not be lower semicompact, but they satisfy assumption 3.11 (which is a stronger version

of assumption 3.4(b)).

For a Banach space H we denote H∗ as the dual of H, and 〈·, ·〉H∗,H as the inner product that

links the space H with its dual H∗.

Assumption 3.14. There are a t0 ∈ H∗ with 〈t0, ·〉H∗,H a bounded linear functional with respect to

|| · ||c, and a non-decreasing lower semicontinuous function g() with g(0) = 0, g(ε) > 0 for ε > 0,

such that

P (h) − P (h0) − 〈t0, h− h0〉H∗,H ≥ g(||h− h0||c) for all h ∈ Hk, all k ≥ 1.

When H is convex, Assumption 3.14 is satisfied if P (h) is strongly convex at h0 under || · ||c,
that is, there exists a c′ > 0 such that

P (h) − P (h0) − 〈DP (h0), h− h0〉H∗,H ≥ c′||h− h0||2c for all h ∈ H,

where DP (h0) ∈ H∗ is the Gateaux derivative of P () at h0. We note that the strong convexity

is satisfied by commonly used penalization function P (h), and it obviously implies that P (h) is

strictly convex at h0; see, e.g., Eggermont and LaRiccia (2001).

Assumption 3.15. For all {hk ∈ Hk} with lim infk→∞ E [m(X,hk)′m(X,hk)] = 0, it holds that

lim infk→∞〈t0, hk − h0〉H∗,H = c for some c ≥ 0.

Theorem 3.4. Let ĥn be the penalized SMD estimator with λn > 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS

estimator m̂(X,h)). Let assumptions 3.1, 3.2, 3.3, 3.11, 3.14 and 3.15 hold. Suppose that either

(a) or (b) holds:

(a) max{δ2m,n, E(‖m(X,Πnh0)‖2
E)} = o (λn);

(b) assumption 3.12 holds with max{δ2m,n, E(‖m(X,Πnh0)‖2
E)} = o (max{B(k(n)), λn}).

Then: ||ĥn − h0||c = oP (1), and P (ĥn) = P (h0) + oP (1).

3.2.4 Closed, convex and bounded parameter space case

We now present some sufficient conditions for assumptions 3.3 and 3.15 without requiring that

the infinite dimensional parameter space H is compact under || · ||c. We first recall some standard

definitions. A sequence {hj} in a Banach space H converges weakly to h iff limj→∞〈v, hj−h0〉H∗,H =

〈v, h−h0〉H∗,H for all v ∈ H∗. A functional F : H ⊆ H → [−∞,+∞] is said to be weak sequentially

lower semicontinuous at h ∈ H iff F (h) ≤ lim infj→∞ F (hj) for each sequence {hj} in H that
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converges weakly to h. A Banach space H is reflexive iff (H∗)∗ = H. For example, the spaces Lp

for 1 < p < ∞, and the Sobolev spaces W γ
p for 1 < p < ∞ are reflexive and separable Banach

spaces.

Assumption 3.16. (i) (H, || · ||c) is a reflexive Banach space; (ii) H is a closed and convex subset

in (H, || · ||c); (iii) H is bounded in || · ||c (i.e., suph∈H ||h||c ≤ K <∞).

Assumption 3.16(iii) is implied by the so-called coercive condition, denoted as Assumption

3.16(iii)’: E [m(X,h)′m(X,h)] + λP (h) → +∞ as ||h||c → +∞ for h ∈ H and λ ∈ (0, 1].

Assumption 3.17. E [m(X,h)′m(X,h)] is weak sequentially lower semicontinuous on H.

Remark 3.2. Under assumption 3.16, assumption 3.17 is implied by either 3.17’ or 3.17”:

Assumption 3.17’: m(·, h) : H ⊆ H → L2(fX) is compact (i.e., continuous and maps bounded

sets in H into relatively compact sets in L2(fX)).

Assumption 3.17”: E [m(X,h)′m(X,h)] is convex and lower semicontinuous on H (in ‖·‖c).

Assumption 3.18. Either (a) or (b) holds: (a) Hk are compact under || · ||c, and P (h) is lower

semicontinuous on Hk (in ‖·‖c); (b) Hk are closed and convex subsets of H, and P (h) is convex

and lower semicontinuous on Hk (in ‖·‖c).

Corollary 3.2. Let ĥn be the penalized SMD estimator with λn > 0, λn = o(1), and m̂(X,h) any

consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS

estimator m̂(X,h)). Let assumptions 3.1, 3.2, 3.11, 3.14, 3.16, 3.17 (or 3.17’ or 3.17”) and 3.18

hold. Then the conclusion of Theorem 3.4 holds.

Remark 3.3. Comparing Theorem 3.4 and Corollary 3.2 to Theorem 3.3, all consistency results

allow for non-compact (in || · ||c) parameter space H and without assumption 3.12. Nevertheless, the

condition max
{
δ2m,n, E{‖m(X,Πnh0)‖2

E}
}

= o (λn) imposed in Theorem 3.4 and Corollary 3.2 for

a general penalty can be improved to the condition max
{
δ2m,n, E{‖m(X,Πnh0)‖2

E}
}

= O (λn) =

o(1) in Theorem 3.3 for a lower semicompact penalty. In addition, using a lower semicompact

penalty, Theorem 3.3 leads to consistency without imposing assumptions 3.14 and 3.16. This means

that by applying Theorem 3.3, one can obtain sup-norm consistency of the penalized SMD estimator

using a lower semicompact penalty.

3.2.5 Point identification induced by convex penalty

In this subsection we consider an important class of problems in which E [m(X,h)′m(X,h)] is

convex. We shall replace the old uniqueness assumption 3.1(iii) by including a prior information of

P (h) ≤M0 for a known constant M0 <∞. As already mentioned in Section 2, from the well-known
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results on convex optimization (see, e.g., Eggermont and LaRiccia, 2001), when E [m(X,h)′m(X,h)]

and P (h) are convex, and H is closed and convex, the constraint optimization problem

h0 ∈ M0 ≡
{
h : arg inf

h∈H:P (h)≤M0

E [m(X,h)′m(X,h)]

}
(3.1)

is equivalent to an unconstrained optimization problem

h0 ∈ M0 =

{
h : arg inf

h∈H
{E [m(X,h)′m(X,h)] + λ0P (h)}

}
,

with λ0 ≥ 0 such that λ0[P (h0) −M0] = 0 (more precisely, λ0 > 0 for P (h0) = M0 and λ0 = 0 for

P (h0) < M0).

Assumption 3.19. (i) For all h0, h
′ belonging to M0 defined in (3.1), it follows that ||h0−h′||c = 0;

(ii) P (·) is convex and lower semicontinuous on H (in ‖·‖c).

Assumption 3.19(i) implicitly assumes that the set M0 is not empty and explicitly imposes that

it is a singleton {h0} (up to an equivalent class in || · ||c).

Remark 3.4. If E[||m(X,h)||2E ] + λ0P (h) is strictly convex on H, then assumption 3.19(i) is

automatically satisfied. For instance, the condition that E[||m(X,h)||2E ] is convex and P (h) is

strictly convex, will suffice. For the class of problems that m(X,h) is linear in h ∈ H = Lp (such as

in the NPIV model), assumption 3.19 is trivially satisfied if P (h) = ||h||pLp with p > 1. Although the

strict convexity of E[||m(X,h)||2E ] alone does imply assumption 3.1(iii), it might be too strong. For

example, in the NPIV model (1.2) we have m(X,h) = E[Y1 − h(Y2)|X ], and hence E[||m(X,h)||2E ]

is strictly convex in h ∈ H = L2(fY2) iff the conditional density of Y2 given X is complete; see,

e.g., NP (2003), DFR (2006) and CFR (2007).

The next consistency result says that we can replace the original identification assumption

3.1(iii) by this new assumption 3.19(i), and that we can compute minimization over unconstraint,

closed and convex sieves Hk(n).

Theorem 3.5. Let ĥn be the penalized SMD estimator with λn = λ0 + o(1) > 0, λ0 ≥ 0, and

m̂(X,h) any consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10

for series LS estimator m̂(X,h)). Let assumptions 3.1(i)(ii), 3.2, 3.11, 3.14, 3.16(i)(ii), 3.16(iii)’,

3.17”, 3.18(b) and 3.19 hold. Suppose that either (a) or (b) holds:

(a) max{δ2m,n, E(‖m(X,Πnh0)‖2
E)} = o (λn);

(b) assumption 3.12 holds with max{δ2m,n, E(‖m(X,Πnh0)‖2
E)} = o (max{B(k(n)), λn}).

Then: ||ĥn − h0||c = oP (1) and P (ĥn) = P (h0) + oP (1), where {h0} = M0.

If there exists h0 ∈ H such that E[||m(X,h0)||2E ] = 0 but is not unique, then assumption 3.19(i)

and Theorem 3.5 imply that the penalized SMD estimator will converge to a h0 = arg infh∈H{P (h) :
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E[||m(X,h)||2E ] = 0}. If P (h) is a norm such as ||h||2L2 then this becomes the so-called minimum

norm solution in the literature on ill-posed inverse problems; see, e.g., Engl, Hanke and Neubauer

(1996).

In Theorem 3.5, max
{
δ2m,n, E{‖m(X,Πnh0)‖2

E}
}

= o (λn) and λn = λ0 +o(1) > 0, with λ0 > 0

for P (h0) = M0 and λ0 = 0 for P (h0) < M0. Thus, when the constraint is binding P (h0) = M0, it

suffices that max
{
δ2m,n, E{‖m(X,Πnh0)‖2

E}
}

= o (1) and λn can be chosen such that P̂n(ĥn) = M0.

Remark 3.5. When E[||m(X,h)||2E ] and P (h) are convex, for the minimization problem (3.1),

the penalized SMD estimator ĥn = arg infh∈Hk(n)

{
1
n

∑n
i=1 m̂(Xi, h)

′m̂(Xi, h) + λnP̂n(h)
}

using

a closed finite dimensional linear sieve Hk(n) (hence compact) is equivalent to the original SMD

estimator using a finite dimensional compact sieve:

ĥn = arg inf
h∈Hk(n):P̂n(h)≤M0

1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h).

Therefore, Theorem 3.5 also establishes consistency of the original SMD estimator using finite

dimensional compact sieves of the type {h ∈ Hk(n) : P̂n(h) ≤ M0} without assuming the || ·
||c−compactness of the original parameter space H.

3.3 Consistency of the weighted penalized SMD estimator

In Remark 2.2 we presented a semi/nonparametric weighted version of our penalized SMD estimator.

In this section we point out that all previous consistency results remain valid for the following

nonparametric weighted penalized SMD estimator:

ĥn ≡ arg inf
h∈Hn

{
1

n

n∑

i=1

m̂(Xi, h)
′[Σ̂(Xi)]

−1m̂(Xi, h) + λnP̂n(h)

}
. (3.2)

Assumption 3.20. (i) supx∈X

∣∣∣Σ̂(x) − Σ(x)
∣∣∣ = oP (1); (ii) Σ(X) is finite positive definite, and its

smallest and largest eigenvalues are positive and bounded uniformly over X.

The next theorem can be trivially established by following all the consistency proofs for the

penalized SMD estimator without Σ̂(x); hence we omit the proof due to the length of the paper.

Theorem 3.6. Let ĥn be the weighted penalized SMD estimator (3.2) with λn ≥ 0, λn = o(1),

and m̂(X,h) any consistent estimator of m(X,h). Let assumption 3.20 hold. Then: Theorem 3.1,

Corollary 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, Corollary 3.2, and Theorem 3.5 remain

true.

Theorem 3.6 can also be trivially extended to establish consistency for the semi/nonparametric

weighted penalized SMD estimator α̂n = (θ̂n, ĥn) defined in (2.7). See Chen and Pouzo (2008) for

details.
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4 Convergence Rates

In the rest of the paper, we let ‖·‖s denote another metric on the infinite-dimensional function

space H that is weaker than the norm || · ||c (i.e., ||h||s ≤ ||h||c for all h ∈ H). In this section we

study convergence rate under the metric || · ||s. Given the consistency results stated in Section 3,

we can now restrict our attention to a shrinking || · ||c−neighborhood around h0. Let Hos ≡ {h ∈
H : ||h − h0||c = o(1), ||h||c ≤ c, P (h) ≤ M0} and Hosn ≡ {h ∈ Hn : ||h − Πnh0||c = o(1), ||h||c ≤
c, P (h) ≤M0}. Then, for the purpose of establishing a rate of convergence under the || · ||s metric,

we can treat Hos as the new parameter space and Hosn as its sieve space.

In order to establish the convergence rate under || · ||s we first establish the rate under a weaker

pseudo-metric || · ||. We define the first pathwise derivative at the direction [h − h0] evaluated at

h0 as
dm(X,h0)

dh
[h− h0] ≡

dE[ρ(Z, (1 − τ)h0 + τh)|X ]

dτ

∣∣∣∣
τ=0

a.s. X . (4.1)

Following AC (2003), we define the pseudo-metric ||h1 − h2|| for any h1, h2 ∈ Hos as

||h1 − h2|| ≡

√√√√E

[(
dm(X,h0)

dh
[h1 − h2]

)′(
dm(X,h0)

dh
[h1 − h2]

)]
. (4.2)

Assumption 4.1. (i) Hos and Hosn are convex, m(X,h) is continuously pathwise differentiable

with respect to h ∈ Hos. There is a finite constant C > 0 such that ||h− h0|| ≤ C||h− h0||s for all

h ∈ Hos; (ii) there are finite constants c1, c2 > 0 such that ||h− h0||2 ≤ c1E[m(X,h)′m(X,h)] hold

for all h ∈ Hosn; and c2E[m(X,h)′m(X,h)] ≤ ||h− h0||2 holds for all h ∈ Hos.

Assumption 4.1 implies that the weak metric ||h− h0|| is well-defined in Hos and is continuous

with respect to the criterion function E[m(X,h)′m(X,h)].

Assumption 4.2. There is a t0 ∈ H∗ with 〈t0, ·〉H∗,H a bounded linear functional with respect to

|| · ||s such that λn {P (h) − P (Πnh0) − 〈t0, h− Πnh0〉H∗,H} ≥ 0 for all h ∈ Hosn.

Theorem 4.1. Let ĥn be the penalized SMD estimator with λn ≥ 0, λn = o(1), P̂n(h) = P (h), and

m̂(X,h) any consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10

for series LS estimator m̂(X,h)). Let h0 ∈ Hos and ĥn ∈ Hosn with probability approaching one.

Suppose that assumptions 3.1(i)(ii), 3.2, 3.4 and 4.1 hold. Then:

(1) ||ĥn − Πnh0|| = OP

(
max

{
δm,n,

√
λn|P (ĥn) − P (Πnh0)|, ||Πnh0 − h0||

})
;

= OP

(
max{δm,n,

√
λn, ||Πnh0 − h0||}

)
under assumption 3.4; = OP

(
max{δm,n, o(

√
λn), ||Πnh0 − h0||}

)

under assumption 3.11.

(2) If assumption 4.2 holds, then:

||ĥn − Πnh0|| = OP

(
max

{
δm,n,

√
λn||ĥn − Πnh0||s, ||Πnh0 − h0||

})

= OP

(
max

{
δm,n, o(

√
λn), ||Πnh0 − h0||

})
.
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According to Theorem 4.1, one can obtain the convergence rate under the weak metric || · || by

balancing the three parts: (1) δm,n (the estimation error rate of m(X,h), which is
√

Jn

n + bm,Jn
for

the series LS estimator m̂(X,h)); (2) ||Πnh0 − h0|| (the sieve bias error rate under the weak metric

|| · ||); (3) λn (the penalization bias error rate).

Before we establish the convergence rate under the strong norm ||ĥn − h0||s, we introduce

two measures of ill-posedness in a shrinking neighborhood of h0: the sieve modulus of continuity,

ωn(δ,Hosn), and the modulus of continuity, ω(δ,Hos), which are defined as8

ωn(δ,Hosn) ≡ sup
h∈Hosn:||h−Πnh0||≤δ

||h− Πnh0||s, ω(δ,Hos) ≡ sup
h∈Hos:||h−h0||≤δ

||h− h0||s.

The definition of modulus of continuity, ω(δ,Hos), does not depend on the choice of any estimation

method. Therefore, when ω(δ,Hos)
δ goes to infinity as δ goes to zero, we say the problem of estimating

h0 under || · ||s is ill-posed.

In the following we present two theorems of convergence rates under the strong metric || · ||s.

Assumption 4.3. ωn(||Πnh0 − h0||,Hosn) ≤ c||Πnh0 − h0||s.

Theorem 4.2. (Sieve dominating case) Let ĥn be the penalized SMD estimator with λn ≥ 0,

λn = o(1). Suppose that assumption 4.3 and all the assumptions of Theorem 4.1(1) hold. If

max{δm,n,
√
λn} = δm,n, then: ||ĥn − h0||s = OP (||h0 − Πnh0||s + ωn(δm,n,Hosn)).

Theorem 4.2 allows for finite dimensional sieves with or without penalization, although
√
λn → 0

faster than max{δm,n, ||Πnh0 − h0||} → 0 (“sieve dominating case”). It generalizes theorem 2 of

BCK (2007) on sieve nonparametric IV regression to allow for nonlinear ill-posed inverse problems

and possibly non-zero λn. In particular, when λn = 0 and H is compact under || · ||s, Theorem

4.2 provides convergence rate in || · ||s for the original SMD estimators proposed in NP (2003) and

AC (2003) for general nonlinear semi/nonparametric conditional moment models. To apply this

theorem one, needs to compute the sieve modulus of continuity ωn(δ,Hosn); see subsection 5.1 for

sufficient conditions to bound this term.

Theorem 4.3. (Penalization dominating case) Let ĥn be the penalized SMD estimator with λn > 0,

λn = o(1). Suppose that assumption 4.3 and all the assumptions of Theorem 4.1(1) hold. Let either

assumption 3.13(i) holds with max{δm,n,
√
λn} = δm,n = O(

√
λn), or assumption 4.2 holds with

max

{
δm,n,

√
λn||ĥn − Πnh0||s

}
= δm,n. Then:

||ĥn − h0||s = OP (||h0 − Πnh0||s + ωn(δm,n,Hosn)) .

If ||h0 − Πnh0||s = 0 then ||ĥn − h0||s = OP (ω(δm,n,Hos)).

8Our definitions are inspired by the approach of Daubechies, Defrise and de Mol (2004) in their convergence
analysis for the linear ill-posed inverse problem with a deterministic noise and a known operator.
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Theorem 4.3 allows for both finite and infinite dimensional sieves with penalization, although

now either max{δm,n, ||Πnh0 − h0||} = O(
√
λn) as in the case with a lower semicompact penalty,

or max{δm,n, ||Πnh0 − h0||} = o(
√
λn) as in the case with a non-lower semicompact penalty. To

apply this theorem, one needs to compute either the sieve modulus of continuity ωn(δ,Hosn) or the

modulus of continuity ω(δ,Hos); see subsection 5.2 for sufficient conditions to bound these terms.

The following corollary establishes the convergence rates for the penalized SMD estimator de-

fined with λ̂nP̂n(h) instead of λnP (h).

Corollary 4.1. Let ĥn be the penalized SMD estimator with λn = o(1) and m̂(X,h) any consistent

estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS estimator

m̂(X,h)). If suph∈Hosn

∣∣∣ λ̂nP̂n(h)−λnP (h)
λnP (h)

∣∣∣ = oP (1) for λn > 0, then Theorems 4.1, 4.2 and 4.3

remain true.

5 Sieve Modulus of Continuity and Optimal Rates

In this section we shall present some sufficient conditions to bound the sieve modulus of continuity

and modulus of continuity. Throughout this section, we assume that Hos is a subset of a separable

Hilbert space H with an inner product 〈·, ·〉s. Let {qj}∞j=1 be a Riesz basis associated with the

Hilbert space (H, || · ||s), that is, any h ∈ H can be expressed as h =
∑

j〈h, qj〉sqj , and there

are two finite constants c1, c2 > 0 such that c1||h||2s ≤ ∑
j |〈h, qj〉s|2 ≤ c2||h||2s for all h ∈ H. See

Appendix A for examples of commonly used function spaces and Riesz bases. For instance, if Hos

is a subset of a Besov space, then the wavelet basis is a Riesz basis {qj}∞j=1.

5.1 Sufficient conditions

We first provide some sufficient conditions for the sieve modulus of continuity ωn(δ,Hosn) and

assumption 4.3.

Assumption 5.1. (i) {qj}∞j=1 is a Riesz basis for a real-valued separable Hilbert space (H, || · ||s),
and Hos is a subset of H; (ii) ||h0 −

∑k(n)
j=1 〈h0, qj〉sqj ||s = O({νk(n)}−γh) for a finite γh > 0 and an

increasing positive sequence {νj}∞j=1.

Assumption 5.1 suggests that Hn = clsp{q1, ..., qk(n)} is a natural sieve for the estimation of h0.

For example, if h0 ∈ W γh

2 ([0, 1]d, leb)), then assumption 5.1(i) is satisfied with spline or wavelet or

power series or Fourier series bases with (H, || · ||s) = (L2([0, 1]d, leb), || · ||L2(leb)), and assumption

5.1(ii) is satisfied with νk(n) = {k(n)}1/d.

Assumption 5.2. There are finite constants c, C > 0 and a non-increasing positive sequence

{bj ≍ ϕ(ν−2
j )}∞j=1 such that: (i) ||h||2 ≥ c

∑∞
j=1 bj|〈h, qj〉s|2 for all h ∈ Hosn; (ii) C

∑
j bj|〈h0 −

Πnh0, qj〉s|2 ≥ ||h0 − Πnh0||2.
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Assumption 5.2(i) is a low-level sufficient condition that links the weak-norm ||h|| to its strong

norm in a sieve shrinking neighborhood Hosn (of h0). Assumption 5.2(ii) is so-called “stability

condition” that is only required to hold in terms of the sieve approximation error h0 − Πnh0 (of

h0).

Lemma 5.1. Let Hn = clsp{q1, ..., qk(n)} and assumption 5.1(i) hold.

(1) If assumption 5.2(i) holds, then: ωn(δ,Hosn) ≤ const.× δ/
√
bk(n).

(2) If assumption 5.2(ii) holds, then: ||h0 − Πnh0|| ≤ const.
√
bk(n)||h0 − Πnh0||s.

(3) If assumption 5.2(i)(ii) holds, then: assumption 4.3 is satisfied.

In order to bound the modulus of continuity ω(δ,Hos) we need to strengthen both assumption

5.1 (on sieve approximation rate) and assumption 5.2(i) that links the weak metric ||h|| to its strong

metric ||h||s.

Assumption 5.3. There exist finite constants M > 0, γh > 0 and an increasing positive sequence

{νj}∞j=1 such that ||h−∑k
j=1〈h, qj〉sqj ||s ≤M(νk+1)

−γh for all h ∈ Hos.

Remark 5.1. Under assumption 5.1(i), assumption 5.3 is satisfied if there are finite constants

M > 0, γh > 0 and an increasing positive sequence {νj}∞j=1 such that either (a) or (b) holds: (a)

(ellipsoid)
∑∞

j=1 ν
2γh

j |〈h, qj〉s|2 ≤M2 for all h ∈ Hos; or (b) (hyperrectangle) |〈h, qj〉s| ≤ ν−γh

j and
∑∞

j=1 ν
−2γh

j <∞ for all h ∈ Hos.

Assumption 5.4. There are finite constants c, C > 0 and a non-increasing positive sequence {bj ≍
ϕ(ν−2

j )}∞j=1 such that: (i) ||h||2 ≥ c
∑∞

j=1 bj|〈h, qj〉s|2 for all h ∈ Hos; (ii) ||h||2 ≤ C
∑∞

j=1 bj |〈h, qj〉s|2

for all h ∈ Hos.

It is obvious that assumption 5.4(i) and (ii) implies assumption 5.2(i) and (ii) respectively.

Lemma 5.2. Let assumptions 5.1, 5.4(i) and 5.3 hold. Then: there is an integer k∗ ∈ (1,∞) such

that δ2/bk∗−1 < M2(νk∗)−2γh and δ2/bk∗ ≥M2(νk∗)−2γh ; hence ω(δ,Hos) ≤ const.× δ/
√
bk∗ .

(1) If bj ≍ ϕ(ν−2
j ) = ν−2a

j then ω(δ,Hos) ≤ const.(δγh/(a+γh)).

(2) If bj ≍ ϕ(ν−2
j ) = exp{−νa

j } then ω(δ,Hos) ≤ const.
(
[− ln(δ)]−γh/a

)
.

Assumptions 5.4(i) and 5.3 also yield the following better bound on the sieve modulus of conti-

nuity ωn(δ,Hosn).

Lemma 5.3. Let Hn = clsp{q1, ..., qk(n)} and assumptions 5.1(i), 5.4(i) and 5.3 hold. Let k∗ be

given in Lemma 5.2. Then:

(1) ωn(δ,Hosn) ≤ const.× δ/
√
bk, where k ≡ min{k(n), k∗} ∈ (1,∞).

(2) If k(n) ≥ k∗, then ||h− Πnh||s ≤ δ/
√
bk∗ for all h ∈ Hos.
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5.2 Optimal convergence rates

Theorem 4.2, Theorem 4.3 and Lemma 5.1 together imply the following corollary for the convergence

rate for the penalized SMD estimator using a finite-dimensional sieve:

Corollary 5.1. (Sieve dominating case) Let ĥn be the penalized SMD estimator with λn ≥ 0, λn =

o(1), and all the assumptions of Theorem 4.1(1) hold with m̂(X,h) being the series LS estimator.

Let assumptions 5.1 and 5.2 hold, with Hn = clsp{q1, ..., qk(n)} and bj ≍ ϕ(ν−2
j ) for a continuous

non-decreasing function ϕ. If max
{

Jn

n , b
2
m,Jn

, λn

}
= Jn

n → 0 and limn→∞{Jn/k(n)} = c ∈ (1,∞),

then:

||ĥn − h0||s = OP

(
{νk(n)}−γh +

√
k(n)

n× ϕ(ν−2
k(n))

)
.

(1) Mildly ill-posed case: if ϕ(τ) = τa for some a ≥ 0 and νk ≍ k1/d, then: ||ĥn − h0||s =

OP

(
n
−

γh
2(γh+a)+d

)
provided k(n) = O

(
n

d
2(γh+a)+d

)
.

(2) Severely ill-posed case: if ϕ(τ) = exp{−τ−a/2} for some a > 0 and νk ≍ k1/d, then:

||ĥn − h0||s = OP

(
[ln(n)]−γh/a

)
provided k(n) = O

(
[ln(n)]d/a

)
.

Corollary 5.1 allows for λn = 0. The next corollary allows for all the three smoothing parameters

(Jn, k(n), λn) to balance one another.

Corollary 5.2. (Sieve penalization balance case) Under all the conditions of Corollary 5.1, if ei-

ther assumption 3.13(i) holds with λn = O(Jn

n ), or assumption 4.2 holds with λn = O

(√
Jn

n

√
ϕ(ν−2

k(n))

)
,

then: all the conclusions of Corollary 5.1 remain true.

Theorem 4.3, Lemma 5.2 and Lemma 5.3 immediately imply the following corollary for the

convergence rate for the penalized SMD estimator using either a finite dimensional sieve with lots

of sieve terms or an infinite dimensional sieve.

Corollary 5.3. (Penalization dominating case) Let ĥn be the penalized SMD estimator with λn >

0, λn = oP (1), and all the assumptions of Theorem 4.1(1) hold with m̂(X,h) being the series LS

estimator. Let assumptions 5.1(i), 5.2(ii), 5.4(i) and 5.3 hold. Let Hn = clsp{q1, ..., qk(n)} with

k(n) > k∗ given in Lemma 5.2, and bj ≍ ϕ(ν−2
j ) for a continuous non-decreasing function ϕ. Let

Jn

n ≍ b2m,Jn
= O(J−2rm

n ) for some rm > 0. If either assumption 3.13(i) holds with λn = O(Jn

n ), or

assumption 4.2 holds with λn = O

(√
Jn

n

√
ϕ(ν−2

k∗ )

)
, then:

||ĥn − h0||s = OP



n
−rm/(2rm+1)

√
ϕ(ν−2

k∗ )



 .

(1) Mildly ill-posed case: if ϕ(τ) = τa for some a ≥ 0 and νk ≍ k1/d, then: (1.i) ||ĥn −
h0||s = OP

(
n
− rm

2rm+1

γh
(γh+a)

)
; (1.ii) if 5.4(ii) holds, then rm ≥ (γh + a)/d and ||ĥn − h0||s =

OP

(
n
−

γh
2(γh+a)+d

)
.
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(2) Severely ill-posed case: if ϕ(τ) = exp{−τ−a/2} for some a > 0, then: ||ĥn − h0||s =

OP

(
[ln(n)]−γh/a

)
.

(3) Further, if Hn = H (or k(n) = ∞), then assumption 5.2(ii) holds, and all the above

conclusions remain true.

We note that for the mildly ill-posed case (i.e., when bj ≍ ϕ(ν−2
j ) = ν−2a

j for a finite a ≥ 0),

assumptions 4.1, 5.4(i)(ii) and 5.3 imply the restriction rm ≥ (γh + a)/d. See Yang and Barron

(1999). In the following we denote dm(X,h0)
dh [a] as Th0 [a], where Th0 : Hos ⊂ H → L2(fX) and T ∗

h0

as its adjoint (under the inner product, 〈·, ·〉 associated with the weak metric || · ||). Then for all

h ∈ Hos, we have ||h||2 ≡ ||Th0h||2L2(fX ) ≍ ||(T ∗
h0
Th0)

1/2h||2s by assumption 4.1.

Remark 5.2. Under assumptions 5.1, 5.4(ii) and 5.3, Chen and Reiss (2007) establish the min-

imax lower bound for estimation of the NPIV model (1.2): E[Y1 − h0(Y2)|X ] = 0. When we

specialize Corollaries 5.1, 5.2 and 5.3 to the NPIV model (1.2), our rates coincide with their min-

imax lower bound under the metric ||h||s = ||h||L2(fY2 ). In particular, our assumptions 5.1 and 5.3

correspond to their approximation condition. Let B be a self-adjoint unbounded operator defined as:

Bh =
∑∞

j=1 νj〈h, qj〉L2(fY2 )qj with Dom(B) = {h ∈ L2(fY2) :
∑∞

j=1 ν
2
j 〈h, qj〉2L2(fY2 ) < ∞}. Then

our assumption 5.3 implies Hos ⊆ Dom(Bγh) = {h ∈ L2(fY2) : Bγhh =
∑∞

j=1 ν
γh

j 〈h, qj〉L2(fY2 )qj ∈
L2(fY2)}. Our assumption 5.4(ii) becomes their link condition: ||Th0h||2L2(fX ) ≤ C

∑∞
j=1 bj |〈h, qj〉L2(fY2 )|2

with bj ≍ ϕ(ν−2
j ) for a continuous increasing function ϕ. Then the rates obtained in Corollaries 5.1,

5.2 and 5.3 reach the minimax lower bound for the NPIV model (1.2) in Chen and Reiss (2007).

5.3 Relation to source condition

Under assumption 4.1, we have ||h||2 ≍ ||(T ∗
h0
Th0)

1/2h||2s for all h ∈ Hos; hence assumption 5.4

can be restated in terms of the operator T ∗
h0
Th0 . Assuming that Th0 is a compact operator (this

is a mild condition, for example, Th0 is compact if m(·, h) : H ⊆ H → L2(fX) is compact and is

Frechet differentiable at h0 ∈ Hos; see Zeidler (1985, proposition 7.33)).9 Then Th0 has a singular

value decomposition {µk;φ1k, φ0k}∞k=1, where {µk}∞k=1 are the singular numbers arranged in non-

increasing order (µk ≥ µk+1 ց 0), {φ1k()}∞k=1 and {φ0k(x)}∞k=1 are eigenfunctions of the operators

(T ∗
h0
Th0)

1/2 and (Th0T
∗
h0

)1/2 respectively. It is obvious that {φ1k()}∞k=1 is an orthonormal basis for

H hence a Riesz basis, and ||(T ∗
h0
Th0)

1/2h||2s =
∑∞

k=1 µ
2
k|〈h, φ1k〉s|2 for all h ∈ H. In the numerical

analysis literature on ill-posed inverse problems with known operators, it is common to measure

the smoothness of the function class Hos in terms of the spectral representation of T ∗
h0
Th0 . The

so-called “general source condition” assumes that there is a continuous function ψ with ψ(0) = 0

9See Bissantz, et al (2007) for convergence rates of statistical linear ill-posed inverse problems via the Hilbert
scale (or general source condition) approach for possibly non-compact but known operators.
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and λ−1/2ψ(λ) non-decreasing such that

Hsource ≡
{
h = ψ(T ∗

h0
Th0)v : v ∈ H, ||v||2s ≤M

}
(5.1)

=



h =

∞∑

j=1

〈h, φ1j〉sφ1j :

∞∑

j=1

〈h, φ1j〉2s
ψ2(µ2

j)
≤M



 , (5.2)

for a finite constant M , and the original “source condition” corresponds to the choice ψ(λ) =

λ1/2 (see Engl, Hanke and Neubauer (1996)). Therefore the general source condition implies our

assumptions 5.1(i), 5.4 and 5.3 by setting qj = φ1j , bj ≍ ϕ(ν−2
j ) = µ2

j and ψ(µ2
j ) = ν−γh

j for all

j ≥ 1. Then ϕ(τ) = τa is equivalent to ψ(λ) = λγh/(2a) and λ−1/2ψ(λ) non-decreasing iff γh ≥ a;

ϕ(τ) = exp{−τ−a/2} is equivalent to ψ(λ) = [− log(λ)]−γh/a We gather these simple results into

the next lemma:

Lemma 5.4. Let Th0 be a compact operator with a singular value decomposition {µk;φ1k, φ0k}∞k=1.

Then: (1) assumptions 5.1(i) and 5.4 hold with qj = φ1j and bj ≍ ϕ(ν−2
j ) = µ2

j for all j. In

addition, if Hos ⊆ Hsource, then assumption 5.3 holds with ν−γh

j ≥ ψ(µ2
j ) for all j.

6 Applications

In this section we present two important applications to illustrate the general results obtained in

the previous sections. We first provide sufficient conditions for consistency and convergence rate of

the penalized SMD estimators for a nonparametric additive quantile IV regression model. We then

obtain root-n asymptotic normality of a plug-in penalized SMD estimator of a weighted average

derivative of h0(Y2) satisfying the conditional moment model E[ρ(Y,Xz;h0(Y2))|X ] = 0, in which

the residual function ρ() could be non-pointwise smooth with respect to h(Y2).

6.1 Nonparametric Additive Quantile IV Regression Model

The model is:

Y3 = h01(Y1) + h02(Y2) + U, Pr(U ≤ 0|X) = γ, (6.1)

where h01, h02 are the unknown functions of interest, the conditional distribution of the error term

U given X is unspecified, except that FU|X(0) = γ for a known fixed γ ∈ (0, 1). The support of

Y = (Y ′
1 , Y

′
2 , Y3)

′ is Y = [0, 1]d × Rd × Y3 with Y3 ⊆ R, and the support of X is X = [0, 1]dx

with dx ≥ d ≥ 1. To map into the general model (1.4), we let Z = (Y ′, X ′)′, h = (h1, h2),

ρ(Z, h) = 1{Y3 ≤ h1(Y1) + h2(Y2)} − γ and m(X,h) = E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X ] − γ.

For the sake of concreteness and illustration, we estimate h0() using the penalized SMD estimator

ĥn given in (2.3), with m̂(X,h) being the series LS estimator of m(X,h), Hn = H1
n × H2

n being

either a finite dimensional (dim(Hn) ≡ k(n) = k1(n) + k2(n) < ∞) or an infinite dimensional

(k(n) = ∞) linear sieve, and P̂n(h) = P (h2) ≥ 0.
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We present three propositions on consistency. The first one assumes that the function space H2

is compact under a weighted sup norm ||h2||w,∞ = supy∈Rd |h2 (y)w (y)| for a positive continuous

weight w. The second and the third do not assume compactness of H2; while the second one

considers a lower semicompact penalty and the third uses a convex (but not lower semicompact)

penalty. For all three results we assume:

Condition 6.1. (i) {(Y ′
i , X

′
i)}n

i=1 is i.i.d.; (ii) fY3|Y1,Y2,X(y3|y1, y2, x) is continuous in (y3, y1, y2, x),

and supy3
fY3|Y1,Y2,X(y3) ≤ const. <∞ for almost all Y1, Y2, X; (iii) E[(1 + |Y2|)θ

] <∞ for a finite

θ > 0; (iv) fY1,Y2|X=x(y1, y2) is continuous in (y1, y2, x)

Condition 6.2. h0 = (h01, h02) ∈ H = H1 × H2, (i) H1 = {h1 ∈ Λγ1

1 ([0, 1]d) : h1(y
∗
1) = 0} for

γ1 > 0; (ii) E[1{Y3 ≤ h1(Y1) + h2(Y2)}|X ] = γ for h = (h1, h2) ∈ H implies h1(Y1) + h2(Y2) =

h01(Y1) + h02(Y2) almost surely; (iii) H2 ⊂ L2(Rd, fY2).

Condition 6.2(i)(ii) is a global identification condition. Instead of condition 6.2(i), one could

assume condition 6.2(i)’: H1 = Λγ1

1 ([0, 1]d) for γ1 > 0, and the conditional expectation operator,

E[h2(Y2)|Y1], mapping from H2 to L2([0, 1]d, fY1) is compact. Without unknown h01, condition

6.2(ii) is the global identification condition for h02 in the NPQIV model (1.3) that is imposed in

CIN (2007) and HL (2007). See CIN (2007) and Chernozhukov and Hansen (2005) for further

discussion and sufficient conditions for identification of NPQIV model (1.3).

Condition 6.3. (i) assumption 3.9 holds with pJn(X) being a tensor product P-spline or B-spline

or wavelet or cosine linear sieves; (ii) Hn = H1
n × H2

n, where H1
n is a tensor product P-spline or

B-spline or wavelet or cosine or power series closed linear subspace of H1, and H2
n is a tensor

product wavelet closed linear subspace of H2.

In the following we denote ̟ (y2) ≡
(
1 + |y2|2

)−ϑ/2
for some ϑ ≥ 0 and w (y2) ≡

(
1 + |y2|2

)−θ/2

for some θ > 0. We let || · ||T γ
p,q

denote the norm of a Banach space T γ
p,q(Rd, leb), which is either a

Besov space Bγ
p,q(Rd, leb) for p, q ∈ [1,∞] or a F-space Fγ

p,q(Rd, leb) for p ∈ [1,∞), q ∈ [1,∞]; see

Appendix A for their definitions and properties.

Proposition 6.1. For the model (6.1), let ĥn be the penalized SMD estimator with λn ≥ 0, λn =

o(1) and m̂(X,h) be the series LS estimator. Let conditions 6.1, 6.2 and 6.3 hold. Let H2 = {h2 ∈
L2(Rd, fY2) : ||̟h2||T γ2

p,q
≤ M0} for γ2 > 0, p, q ∈ [1,∞] (and p < ∞ for T γ2

p,q = Fγ2
p,q), a known

constant M0 < ∞. Let λnP (h2) = λn||̟h2||T s2
p2,q2

for s2 ∈ [0, γ2 − d(p−1 − p−1
2 )], p2 ∈ [1,∞) and

q ≤ q2 ≤ ∞. Let Jn/n = o(1) and Jn, k1(n), k2(n) → ∞ as n→ ∞.

(1) If γ2 > d/p and θ > ϑ ≥ 0, then:

sup
y1∈[0,1]d

∣∣∣ĥ1,n(y1) − h01(y1)
∣∣∣+ sup

y2∈Rd

∣∣∣w (y2) [ĥ2,n (y2) − h02 (y2)]
∣∣∣ = oP (1);

hence if E[(1 + |Y2|)2θ
] <∞ then: ||ĥ1,n − h01||L2(fY1 ) + ||ĥ2,n − h02||L2(fY2 ) = oP (1).
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(2) If γ2 + d/2 > d/p, p−1 + (θ − ϑ)/d > 1/2, and E[(1 + |Y2|)2θ
] <∞, then:

sup
y1∈[0,1]d

∣∣∣ĥ1,n(y1) − h01(y1)
∣∣∣+ ||w[ĥ2,n − h02]||L2(Rd,leb) = oP (1);

hence ||ĥ1,n − h01||L2(fY1 ) + ||ĥ2,n − h02||L2(fY2 ) = oP (1).

We now present a second consistency result in which the parameter space H2 is not compact

but the penalty is lower semicompact. We assume:

Condition 6.4. E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X = ·] ∈ W γm

2,c ([0, 1]dx , leb) with γm > 0 for all

h ∈ Hn.

In the following we denote rm ≡ γm/dx, r1 ≡ γ1/d and r2 ≡ γ2/d.

Proposition 6.2. For the model (6.1), let ĥn be the penalized SMD estimator with λn > 0, λn =

o(1) and m̂(X,h) be the series LS estimator. Let conditions 6.1, 6.2, 6.3 and 6.4 hold. Let H2 =

{h2 ∈ L2(Rd, fY2) : ||̟h2||T γ2
p,q

< ∞} for γ2 > 0, p, q ∈ [1,∞] (and p < ∞ for T γ2
p,q = Fγ2

p,q). Let

P (h2) = ||̟h2||T γ2
p,q

. Let max
{
[k1(n)]−2r1 , [k2(n)]−2r2

}
= O (λn) and Jn

n +J−2rm
n = O (λn). Then:

(1) Results (1) and (2) of Proposition 6.1 remain true; (2) P (ĥ2,n) = OP (1).

We next present a third consistency result in which the parameter space H2 is not compact but

the penalty is convex. We assume:

Condition 6.5. Condition 6.4 holds for all h ∈ H.

Proposition 6.3. For the model (6.1), let ĥn be the penalized SMD estimator with λn > 0,

λn = o(1) and m̂(X,h) be the series LS estimator. Let conditions 6.1, 6.2, 6.3 and 6.5 hold.

Let H2 = {wh2 ∈ W γ2

2 (Rd, leb) : ||wh2||L2(leb) ≤ M} for γ2 > 0, P (h) = ||(wh2)||2L2(Rd,leb), and

E[(1 + |Y2|)2θ
] <∞. Let max

{
[k1(n)]−2r1 , [k2(n)]−2r2

}
= o (λn) and Jn

n + J−2rm
n = o (λn). Then:

sup
y1∈[0,1]d

∣∣∣ĥ1,n(y1) − h01(y1)
∣∣∣+ ||w[ĥ2,n − h02]||L2(Rd,leb) = oP (1),

and ||ĥ1,n − h01||L2(fY1 ) + ||ĥ2,n − h02||L2(fY2 ) = oP (1).

Without unknown h1, Proposition 6.1 is essentially the same as theorem 4.1 of CIN (2007) for

the SMD estimator (2.2) of the NPQIV model (1.3); while Proposition 6.3 is very similar to that

of HL (2007) except that we allow for sieve approximation and unbounded support of Y2.

For the model (6.1), we have ||h||c = ||h1||L2(fY1 ) + ||h2||L2(fY2 ). Let ||h||2s = E{[h1(Y1) +

h2(Y2)]
2}, then ||h||s ≤ ||h||c for all h ∈ H. Recall that Hos ≡ {h = (h1, h2) ∈ H : ||h − h0||c =

o(1), ||h||c ≤ c, P (h) ≤ c}. For any h ∈ Hos define the linear integral operator Th[g1 + g2] ≡
E{fY3|Y1,Y2,X(h1(Y1) + h2(Y2))[g1(Y1) + g2(Y2)]|X = ·} that maps from Dom(Th) ⊂ L2(fY1) ⊕
L2(fY2) → L2([0, 1]dx , fX). Let B

(
Dom(Th), L2([0, 1]dx , fX)

)
denote the class of all bounded linear
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operators from Dom(Th) to L2([0, 1]dx , fX). The j-th approximation number aj(Th) of Th is defined

as (see Edmunds and Triebel (1996)):

aj(Th) ≡ inf

{
sup

g∈Dom(Th)

||Th[g] − L[g]||L2(fX )

||g||s
: L ∈ B

(
Dom(Th), L2([0, 1]dx , fX)

)
, dim(Range(L)) < j

}
.

We assume

Condition 6.6. (i) Condition 6.4 holds for all h ∈ Hos; (ii) fY3|Y1,Y2,X(y3|y1, y2, x) has continuous

derivative f ′
Y3|Y1,Y2,X(y3|y1, y2, x) with respect to y3, and supy3,y1,y2,x |f ′

Y3|Y1,Y2,X(y3|y1, y2, x)| ≤
const. <∞; (iii) there are finite constants c, C > 0 such that caj(Th0) ≤ aj(Th) ≤ Caj(Th0) for all

j ≥ 1 and for all h ∈ Hos.

Condition 6.7. If E{fY3|Y1,Y2,X(h01(Y1) + h02(Y2))[∆1(Y1) + ∆2(Y2)]|X} = 0 then ∆1(Y1) +

∆2(Y2) = 0 for all ∆1(Y1), ∆2(Y2) such that ∆ + h0 ∈ Hos.

Condition 6.8. (i) Y1 and Y2 are independent; (ii) there is a non-negative, continuous increasing

function ϕ such that ||Th0 [g1 + g2]||2L2(fX) ≍
∑∞

j=1 ϕ(ν−2
j )|〈g1 + g2, q1,j + q2,j〉s|2 for all g1 + g2 ∈

Dom(Th0) ∩Hos.

In the following we denote γh ≡ min{γ1, γ2}. We first present a convergence rate result for the

finite dimensional sieve dominating case.

Proposition 6.4. (Sieve dominating case) For the model (6.1), suppose that conditions 6.6 - 6.8

hold. Let either conditions of Proposition 6.2 hold with max
{

Jn

n , J
−2rm
n , λn

}
= Jn

n , or conditions

of Proposition 6.3 hold with max
{

Jn

n , J
−2rm
n , o(λn)

}
= Jn

n . Let limn→∞{Jn/k(n)} = c ∈ [1,∞),

k(n) = k1(n) + k2(n) → ∞, k1(n) ≍ k2(n) ≍ k(n) and νk(n) = {k(n)}1/d. Then:

||ĥn − h0||s = OP

(
{νk(n)}−γh +

√
k(n)

n× ϕ(ν−2
k(n))

)
.

(1) If ϕ(τ) = τa for some a ≥ 0, then: ||ĥn − h0||s = OP

(
n
−

γh
2(γh+a)+d

)
provided k(n) =

O
(
n

d
2(γh+a)+d

)
.

(2) If ϕ(τ) = exp{−τ−a/2} for some a > 0, then: ||ĥn − h0||s = OP

(
[ln(n)]−γh/a

)
provided

k(n) = O
(
[ln(n)]d/a

)
.

Next we provide convergence rate for the penalization dominating case.

Proposition 6.5. (Penalization dominating case) For the model (6.1), suppose that conditions 6.6

- 6.8 hold. Let either conditions of Proposition 6.2 hold with λn ≍ Jn

n , or conditions of Proposition

6.3 hold with λn = O

(√
Jn

n

√
ϕ(ν−2

Jn
)

)
and H2

os = {wh2 ∈W γ2

2 (Rd, leb) : ||̟h2||W γ2
2 (Rd,leb) ≤M}

for θ > ϑ ≥ 0. Let Jn

n ≍ J−2rm
n , min{k1(n), k2(n)} ≥ Jn and νj = j1/d.

(1) If ϕ(τ) = τa for some a ≥ 0, then: ||ĥn − h0||s = OP

(
n
−

γh
2(γh+a)+d

)
.

(2) If ϕ(τ) = exp{−τ−a/2} for some a > 0, then: ||ĥn − h0||s = OP

(
[ln(n)]−γh/a

)
.
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When Y1 and Y2 are measurable with respect to X , we have a = 0 in Propositions 6.4(1) and

6.5(1). The resulting convergence rates ||ĥn −h0||s = OP

(
n
−

γh
2γh+d

)
coincide with the known rates

for the additive quantile regression model: Y3 = h01(X1) + h02(X2) + U, Pr(U ≤ 0|X1, X2) = γ;

see, e.g., Horowitz and Mammen (2007).

6.2 Plug-in Penalized SMD of Weighted Average Derivatives of h0(Y ).

The model is:

E[ρ(Y,Xz;h0(Y2))|X ] = 0 and β0 = E[a(Y2)∇kh0(Y2)], (6.2)

where Y2 ⊆ Y , k ≥ 1 is a known integer, and a(Y2) is a known positive weight function. For

simplicity we assume that h() and ρ2() are scalar valued, and Y2 has support R. Results presented

in this subsection can be directly extended to vector valued h() and ρ2() as well as multivariate

Y2; see, e.g., Chen and Pouzo (2007). Let ĥn() be a penalized SMD estimator of h0() based on

the conditional moment restriction E[ρ(Y,Xz;h0(Y2))|X ] = 0. Then the plug-in penalized SMD

estimator of β0 is simply defined as

β̂n = n−1
n∑

i=1

a(Y2i)∇kĥn(Y2i).

When ρ(Y,Xz;h(Y2)) is pointwise Hölder continuous with respect to h, this model (6.2) fits

into the general setup of Ai and Chen (2007). In fact, Ai and Chen (2007) already present suffi-

cient conditions to ensure root-n asymptotic normality of their plug-in SMD estimator of β0 when

ρ(Y,Xz;h0(Y2)) = Y1−h0(Y2) (i.e., the NPIV model). However, the general results in Ai and Chen

(2007) rule out the cases when ρ(Y,Xz;h(Y2)) is not pointwise Hölder continuous in h. In this sub-

section, we obtain a theorem that allows for nonlinear and non-pointwise smooth ρ(Y,Xz;h(Y2))

in h, as well as non || · ||s−compactness of the function space H for h0.

For the sake of concreteness we will only consider the penalized SMD estimator ĥn using a finite

dimensional linear sieves (dim(Hn) ≡ k(n) < ∞), P (h) = ||∇k(̟h)||2L2(R,leb) for some k > k, and

the series LS estimator m̂(X,h) of m(X,h) = E[ρ(Y,Xz;h(Y2))|X ]. We shall only present some

relatively low level sufficient conditions for the consistency and asymptotic normality of β̂n, and refer

readers to Chen and Pouzo (2007, 2008) for more general conditions. Given the results presented

in previous sections, we can assume that we already established consistency and convergence rate

for ĥn under || · ||s = || · ||L2(fY2 ). In this subsection we focus on the consistency and asymptotic

normality of β̂n.

Condition 6.9. (i) h0 ∈ H ⊆ {h ∈ L2(R, fY2) : ||̟h||W γh
2 (leb) < ∞}, P (h) = ||∇k(̟h)||2L2(R,leb)

for some γh ≥ k > k; (ii) E[(1 + |Y2|)2θ
] < ∞ for some θ > ϑ ≥ 0. (iii) Hn is a wavelet linear

sieve of H; (iv) E{m(X,h)2} is continuous at h0 under the norm || · ||c = || · ||L2(fY2 ).
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Condition 6.10. (i) β0 ∈ B, where B is a closed bounded interval of R; (ii) supy2
|a(y2)| ≤

const. <∞.

Proposition 6.6. For the model (6.2), let ĥn be the penalized SMD estimator with λn > 0, λn =

o(1) and m̂(X,h) be the series LS estimator. Suppose that assumptions 3.9 - 3.10, 3.1(i)(iii),

3.7(ii), and condition 6.9 hold. Let max
{

Jn

n + b2m,Jn
, E{m(X,Πnh0)

2}
}

= O (λn) = o(1). Then:

(1) (i) ||w[ĥn − h0]||L2(R,leb) = oP (1), ||ĥn − h0||L2(fY2 ) = oP (1), P (ĥn) = OP (1); and (ii)

||∇k(w[ĥn − h0])||L2(R,leb) = oP (1), ||∇k[ĥ− h0]||2L2(fY2 ) = oP (1).

(2) If condition 6.10 holds, then |β̂n − β0| = oP (1).

We need some extra notations before we state normality result. Define Hos ≡ {h ∈ H :

||h − h0||s = o(1), ||∇k[h − h0]||L2(fY2 ) = o(1), ||h||s ≤ c, P (h) ≤ c}. Then h0 ∈ Hos and Hos ⊂

H ⊂ L2(R, fY2), and ||h − h0||2 ≡ E

[(
dm(X,h0)

dh [h− h0]
)2
]
. Denote dm(X,h0)

dh [g] as Th0 [g], where

Th0 : Hos ⊂ L2(R, fY2) → L2([0, 1], fX) and T ∗
h0

as its adjoint. Then for all h ∈ Hos, we have

||h − h0||2 = ||Th0 [h − h0]||2L2(fX). If Th0 is a compact operator, then it has a singular value

decomposition {µj ;φ1j(y2), φ0j(x)}∞j=1 (see section 5.3 for details).

Condition 6.11. (i) [a(y2)fY2(y2)] is k−times continuously differentiable, and ∇k[afY2 ] goes to

zero continuously as |y2| → ∞; (ii) E[(l(k)(Y2))
2] <∞ where l(k) ≡ ∇k[afY2 ]

fY2
; (iii) β0 ∈ int(B).

Condition 6.12. (i)
∥∥∥(T ∗

h0
Th0)

− 1
2

[
l(k)
]∥∥∥

2

L2(fY2 )
<∞ (or Th0 is compact and

∑∞
j=1

(
E[l(k)(Y2)φ1j(Y2)]

µj

)2

<

∞); (ii)
∥∥(T ∗

h0
Th0)

−1
[
l(k)
]∥∥2

L2(fY2 )
<∞; (or Th0 is compact and

∑∞
j=1

(
E[l(k)(Y2)φ1j(Y2)]

µ2
j

)2

<∞).

Condition 6.12(i) is necessary (but not sufficient) for β0 = E[a(Y2)∇kh0(Y2)] = (−1)kE[l(k)(Y2)h0(Y2)]

to be estimable at a
√
n−rate. It ensures the existence of a Riesz representor v∗ for E{l(k)(Y2)(h(Y2)−

h0(Y2))} as it ensures ||v∗||2 = ||Th0 [v
∗]||2L2(fX ) =

∥∥∥(T ∗
h0
Th0)

− 1
2

[
l(k)
]∥∥∥

2

L2(fY2 )
< ∞. Condition

6.12(ii) is stronger than condition 6.12(i), and ensures that we can solve the Riesz representor v∗

in a closed form: v∗ = (T ∗
h0
Th0)

−1
[
l(k)
]
∈ L2(fY2).

Condition 6.13. there is a v∗n ∈ Hn such that ||v∗n − v∗|| × ||ĥn − h0|| = oP (n−1/2).

Condition 6.14. (i) ||ĥn − h0|| = OP (δ∗n), with δ∗n = Op(max{
√

Jn

n , bm,Jn
}) = oP (n−1/4); (ii)

||ĥn − h0||s = OP (δ∗s,n); (iii) λn{P (ĥn ± εnv
∗
n) − P (ĥn)} = oP (n−1) with 0 < εn = o(n−1/2).

Denote No ≡
{
h ∈ Hos : ||h− h0|| = O(δ∗n), ||h− h0||s = O(δ∗s,n)

}
and Non ≡ {h ∈ No ∩Hn}.

Condition 6.15. (i) There are constants κ ∈ (0, 1], r ≥ 1, and a measurable function b(X) with

E[|b(X)|] <∞ such that for all δ > 0 and all h, h′ ∈ Non,

sup
||h−h′||s≤δ

∫
|ρ(z, h) − ρ(z, h′)|rdFY |X=x(y) ≤ b(x)rδrκ;

(ii) suph∈No
|ρ(Z, h)| ≤ C(Z) and E[C(Z)2|X ] ≤ const. <∞; (iii) Jn

n (δ∗s,n)2κ = o(n−1).
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Condition 6.15 (iii) is satisfied in both “severely” and “mildly” ill-posed case provided that γh

is big enough. In the following we denote g̃∗(X) as the LS projection of dm(X,h0)
dh [v∗] onto the linear

sieve basis pJn(X).

Condition 6.16. (i) {m(·, h) : h ∈ Non} is a Donsker class in L2([0, 1], fX); (ii) supx∈[0,1]

∣∣∣dm(x,h0)
dh [v∗]

∣∣∣ ≤
const. <∞; (iii) ||g̃∗(·) − dm(·,h0)

dh [v∗]||L2(fX ) ×O(δ∗n) = o(n−1/2).

Condition 6.17. m(X,h) is twice continuously differentiable in h ∈ Non, (i) E

[
suph∈Non

∣∣∣d
2m(X,h)

dh2 [v∗n, v
∗
n]
∣∣∣
2
]
<

∞; (ii) E

[
suph∈Non

∥∥∥dm(X,h)
dh [v∗n] − dm(X,h0)

dh [v∗n]
∥∥∥

2

E

]
= o(n−1/2); (iii) for all h ∈ Non and all

h ∈ No,

E

[(
dm(X,h0)

dh
[v∗]

)′(
dm(X,h)

dh
[h− h0] −

dm(X,h0)

dh
[h− h0]

)]
= o(n−1/2).

Condition 6.17(i)(ii)(iii) are imposed to control the second order remainder term of m(X,h) =

E[ρ(Y,Xz;h(Y2))|X ] in the shrinking neighborhood of h0. These conditions are automatically

satisfied when m(X,h) is linear in h, such as when m(X,h) = E[Y1 −h(Y2)|X ] in the NPIV model.

However, when m(X,h) is nonlinear in h, such as when m(X,h) = E[1{Y1 ≤ h(Y2)} − γ|X ] in

the NPQIV model, condition 6.17(ii)(iii) may be difficult to verify when the problem is “severely”

ill-posed. See Chen and Pouzo (2008) for further discussions.

Proposition 6.7. For the model (6.2), suppose that all the conditions of Proposition 6.6 hold. Let

assumption 4.1 and conditions 6.11 - 6.17 hold and k > k+0.5. Then:
√
n(β̂n −β0) ⇒ N(0, V −1),

with

V −1 = V ar
{
(β0 − a(Y2)∇kh0(Y2)) + (−1)k (Th0 [v

∗]) ρ(Zi, h0)
}
.

Remark 6.1. (1) The semiparametric efficiency bound for β0 identified through the model (6.2)

can be derived by applying the results of Ai and Chen (2005). When Y2 is endogenous, the plug-

in penalized SMD estimator β̂n fails to reach this efficiency bound. Nevertheless, by combining

the rate results of our this paper and the semiparametric efficient estimation procedures proposed

in Ai and Chen (2005) and Chen and Pouzo (2008), one can obtain efficient estimation of β0.

(2) When we specialize Proposition 6.7 to the NPQIV model (1.3) with ρ(Y,Xz;h0(Y2)) = 1{Y1 ≤
h0(Y2)}−γ, we immediate obtain

√
n−asymptotic normality of the plug-in penalized SMD estimator

of the weighted average derivative of the quantile IV function β0 = E[a(Y2)∇kh0(Y2)]. See Chen

and Pouzo (2007) for semiparametric efficient estimation of the weighted average derivative of the

quantile IV function.

7 Conclusion

In this paper, we propose penalized SMD estimation of conditional moment models containing

unknown functions of endogenous variables. The estimation problem is a difficult nonlinear ill-
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posed inverse problem with an unknown operator. We establish consistency and convergence rate

of the penalized SMD estimator, allowing for (i) possibly non-compact original parameter space; (ii)

possibly non-compact finite or infinite dimensional sieve spaces with flexible penalty; (iii) possibly

nonsmooth generalized residual functions; (iv) any lower semicompact or convex penalty, or SMD

with finite dimensional linear sieves without penalty; and (v) mildly or severely ill-posed inverse

problems. Under relatively low-level sufficient conditions, we show that the convergence rates

coincide with the known minimax optimal rates for the NPIV model (1.2). We illustrate the general

theory by two important applications: the consistency and convergence rate of a nonparametric

additive quantile IV regression, and the root-n asymptotic normality of the plug-in penalized SMD

estimator of a weighted average derivative of h0(Y ) in the nonlinear model E[ρ(Y,Xz, h0(Y ))|X ] =

0. We also present a simulation study and an estimation of a system of nonparametric quantile IV

Engel curves using the UK Family Expenditure Survey.

In Chen and Pouzo (2008), for the general conditional moment models (1.1), we show that the

semiparametric efficiency bounds and the root-n asymptotic normality of θ0 are still valid even

when ρ(Y,Xz, θ, h(·)) is not pointwise smooth in (θ, h). We establish that a weighted bootstrap

procedure consistently estimate the confidence region of the penalized SMD estimator θ̂n. We also

derive that the scaled and centered profiled optimally weighted penalized SMD criterion function

is asymptotically Chi-square distributed.

A Some Function Spaces and Sieves

Let S(Rd) be the Schwartz space of all complex-valued, rapidly decreasing, infinitely differen-

tiable functions on Rd. Let S∗(Rd) be the space of all tempered distributions on Rd, which

is the topological dual of S(Rd). For h ∈ S(Rd) we let ĥ denote the Fourier transform of h

(i.e., ĥ(ξ) = (2π)−d/2
∫
Rd exp{−iy′ξ}h(y)dy), and (g)

∨
the inverse Fourier transform of g (i.e.,

(g)∨ (y) = (2π)−d/2
∫
Rd exp{iy′ξ}g(ξ)dξ). Let ϕ0 ∈ S(Rd) be such that ϕ0(x) = 1 if |x| ≤ 1 and

ϕ0(x) = 0 if |x| ≥ 3/2. Let ϕ1(x) = ϕ0(x/2)−ϕ0(x) and ϕk(x) = ϕ1(2
−k+1x) for all integer k ≥ 1.

Then the sequence {ϕk : k ≥ 0} forms a dyadic resolution of unity (i.e., 1 =
∑∞

k=0 ϕk(x) for all

x ∈ Rd). Let ν ∈ R and p, q ∈ (0,∞], the Besov space Bν
p,q

(
Rd
)

is the collection of all functions

h ∈ S∗(Rd) such that ‖h‖Bν
p,q

is finite:

‖h‖Bν
p,q

≡




∞∑

j=0

{
2jν

∥∥∥∥
(
ϕj ĥ

)∨∥∥∥∥
Lp(leb)

}q



1/q

<∞

(with the usual modification if q = ∞). Let ν ∈ R and p ∈ (0,∞), q ∈ (0,∞], the F-space Fν
p,q

(
Rd
)

is the collection of all functions h ∈ S∗(Rd) such that ‖h‖Fν
p,q

is finite:

‖h‖Fν
p,q

≡

∥∥∥∥∥∥∥




∞∑

j=0

{
2jν

∣∣∣∣
(
ϕj ĥ

)∨
(·)
∣∣∣∣
}q



1/q
∥∥∥∥∥∥∥

Lp(leb)

<∞
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(with the usual modification if q = ∞). For ν > 0, p, q ≥ 1, it is known that F−ν
p′,q′

(
Rd
)

(B−ν
p′,q′

(
Rd
)
)

is the dual space of Fν
p,q

(
Rd
)

(Bν
p,q

(
Rd
)
) with 1/p′ + 1/p = 1 and 1/q′ + 1/q = 1.

Let T ν
p,q

(
Rd
)

denote either Bν
p,q

(
Rd
)

or Fν
p,q

(
Rd
)
. If p, q ≥ 1 then T ν

p,q

(
Rd
)

is a Banach

space. Moreover, T ν
p,q

(
Rd
)

gets larger with increasing q (T ν
p,q1

(
Rd
)
⊆ T ν

p,q2

(
Rd
)

for q1 ≤ q2), gets

larger with decreasing p (T ν
p1,q

(
Rd
)
⊆ T ν

p2,q

(
Rd
)

for p1 ≥ p2), and gets larger with decreasing

ν (T ν1
pq

(
Rd
)
⊆ T ν2

p,q

(
Rd
)

for ν1 ≥ ν2). The spaces T ν
p,q

(
Rd
)

include many well-known function

spaces as special cases. For example, Lp(Rd, leb) = F0
p,2

(
Rd
)

for p ∈ (1,∞); the Hölder space

Λr(Rd) = Br
∞,∞

(
Rd
)

for any real-valued r > 0; the Hilbert-Sobolev space W k
2 (Rd) = Bk

2,2

(
Rd
)

for integer k > 0; and the (fractional) Sobolev space W ν
p (Rd) = Fν

p,2

(
Rd
)

for any ν ∈ R and

p ∈ (1,∞), which has the equivalent norm ||h||W ν
p
≡
∥∥∥∥
(
(1 + | · |2)ν/2ĥ(·)

)∨∥∥∥∥
Lp(leb)

<∞ (note that

for ν > 0, the norm ||h||W−ν
p

is a shrinkage in the Fourier domain).

We can also define “weighted” versions of the afore-mentioned spaces as follows. Let w(·) =

(1 + | · |2)ζ/2, ζ ∈ R be the weight function and define ||h||T ν
p,q(Rd,w) = ||wh||T ν

p,q(Rd), that is,

T ν
p,q(Rd, w) = {h : ||wh||T ν

p,q(Rd) < ∞}. See Edmunds and Triebel (1996) for additional properties

of the general Besov spaces and the F-spaces, especially the properties of continuous embeddings

and compact embeddings between any two spaces T ν1
p1,q1

(Rd, w1) and T ν2
p2,q2

(Rd, w2).

If H ⊆ H with is a Besov space then a wavelet basis {ψj} is a natural choice of {qj}j to satisfy

assumption 5.1 in Section 4. A real-valued function ψ is called a “mother wavelet” of degree γ if it

satisfies: (a)
∫
R ykψ(y)dy = 0 for 0 ≤ k ≤ γ; (b) ψ and all its derivatives up to order γ decrease

rapidly as |y| → ∞; (c) {2k/2ψ(2ky− j) : k, j ∈ Z} forms a Riesz basis of L2(leb), that is, the linear

span of {2k/2ψ(2ky − j) : k, j ∈ Z} is dense in L2(leb) and

∥∥∥∥∥∥

∞∑

k=−∞

∞∑

j=−∞

akj2
k/2ψ(2ky − j)

∥∥∥∥∥∥

2

L2(R)

≍
∞∑

k=−∞

∞∑

j=−∞

|akj |2

for all doubly bi-infinite square-summable sequence {akj : k, j ∈ Z}. A scaling function ϕ is called

a “father wavelet” of degree γ if it satisfies: (a’)
∫
R
ϕ(y)dy = 1; (b’) ϕ and all its derivatives up

to order γ decrease rapidly as |y| → ∞; (c’) {ϕ(y − j) : j ∈ Z} forms a Riesz basis for a closed

subspace of L2(leb).

Some examples:

Orthogonal wavelets. Given an integer γ > 0, there exist a father wavelet ϕ of degree γ and

a mother wavelet ψ of degree γ, both compactly supported, such that for any integer k0 ≥ 0, any

function h in L2(leb) has the following wavelet γ− regular multiresolution expansion:

h(y) =

∞∑

j=−∞

ak0jϕk0j(y) +

∞∑

k=k0

∞∑

j=−∞

bkjψkj(y), y ∈ R,

where

akj =

∫

R

h(y)ϕkj(y)dy, ϕkj(y) = 2k/2ϕ(2ky − j), y ∈ R,

bkj =

∫

R

g(y)ψkj(y)dy, ψjk(y) = 2k/2ψ(2ky − j), y ∈ R,
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and {ϕk0j , j ∈ Z;ψkj , k ≥ k0, j ∈ Z} is an orthonormal basis of L2(leb); see Meyer (1992, theorem

3.3). For an integer Kn > k0, we consider the finite-dimensional linear space spanned by this

wavelet basis of order γ:

hn(y) = ψkn(y)′Π =

2Kn−1∑

j=0

hKn,jϕKn,j(y), k(n) = 2Kn .

Cardinal B-spline wavelets of order γ:

hn(y) = ψkn(y)′Π =

Kn∑

k=0

∑

j∈Kn

πkj2
k/2Bγ(2ky − j), k(n) = 2Kn + 1, (A.1)

where Bγ(·) is the cardinal B-spline of order γ,

Bγ(y) =
1

(γ − 1)!

γ∑

i=0

(−1)i

(
γ
i

)
[max (0, y − i)]

γ−1
,

which is γ − 1 times differentiable and has support on [0, γ]. For any fixed integer k = 0, 1, ...,Kn,

Kn is the set consisting of those j’s such that the support of z → Bγ(2kz − j) overlaps with the

empirical support of the data, j = ±1,±2, .... The compact support of Bγ(·) ensures that #Kn is

finite for any fixed k.

In the empirical illustration and simulation study in Section 2, we also applied polynomial spines

(P-splines) and Hermite polynomial sieves:

Polynomial splines of order qn:

hn(y) = ψkn(y)′Π =

qn∑

j=0

πj(y)
j +

rn∑

k=1

πqn+k (y − νk)qn

+ , k(n) = qn + rn + 1, (A.2)

where (y − ν)q
+ = max{(y − ν)q, 0} and {νk}k=1,...,rn

are the knots. In the empirical application,

for any given number of knots value rn, the knots {νk}k=1,...,rn
are simply chosen as the empirical

quantiles of the data.

Hermite polynomials of order k(n) − 1:

hn(y) = ψkn(y)′Π =

kn−1∑

j=0

πj(y − ν1)
j exp

{
− (y − ν1)

2

2ν2
2

}
, (A.3)

where ν1 and ν2
2 can be chosen as the sample mean and variance of the data.

B Consistency

We first present a general consistency lemma that is applicable to any approximate penalized sieve

extremum estimation problems, be them well-posed or ill-posed.

Lemma B.1. Let α̂n be such that Q̂n(α̂n) ≤ infα∈Ak(n)
Q̂n(α) + OP (ηn) with ηn = o(1). Suppose

there are real-valued functions Q(α), Qn(α) such that the following conditions (B.1.1) - (B.1.4)

hold:
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(B.1.1) (i) Q(α0) ≤ Qn(α0) <∞, and Qn(α0) −Q(α0) = o(1); (ii) there is a positive function

g0 (n, k, ε) such that:

inf
α∈Ak:||α−α0||c≥ε

Qn(α) −Q(α0) ≥ g0 (n, k, ε) > 0 for each n ≥ 1, k ≥ 1, ε > 0,

and uniformly in ε > 0

lim inf
n→∞

g0 (n, k(n), ε) ≥ 0, lim
n

infα∈Ak(n):||α−α0||c≥ε Qn(α) −Qn(α0)

g0 (n, k(n), ε)
> 0.

(B.1.2) (i) A ⊆ A and (A, || · ||c) is a metric space; (ii) Ak ⊆ Ak+1 ⊆ A for all k ≥ 1, and

there exists a sequence Πnα0 ∈ Ak(n) such that ||Πnα0 − α0||c → 0 as n→ ∞.

(B.1.3) (i) Q̂n(α) is a measurable function of the data {(Yi, Xi)}n
i=1 for all α ∈ Ak(n); (ii) α̂n

is well-defined and measurable.

(B.1.4) Let ĉQ (k (n)) ≡ supα∈Ak(n)

∣∣∣Q̂n(α) −Qn(α)
∣∣∣ = oP (1). Uniformly over ε > 0,

max
{
ĉQ (k (n)) , ηn,

∣∣Qn(Πnα0) −Qn (α0)
∣∣}

g0 (n, k(n), ε)
= o(1).

Then: ||α̂n − α0||c = oP (1).

Proof of Lemma B.1: Under condition (B.1.3)(ii) α̂n is well-defined and measurable. It

follows that for any ε > 0,

Pr (‖α̂n − α0‖c > ε)

≤ Pr

(
inf

α∈Ak(n):||α−α0||c≥ε
Q̂n (α) ≤ Q̂n (Πnα0) +O(ηn)

)

≤ Pr

(
inf

α∈Ak(n):||α−α0||c≥ε

{
Qn (α) −

∣∣∣Q̂n (α) −Qn (α)
∣∣∣
}
≤ Q̂n (Πnα0) +O(ηn)

)

≤ Pr

(
inf

α∈Ak(n):||α−α0||c≥ε
Qn (α) ≤ 2ĉQ(k(n)) +Qn(Πnα0) +O(ηn)

)

≤ Pr

(
inf

α∈Ak(n):||α−α0||c≥ε
Qn (α) −Qn (α0) ≤ 2ĉQ(k(n)) +Qn(Πnα0) −Qn (α0) +O(ηn)

)

≤ Pr

(
infα∈Ak(n):||α−α0||c≥εQn (α) −Qn (α0)

g0 (n, k(n), ε)
≤ 2ĉQ(k(n)) +

∣∣Qn(Πnα0) −Qn (α0)
∣∣+O(ηn)

g0 (n, k(n), ε)

)

which goes to 0 by conditions (B.1.1)(ii) and (B.1.4). Q.E.D.

Remark B.1. (1) Let (A, T ) be a topological space. Condition (B.1.3) is satisfied if one of the

following two conditions holds: (a) for each k ≥ 1, Ak is a compact subset of (A, T ), and for any

data {Zi}n
i=1, Q̂n(α) is lower semicontinuous (in the topology T ) on Ak. (b) for any data {Zi}n

i=1,

the sets {α ∈ Ak : Q̂n(α) ≤ r} is compact in (A, T ) for all r ∈ (−∞,+∞).

(2) Let (A, || · ||c) be a Banach space. Condition (B.1.3) is satisfied if one of the following

three conditions holds: (a) Ak is compact under || · ||c, and for any data {Zi}n
i=1, Q̂n(α) is lower

semicontinuous (in || · ||c) on Ak(n). (b) Ak is a bounded, and weak sequentially closed (i.e., for

each weakly convergent sequence in Ak, its limit belongs to Ak) subset of a reflexive Banach space
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(A, || · ||c), and for any data {Zi}n
i=1, Q̂n(α) is weak sequentially lower semicontinuous on Ak(n).

(c) Ak is a bounded, closed and convex subset of a reflexive Banach space (A, || · ||c), and for any

data {Zi}n
i=1, Q̂n(α) is convex and lower semicontinuous on Ak(n). Moreover, (c) implies (b). See

Zeidler (1985, proposition 38.7, theorem 38.A, corollary 38.8 and theorem 38.B).

Proof of Theorem 3.1: We verify that all the conditions of Lemma B.1 are satisfied with

α = h and ηn = 0. Let Q̂n(h) = n−1
∑n

i=1 m̂(Xi, h)
′m̂(Xi, h) + λnP̂n(h), Qn(h) = Q(h) + λnP (h)

and Q(h) = E [m(X,h)′m(X,h)]. Then ĥn = arg infh∈Hn
Q̂n(h) and conditions (B.1.2) and (B.1.3)

are directly assumed. Condition (B.1.1) is satisfied given assumptions 3.1(iii), 3.4, as Q(h0) = 0 ≤
Qn(h0) = λnP (h0) <∞, and for each ε > 0, k ≥ 1, λn ≥ 0, we have

inf
h∈Hk:||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λnP (h)} ≥ inf
h∈Hk:||h−h0||c≥ε

{E [m(X,h)′m(X,h)]} = g0 (n, k, ε) > 0.

Condition (3.1.1) implies that uniformly over ε > 0,

lim inf
n

g0 (n, k (n) , ε) > 0.

This and assumption 3.4 and λn ≥ 0, λn = o(1) then imply uniformly over ε > 0,

lim
n

infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)} − λnP (h0)

g0 (n, k(n), ε)
= 1.

Also, assumptions 3.2 and 3.4 and λn = o(1) imply Qn(h0) − Qn(Πnh0) = o(1). It remains to

check condition (B.1.4) by establishing suph∈Hn
|Q̂n(h) −Qn(h)| = oP (1), which is satisfied given

condition (3.1.2) and assumption 3.4, as

∣∣∣Q̂n(h) −Qn(h)
∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) − E [m(X,h)′m(X,h)]

∣∣∣∣∣+
∣∣∣λnP̂n(h) − λnP (h)

∣∣∣

= oP (1) uniformly over Hn.

Finally, we show that assumptions 3.1(i) and 3.5 imply condition (3.1.2). Notice that

∣∣∣∣∣
1

n

n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) − E [m(X,h)′m(X,h)]

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

[m̂(Xi, h)
′m̂(Xi, h) −m(Xi, h)

′m(Xi, h)]

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

m(Xi, h)
′m(Xi, h) − E [m(Xi, h)

′m(Xi, h)]

∣∣∣∣∣ .

∣∣∣∣∣
1

n

n∑

i=1

[m̂(Xi, h)
′m̂(Xi, h) −m(Xi, h)

′m(Xi, h)]

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

(m̂(Xi, h) −m(Xi, h))
′
(m̂(Xi, h) −m(Xi, h))

∣∣∣∣∣+
∣∣∣∣∣
2

n

n∑

i=1

m(Xi, h)
′ (m̂(Xi, h) −m(Xi, h))

∣∣∣∣∣
= oP (1) uniformly over Hn,
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where the last equality is due to assumption 3.5(ii)(iii) and Cauchy-Schwarz inequality. Finally,

applying the Glivenko-Cantelli theorem, assumptions 3.1(i) and 3.5(i)(ii)(iv) imply

1

n

n∑

i=1

m(Xi, h)
′m(Xi, h) − E [m(Xi, h)

′m(Xi, h)] = oP (1) uniformly over Hn.

Thus condition (3.1.2) is satisfied, and the result follows from Lemma B.1. Q.E.D.

Proof of Corollary 3.1: This can be trivially obtained by applying Lemma B.1 with

Qn(α) = E [m(X,h)′m(X,h)] = Q(α) and Q̂n(α) = 1
n

∑n
i=1 m̂(Xi, h)

′m̂(Xi, h) + OP (ηn), where

OP (ηn) = λn{P̂n(h) − P (h)} + λnP (h); hence OP (ηn) = oP (1) uniformly over h ∈ Hn by as-

sumptions 3.1(i), 3.4 and 3.6(ii). Assumptions 3.1(iii) and 3.7 imply condition (B.1.1) holds with

lim infn g0 (n, k (n) , ε) > 0 uniformly in ε > 0. Assumptions 3.1(i)(ii), 3.4, 3.5, 3.6(i) and 3.7, and

Remark B.1 imply assumption 3.3 (i.e., condition (B.1.3)). Condition (B.1.2) is directly assumed.

Finally condition (B.1.4) follows from condition (3.1.2), which is implied by assumptions 3.1(i) and

3.5 (see the proof of Theorem 3.1), while assumption 3.5(iv) is implied by assumption 3.6(i). Q.E.D.

In the following we denote ||g||2X ≡ E[g2(X)], ||g||2n,X ≡ 1
n

∑n
i=1 g

2(Xi) and 〈g, g〉n,X ≡
1
n

∑n
i=1 g(Xi)g(Xi).

Lemma B.2. Let assumptions 3.9 and 3.10(i) hold with an i.i.d. sample {(Yi, Xi)}n
i=1. Let Gn ≡ {g :

g(x) =
∑Jn

k=1〈gh, pk〉n,Xpk(x);h ∈ Hn, supx |g(x)| <∞} where gh is a square integrable function of

X indexed by h ∈ Hn, and {pk}Jn

k=1 is some linear sieve basis functions (e.g., B-Splines). Then

sup
h∈Hn

∣∣∣∣∣
||gh||2n,X

||gh||2X
− 1

∣∣∣∣∣ = oP (1).

Consequently, there are finite constants K,K ′ > 0 such that, except on an event whose probability

goes to zero as n→ ∞,

K ′||m̂(·, h)||2X ≤ ||m̂(·, h)||2n,X ≤ K||m̂(·, h)||2X uniformly on Hn.

Proof of Lemma B.2: Note that for functions in Gn we have that

sup
h∈Hn

||gh||n,X = sup
h∈Hn

∥∥∥∥∥

Jn∑

k=1

〈gh, pk〉n,Xpk

∥∥∥∥∥
n,X

≡ sup
g∈Gn

||g||n,X .

Define An ≡ supg∈Gn

supx |g(x)|
||g||X

. Then under assumption 3.9 and the definition of Gn, we have

An ≍ ξn . Thus, by assumption 3.9(iii), the result follows from Lemma 4 of Huang (1998) for

general linear sieves {pk}Jn

k=1 and Corollary 3 of Huang (2003) for polynomial spline sieves. Q.E.D.

Let m̃ (X,h) ≡ pJn (X)
′
(P ′P )

−1
P ′m (h) and m (h) = (m (X1, h) , . . . ,m (Xn, h))

′
.

Lemma B.3. (1) Let assumptions 3.9 and 3.10(i) hold with an i.i.d. sample {(Yi, Xi)}n
i=1. Then:

sup
h∈Hn

||m̂(·, h) − m̃(·, h)||2n,X ≍ sup
h∈Hn

||m̂(·, h) − m̃(·, h)||2X = OP

(
Jn

n

)
;

(2) If, further, assumption 3.10(ii) holds, then:

sup
h∈Hn

||m̂(·, h) −m(·, h)||2X = OP

(
Jn

n
+ b2m,Jn

)
.
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Proof of Lemma B.3: For result (1), by Lemma B.2 and definitions of m̃ (X,h), we have:

sup
h∈Hn

n−1
n∑

i=1

‖m̂ (Xi, h) − m̃ (Xi, h)‖2
E ≍ sup

h∈Hn

E

[
n−1

n∑

i=1

‖m̂ (Xi, h) − m̃ (Xi, h)‖2
E

]
.

E

[
n−1

n∑

i=1

‖m̂ (Xi, h) − m̃ (Xi, h)‖2
E

]

≤ E

[
Tr

{
n−1

n∑

i=1

pJn (Xi)
′
(P ′P )

−1
P ′ε (h) ε (h)

′
P (P ′P )

−1
pJn (Xi)

}]

≤ E
[
n−1Tr

{
P (P ′P )

−1
P ′ε (h) ε (h)

′
}]

≤ E
[
n−1Tr

{
P (P ′P )

−1
P ′E

[
ε (h) ε (h)

′ |X
]}]

≤ KE
[
n−1Tr

{
P (P ′P )

−1
P ′
}]

≤ KJn/n

where ε (h) = (ε (Z1, h) , . . . , ε (Zn, h))
′
, ε (Z, h) = ρ (Z, h) − m(X,h) and K is a finite constant

independent of h ∈ Hn, the fourth inequality follows from assumption 3.10(i), and the last inequality

follows from assumption 3.9(ii).

For Result (2), given Result (1), assumption 3.10(ii) and the following inequality

||m̂(·, h) −m(·, h)||X ≤ ||m̂(·, h) − m̃(·, h)||X + ||m̃(·, h) −m(·, h)||X ,

Result (2) follows trivially. Q.E.D.

Lemma B.4. Let ĥn be the penalized SMD estimator with λn ≥ 0, λn = oP (1), and m̂(X,h) any

consistent estimator of m(X,h) satisfying assumption 3.8 (or assumptions 3.9 - 3.10 for series LS

estimator m̂(X,h)). Let assumptions 3.1(i)(ii), 3.2(i) and 3.3 hold. Then: (1) under assumption

3.4, for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) +OP (λn)

}
)

;

(2) under assumption 3.11, for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) + oP (λn)

}
)
.

Proof of Lemma B.4: By definition of ĥn and Πnh0 and assumptions 3.1(i)(ii), 3.2(i) and

3.3, we have: for any ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε{n−1

∑n
i=1 m̂(Xi, h)

′m̂(Xi, h) + λnP̂ (h)}
≤ n−1

∑n
i=1 m̂(Xi,Πnh0)

′m̂(Xi,Πnh0) + λnP̂ (Πnh0)

)
.

By the i.i.d. sample, and assumption 3.8(ii) for any consistent estimator m̂, (or assumptions 3.9 -

3.10(i) and Lemma B.2 for the series LS estimator m̂), there are finite positive constants K and K ′
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such that for all h ∈ Hn, we have:

K ′E [m̂(X,h)′m̂(X,h)] ≥ n−1
n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) ≥ KE [m̂(X,h)′m̂(X,h)] .

Moreover, using the fact that (a− b)2 + b2 ≥ 1
2a

2 we have:

E [m̂(X,h)′m̂(X,h)] +E
[
(m̂(X,h) −m(X,h))

′
(m̂(X,h) −m(X,h))

]
≥ 1

2
E [m(X,h)′m(X,h)] ,

thus

n−1
n∑

i=1

m̂(Xi, h)
′m̂(Xi, h) ≥ K

{
1

2
E [m(X,h)′m(X,h)] − E

[
||m̂(X,h) −m(X,h)||2E

]}
.

Again by the i.i.d. sample and assumption 3.8(ii), and using the fact that (a+ b)2 ≤ 2a2 + 2b2, we

have:

1

n

n∑

i=1

m̂(Xi,Πnh0)
′m̂(Xi,Πnh0) ≤ 2K ′

{
||m̂(·,Πnh0) −m(·,Πnh0)||2X + E[m(X,Πnh0)

′m(X,Πnh0)]
}
.

By assumption 3.8(i) for any consistent estimator m̂, (or assumptions 3.9 - 3.10 and Lemma B.3

for the series LS estimator m̂ with δ2m,n = Jn

n + b2m,Jn
), we have:

inf
h∈Hn

{
−||m̂(·, h) −m(·, h)||2X

}
= − sup

h∈Hn

||m̂(·, h) −m(·, h)||2X = OP

(
δ2m,n

)

and

||m̂(·,Πnh0) −m(·,Πnh0)||2X = OP

(
δ2m,n

)
.

By assumption 3.4, we have: λn suph∈Hn
|P̂ (h) − P (h)| = OP (λn) and λn|P (Πnh0) − P (h0)| =

O(λn). Thus, for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (Πnh0) +OP (λn)

}
)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) +OP (λn)

}
)
.

By assumption 3.11, we have: λn suph∈Hn
|P̂ (h) − P (h)| = oP (λn) and λn|P (Πnh0) − P (h0)| =

o(λn). Thus, for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (Πnh0) + oP (λn)

}
)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) + oP (λn)

}
)
.

Thus we obtain results (1) and (2). Q.E.D.

Proof of Lemma 3.1: By definition of ĥn, we have for any λn > 0,

λnP̂n(ĥn) ≤ 1

n

n∑

i=1

||m̂(Xi, ĥn)||2E + λnP̂n(ĥn) ≤ 1

n

n∑

i=1

||m̂(Xi,Πnh0)||2E + λnP̂n(Πnh0),
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and

λn{P (ĥn) − P (h0)} + λn{P̂n(ĥn) − P (ĥn)}

≤ 1

n

n∑

i=1

||m̂(Xi,Πnh0)||2E + λn{P̂n(Πnh0) − P (Πnh0)} + λn{P (Πnh0) − P (h0)}.

Thus

λn{P (ĥn) − P (h0)}

≤ 1

n

n∑

i=1

||m̂(Xi,Πnh0)||2E + 2λn sup
h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)|

≤ OP

(
δ2m,n + E[||m(X,Πnh0)||2E ]

)
+ 2λn sup

h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)|

where the last inequality is due to assumption 3.8 holds for h = Πnh0.

Therefore, for all M > 0,

Pr
(
P (ĥn) − P (h0) > M

)

= Pr
(
λn{P (ĥn) − P (h0)} > λnM

)

≤ Pr

(
OP

(
δ2m,n + E[||m(X,Πnh0)||2E ]

)
+ 2λn sup

h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)| > λnM

)
.

(1) Under assumption 3.4, λn suph∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+λn |P (Πnh0) − P (h0)| = OP (λn), there-

fore

Pr
(
P (ĥn) − P (h0) > M

)
≤ Pr

(
OP (

δ2m,n + E[||m(X,Πnh0)||2E ]

λn
) +OP (1) > M

)

which, under max{δ2m,n, E[||m(X,Πnh0)||2E ]} = O(λn), goes to zero as M → ∞. Thus P (ĥn) −
P (h0) = OP (1). Since 0 ≤ P (h0) <∞ we have: P (ĥn) = OP (1).

(2) Under assumption 3.11, λn suph∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+λn |P (Πnh0) − P (h0)| = oP (λn), there-

fore

Pr
(
P (ĥn) − P (h0) > M

)
≤ Pr

(
OP (

δ2m,n + E[||m(X,Πnh0)||2E ]

λn
) + oP (1) > M

)

which, under max{δ2m,n, E[||m(X,Πnh0)||2E ]} = o(λn), goes to zero for all M > 0. Thus P (ĥn) −
P (h0) ≤ oP (1). Q.E.D.

Proof of Theorem 3.2: By Lemma B.4(1), assumption 3.12 and λnP (h) ≥ 0, we have: for

all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {B(k(n))gm(||h− h0||c) + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) +OP (λn)

}
)

≤ Pr

(
gm(ε) ≤

K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) +OP (λn)

}

B(k(n))

)

which goes to zero under max{δ2m,n, E(‖m(X,Πnh0)‖2
E), λn} = o (B(k(n))). Q.E.D.
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Proof of Theorem 3.3: By Lemma B.4(1), for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)
≤ Pr

(
infh∈Hn:||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) +OP (λn)

}
)
.

Recall that E[m(X,h)′m(X,h)] is lower semicontinuous on H under || · ||c (assumption 3.7(ii)) iff

the set {h ∈ H : E[m(X,h)′m(X,h)] ≤M} is closed in || · ||c relatively to H for all −∞ < M <∞.

Given assumption 3.13, the set {h ∈ Hn : ||h − h0||c ≥ ε, E[m(X,h)′m(X,h)] ≤ M,P (h) ≤ M}
is compact under || · ||c for all M,M < ∞. Theorem 38.B of Zeidler (1985) now implies that the

minimum problem,

min
h∈Hn:||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λnP (h)}

has a solution, hn, which belongs to the set:

{
h ∈ Hn : ||h− h0||c ≥ ε,

E [m(X,h)′m(X,h)] + λnP (h) ≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] + δ2m,n + λnP (h0) + O(λn)
}
}
.

Since E [m(X,h)′m(X,h)] ≥ 0, λn > 0 and Hn ⊆ H, we have that the sequence {hn} belongs to

the set
{
h ∈ H : ||h− h0||c ≥ ε, P (h) ≤ K

(
E[m(X,Πnh0)

′m(X,Πnh0)] + δ2m,n

λn
+O(1)

)}
,

which is compact under || · ||c by assumption 3.13(i), the fact that {h ∈ H : ||h−h0||c ≥ ε} is closed,

and that max{δ2m,n, E(‖m(X,Πnh0)‖2
E)} = O (λn). Therefore, the sequence {hn} must have a

further subsequence, denoted as {hnk
}, that converges to a limit h∞ in || · ||c and h∞ ∈ {h ∈ H :

||h− h0||c ≥ ε, P (h) ≤M} for some M ∈ [0,+∞). Moreover, by assumption 3.7(ii) and P (h) ≥ 0,

we have:

0 ≤ E [m(X,h∞)′m(X,h∞)] ≤ lim inf
n

E [m(X,hn)′m(X,hn)]

≤ lim inf
n

K
{
E[m(X,Πnh0)

′m(X,Πnh0)] + δ2m,n +O(λn) + λnP (h0)
}

= 0.

This and assumption 3.1(iii) together imply that ||h∞ − h0||c = 0, which contradicts to h∞ ∈ {h ∈
H : ||h− h0||c ≥ ε, P (h) ≤M}. Thus ||ĥn − h0||c = oP (1). Lemma 3.1 (1) implies P (ĥn) = OP (1).

Q.E.D.

Proof of Theorem 3.4: By Lemma B.4(2) and assumption 3.14, we have: for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) + oP (λn)

}
)
.

Case 1: If lim infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)]} ≥ const. > 0, then since λnP (h) ≥ 0,

lim inf
h∈Hk(n):||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λnP (h)} ≥ const. > 0

we have Pr
(
||ĥn − h0||c > ε

)
→ 0 as long as max{δ2m,n, E(‖m(X,Πnh0)‖2

E)} = o (1) and λn = o(1).
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Case 2: If lim infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)]} = 0, by assumption 3.15, for all the

sequences {hn ∈ Hk(n) : ||hn − h0||c ≥ ε} with lim infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)]} = 0,

we have lim infn〈t0, hn − h0〉H∗,H ≥ 0. This and assumption 3.14 imply:

lim inf
h∈Hk(n):||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λn(P (h) − P (h0))}

≥ lim inf
h∈Hk(n):||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λn〈t0, h− h0〉H∗,H + λng(||h− h0||c)}

≥ lim inf
h∈Hk(n):||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λng(||h− h0||c)} .

Thus, for all ε > 0, for result (a), since E [m(X,h)′m(X,h)] ≥ 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hn:||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λn(P (h) − P (h0))}
≤ K

{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ oP (λn)

}
)

≤ Pr
(
λng(ε) ≤ K

{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ oP (λn)

})

→ 0 if max
{
E[m(X,Πnh0)

′m(X,Πnh0)], δ
2
m,n

}
= o(λn);

For result (b), under the additional assumption 3.12,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr
(
B(k(n))gm(ε) + λng(ε) ≤ K

{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ oP (λn)

})

→ 0 if max
{
E[m(X,Πnh0)

′m(X,Πnh0)], δ
2
m,n

}
= o(max{B(k(n)), λn}).

Thus ||ĥn − h0||c = oP (1). This and assumption 3.14 imply P (ĥn) − P (h0) ≥ oP (1). But Lemma

3.1 (2) also implies P (ĥn) − P (h0) ≤ oP (1). Thus P (ĥn) − P (h0) = oP (1). Q.E.D.

Proof of Corollary 3.2: It suffices to show that assumptions 3.16, 3.17 and 3.18 imply that

assumptions 3.15 and 3.3 of Theorem 3.4 hold. First, assumptions 3.2(i) and 3.16(i)(iii) imply that

every sequence {hk ∈ Hk} has a weakly convergent sub-sequence in H, denoting its limit as h∞,

then h∞ ∈ H by assumption 3.16(ii) and Zeidler (1985, corollary 38.8). By assumption 3.17 and

lim infk→∞ E [m(X,hk)′m(X,hk)] = 0, we have E [m(X,h∞)′m(X,h∞)] = 0. This and assumption

3.1(iii) imply h∞ = h0; hence assumption 3.15 holds with c = 0. Next, under assumptions 3.1(i),

3.2(i) and 3.8, by theorem 38.A and corollary 38.8 of Zeidler (1985), we have that assumptions

3.16, 3.17 and 3.18 imply assumption 3.3. Finally, we need to establish the claim in Remark

3.2. Under assumptions 3.16 and 3.17’, any weakly convergent sequence {hk : k} to h∞ in H has

an associated convergent sub-sequence {m(·, hk) : k} to m(·, h∞) in L2(fX), since the functional

E [m(X,h)′m(X,h)] : m ∈ L2(fX) → [0,+∞] is convex and continuous in m ∈ L2(fX), it follows

that E [m(X,hk)′m(X,hk)] → E [m(X,h∞)′m(X,h∞)] as k → ∞; hence assumption 3.17 holds.

By Remark B.1(2)(c), assumptions 3.16 and 3.17” imply that assumption 3.17 holds. Q.E.D.

Proof of Theorem 3.5: By Lemma B.4(2), we have: for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
infh∈Hk(n):||h−h0||c≥ε {E [m(X,h)′m(X,h)] + λnP (h)}

≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ λnP (h0) + oP (λn)

}
)
.
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Under assumptions 3.2(i), 3.11, 3.16(i)(ii)(iii)’, 3.17” and 3.18(b), the infimum,

inf
h∈Hn:||h−h0||c≥ε

{E [m(X,h)′m(X,h)] + λnP (h)}

exists. If the set {E [m(X,h)′m(X,h)]+λnP (h) ≤ K
{
E[m(X,Πnh0)

′m(X,Πnh0)] + λnP (h0) + δ2m,n + oP (λn)
}
}

is empty for all n big enough the desired result will trivially follow. Thus we assume that this set is

not empty infinitely often, i.e., it exists a subsequence (hn)n that belongs to the aforementioned set

and to {h ∈ Hn : ||h− h0||c ≥ ε}. By assumptions 3.1(ii), 3.16, 3.18(b) and Remark 3.2, it follows

that there exists a weak convergence subsequence, denoted as {hnk
}k with weak limit h∞ ∈ H. By

assumptions 3.16 and 3.17” and Remark 3.2, we have: E[||m(X,h∞)||2E ] ≤ lim inf E[||m(X,hnk
)||2E ],

and

0 ≤ E[||m(X,h∞)||2E ] + λ0P (h∞) ≤ lim
(
E[||m(X,hnk

)||2E ] + λnk
P (hnk

)
)

≤ limK
(
E[||m(X,Πnk

h0)||2E ] + λnk
P (Πnk

h0) + δ2m,nk

)

≤ K
(
E[||m(X,h0)||2E ] + λ0P (h0)

)
,

where the first inequality follows from assumptions 3.17” and 3.19(ii) and the last follows from

the fact that λn = λ0 + o(1) and assumptions 3.2(ii) and 3.11. Assumption 3.19(i) then implies

||h∞−h0||c = 0. Moreover, all of such weak convergence subsequences having their limits satisfying

||h∞−h0||c = 0. Thus we have lim infhn∈Hn:||h−h0||c≥ε {〈t0, hn − h0〉H∗,H} = 〈t0, h∞−h0〉H∗,H = 0

for t0 defined in assumption 3.14. Hence, for all ε > 0,

Pr
(
||ĥn − h0||c > ε

)

≤ Pr

(
lim infhn∈Hn:||h−h0||c≥ε λn {〈t0, hn − h0〉H∗,H + g(||hn − h0||c)}
≤ K

{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ oP (λn)

}
)

≤ Pr
(
λng(ε) ≤ K

{
E[m(X,Πnh0)

′m(X,Πnh0)] +OP

(
δ2m,n

)
+ oP (λn)

})

→ 0 if max
{
E[m(X,Πnh0)

′m(X,Πnh0)], δ
2
m,n

}
= o(λn),

where the last inequality is due to assumption 3.14, and the result now follows. For case (b) the

proof is completely analogous to the one in theorem 3.4.

Finally, ||ĥn − h0||c = oP (1) and assumption 3.14 (or P (h) is lower semicontinuous at h0)

imply P (ĥn) − P (h0) ≥ oP (1) But Lemma 3.1 (2) also implies P (ĥn) − P (h0) ≤ oP (1). Thus

P (ĥn) − P (h0) = oP (1). Q.E.D.

C Convergence Rate

Proof of Theorem 4.1: (1) Let r2n = max{δ2m,n, ||Πnh0 − h0||2, λn|P (Πnh0)− P (ĥn)|} = oP (1).

Since ĥn ∈ Hosn with probability approaching one, we have: for all M > 1,

Pr

(
||ĥn − h0||

rn
≥M

)

≤ Pr

(
inf

{h∈Hosn:||h−h0||≥Mrn}
{||m̂(·, h)||2n,X + λnP (h)} ≤ ||m̂(·,Πnh0)||2n,X + λnP (Πnh0)

)
.
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By assumption 3.8, we have:

(1− oP (1))||m(·, ĥn)||2X + λnP (ĥn) ≤ OP (δ2m,n) + (1 + oP (1))||m(·,Πnh0)||2X + λnP (Πnh0). (C.1)

which implies

(1 − oP (1))||m(·, ĥn)||2X ≤ OP (δ2m,n) + (1 + oP (1))||m(·,Πnh0)||2X + λn|P (Πnh0) − P (ĥn)|.

This, ||ĥn − h0||s = oP (1) and assumption 4.1 imply that

Pr

(
||ĥn − h0||

rn
≥M

)
≤ Pr

(
M2r2n ≤ OP

{
δ2m,n, ||Πnh0 − h0||2, λn|P (Πnh0) − P (ĥn)|

})
,

which, given our choice of rn, goes to zero as M → ∞; hence ||ĥn − h0|| = OP (rn) and Theorem

4.1(1) follows.

(2) Using the same argument as that for result (1), we still have inequality (C.1) holds. By

assumption 4.2, λn

(
P (ĥn) − P (Πnh0)

)
≥ λn〈t0, ĥn − Πnh0〉H∗,H and thus

(1 − oP (1))||m(·, ĥn)||2X + λn〈t0, ĥn − Πnh0〉H∗,H ≤ OP (δ2m,n) + (1 + oP (1))||m(·,Πnh0)||2X ,

thus

(1 − oP (1))||m(·, ĥn)||2X ≤ OP (δ2m,n) + (1 + oP (1))||m(·,Πnh0)||2X + const.λn||ĥn − Πnh0||s

By assumption 4.1, theorem 4.1(2) follows by choosing r2n = max{δ2m,n, ||Πnh0 − h0||2, λn||ĥn −
Πnh0||s} = oP (1). Q.E.D.

Proof of Theorem 4.2: It directly follows from theorem 4.1(1), assumption 4.3 and the

definition of ωn(δ,Hosn). Q.E.D.

Proof of Theorem 4.3: By setting λn = O
(

δ2
m,n

||ĥn−Πnh0||s

)
the result directly follows from

theorem 4.1(2), assumption 4.3 and the definitions of ωn(δ,Hosn) and ω(δ,Hos). Q.E.D.

Proof of Corollary 4.1: Under the stated condition, we can replace λ̂nP̂n(h) by λnP (h)(1+

oP (1)) uniformly over h ∈ Hosn. It is then easy to check that all the theorems still hold under their

respective assumptions. Q.E.D.

Proof of Lemma 5.1: Result (1) follows directly from the definition of ωn(δ,Hosn), as well

as the fact that for any h ∈ Hosn, under assumption 5.1,

C−1||h||2s =
∑

j≤k(n)

|〈h, qj〉s|2 ≤ ( max
j≤k(n)

b−1
j )

∑

j≤k(n)

bj |〈h, qj〉s|2 ≤ 1

cbk(n)
||h||2,

where the last inequality is due to assumption 5.2(i) and {bj} non-increasing. Similarly, assumption

5.2(ii) implies Result (2) since

||h0 − Πnh0||2s = c
∑

j>k(n)

|〈h0 − Πnh0, qj〉s|2

≥ c( min
j>k(n)

b−1
j )

∑

j>k(n)

bj |〈h0 − Πnh0, qj〉s|2 ≥ c′

bk(n)
||h0 − Πnh0||2.
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Result (3) directly follows from results (1) and (2). Q.E.D.

Proof of Lemma 5.2: For any h ∈ Hos with ||h||2 ≤ O(δ2), and for any k ≥ 1, assumptions

5.1, 5.4(i) and 5.3 imply that

C−1||h||2s =
∑

j≤k

〈h, qj〉2s +
∑

j>k

〈h, qj〉2s

≤ (max
j≤k

b−1
j )

∑

j

bj〈h, qj〉2s +M2(νk+1)
−2γh ≤ 1

c
b−1
k δ2 +M2(νk+1)

−2γh .

Given that M > 0 is a fixed finite number and δ goes to zero as n increases, we can assume

M2(ν2)
−2γh > 1

c δ
2/b1, which will be satisfied for big enough n. Since {bj} is non-increasing and

{νj}∞j=1 is non-decreasing in j ≥ 1, we have: there is a k∗ > 1 such that

δ2

bk∗−1
< cM2(νk∗)−2γh and

δ2

bk∗

≥ cM2(νk∗)−2γh ≥ cM2(νk∗+1)
−2γh ,

and

ω(δ,Hos) = sup
h∈Hos:||h||≤δ

||h||s ≤ const.
δ√
bk∗

.

The result follows. Q.E.D

D Applications

Proof of Proposition 6.1: For the nonparametric additive quantile IV model (6.1), we apply

Corollary 3.1 by verifying all its assumptions are satisfied. First, for both Results (1) and (2),

Assumptions 3.1(i)(iii) are directly assumed. Assumptions 3.4 and 3.6(ii) are trivially satisfied with

λn = 0, or with λn > 0, λn = o(1), P̂n(h) = P (h) = ||̟h2||T s2
p2,q2

, and H2 = {h2 ∈ L2(Rd, fY2) :

||̟h2||T γ2
p,q

≤M0} for γ2 > 0 and a known constant M0 <∞. This is because the embedding of H2

into the set {h2 ∈ L2(Rd, fY2) : ||̟h2||T s2
p2,q2

<∞} is continuous as long as s2 ∈ [0, γ2−d(p−1−p−1
2 )]

and q ≤ q2 (see Edmunds and Triebel, 1996, chapter 4). Thus, P (h) = ||̟h2||T s2
p2,q2

≤ const.

uniformly in h2 ∈ H2 and H2
n ⊆ H2.

For Result (1): Assumption 3.1(ii) is automatically satisfied with the choice of the spaces H =

Λγ1

1 ([0, 1]d) × H2 and H = L∞([0, 1]d) × {h2 : supy2
|h2 (y2)w (y2)| < ∞} with the norm ||h||c =

supy1
|h(y1)| + supy2

|h2 (y2)w (y2)|. Moreover, the embedding of H into H is compact under the

norm || · ||c with γ1 > 0, γ2 > d/p, θ > ϑ ≥ 0 (which implies w
̟ ≍ (1+|y2|)

−θ

(1+|y2|)
−ϑ → 0 as |y2| → ∞; see

Edmunds and Triebel, 1996, chapter 4). Given the choice of the sieve space Hn and the definition of

|| · ||c, we have suph∈H ‖h− Πnh‖c = o(1), which implies assumption 3.2(i). For assumption 3.2(ii),

notice that

m(X,h) −m(X,h0)

= E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2)) − FY3|Y1,Y2,X(h01(Y1) + h02(Y2))|X ]

= E{fY3|Y1,Y2,X(h1(Y1) + h2(Y2))[h1(Y1) − h01(Y1) + h2(Y2) − h02(Y2)]|X},
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thus

|m(X,h) −m(X,h0)|
≤ E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X ] × sup

y1

|h1(y1) − h01(y1)|

+E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2))
1

w (Y2)
|X ] × sup

y2

|[h2 (y2) − h02 (y2)]w (y2)| .

Since m(X,h0) = 0 and |m(X,h)| = |E[FY3|Y1,Y2,X(h1(Y1)+ h2(Y2))|X ]| ≤ 1 for all h for almost all

X , we have

E[|m(X,h)|2] ≤ E[|m(X,h) −m(X,h0)|] ≤ E[sup
y3

fY3|Y1,Y2,X(y3){1 +
1

w (Y2)
}] × ‖h− h0‖c .

Thus condition 6.1(ii)(iii) and ‖Πnh0 − h0‖c = o(1) imply

E[|m(X,Πnh0)|2] ≤ E[sup
y3

fY3|Y1,Y2,X(y3){1 +
1

w (Y2)
}] × ‖Πnh0 − h0‖c = o(1)

hence assumption 3.2(ii) holds. Assumptions 3.6(i) and 3.7(i) follow directly from our choices of H,

Hn and ‖·‖c. For assumptions 3.7(ii) and 3.5(i)(ii), notice that for all h, h′ ∈ H,

|m(X,h) −m(X,h′)|
≤ E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X ] × sup

y1

|h1(y1) − h′1(y1)|

+E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2))
1

w (Y2)
|X ] × sup

y2

|[h2 (y2) − h′2 (y2)]w (y2)| ,

condition 6.1(ii)(iii) imply assumption 3.5(i) holds with b(X) = E[supy3
fY3|Y1,Y2,X(y3){1+ 1

w(Y2)
}|X ]

and κ = 1. Since |m(X,h)| ≤ 1 for all h for almost all X , assumption 3.5(ii.a) and 3.7(ii) are sat-

isfied. To establish assumptions 3.5(iii), it suffices to show that

(i) sup
h∈Hn

n−1
n∑

i=1

(m̂(Xi, h) − m̃(Xi, h))
2

= OP

(
Jn

n

)
= oP (1),

and

(ii) sup
h∈Hn

n−1
n∑

i=1

(m̃(Xi, h) −m(Xi, h))
2 = oP (1).

For claim (i), assumption 3.9 and the fact that |ρ(Z, h)| ≤ 1 imply that all the conditions of Lemma

B.3(1) are satisfied; hence claim (i) follows from Lemma B.3(1). Regarding claim (ii), for each

h ∈ Hn, n−1
∑n

i=1 (m̃(Xi, h) −m(Xi, h))
2 = oP (1) follows directly from conditions 6.1(i)(ii)(iv)

and 6.3(i), and the LS projection approximation property of the sieve space pJn(X) as Jn →
∞. From the verification of assumption 3.5(i)(ii.a), compactness of Hn and H, we have that

n−1
∑n

i=1 (m̃(Xi, h) −m(Xi, h))
2

is stochastic equicontinous in Hn; hence we obtain claim (ii).

Thus all the assumptions of Corollary 3.1 are satisfied and Result (1) follows.

For Result (2): The verifications for Result (2) are essentially the same as those for Result (1).

Here we only highlight the parts that are slightly different due to the different choice of H and

||h||c. Assumption 3.1(ii) is satisfied with the choice of the spaces H = Λγ1

1 ([0, 1]d) ×H2, and H =

L∞([0, 1]d) × {h2 : | |h2w||L2(Rd,leb) < ∞} with the norm ||h||c = supy1
|h(y1)| + | |h2w||L2(Rd,leb).
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The embedding of H into H is compact under the norm || · ||c with γ1 > 0, γ2+d/2 > d/p, p−1+(θ−
ϑ)/d > 1/2 (see Edmunds and Triebel, 1996, chapter 4). Thus we have suph∈H ‖h− Πnh‖c = o(1)

which implies assumption 3.2(i). For assumption 3.2(ii), notice that

|m(X,h) −m(X,h0)|
= |E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2)) − FY3|Y1,Y2,X(h01(Y1) + h02(Y2))|X ]|
≤ E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2)) × |h1(Y1) − h01(Y1)||X ]

+E

{
fY3|Y1,Y2,X(h1(Y1) + h2(Y2))

w (Y2)
× {|h2(Y2) − h02(Y2)|w (Y2)}|X

}

and that |m(X,h)| ≤ 1, we have, under condition 6.1(ii) and E[ 1
w(Y2) ]

2 <∞,

E{|m(X,h)|2} ≤ E{|m(X,h) −m(X,h0)|}
≤ sup

y3

fY3|Y1,Y2,X(y3) × ||h1 − h01||L∞([0,1]d,leb)

+ sup
y3

fY3|Y1,Y2,X(y3) ×
√
E[

1

w (Y2)
]2 × ||w[h2 − h02]||L2(Rd,leb) ,

thus assumption 3.2(ii) is satisfied. For assumptions 3.7(ii) and 3.5(i)(ii), notice that for all h, h′ ∈
H,

|m(X,h) −m(X,h′)|
≤ E[fY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X ] × sup

y1

|h1(y1) − h′1(y1)|

+E

{
fY3|Y1,Y2,X(h1(Y1) + h2(Y2))

w (Y2)
× {|h2(Y2) − h′2(Y2)|w (Y2)}|X

}
,

condition 6.1(ii) and E[ 1
w(Y2) ]

2 <∞ imply assumption 3.5(i) holds with b(X) = E[supy3
fY3|Y1,Y2,X(y3){1+

[w (Y2)]
−2}|X ] and κ = 1. Since |m(X,h)| ≤ 1 for all h for almost all X , assumption 3.5(ii.a) and

3.7(ii) are satisfied. The rest of the verifications are the same as those for Result (1). Q.E.D.

Proof of Proposition 6.2: For (1) We obtain the results by verifying that all the assump-

tions of Theorem 3.3 (lower semicompact penalty) are satisfied. First, assumption 3.9 is directly

imposed. Assumption 3.10(ii) holds by the choice of the sieve basis for pJn(X) and by condition

6.4 with b2m,Jn
= J−2rm

n . Next, following the proofs for Results (1) and (2) of Proposition 6.1, we

have that for any M < ∞, the embedding of the set {h ∈ H : P (h) = ||̟h2||T γ2
p,q

≤ M} into H is

compact under the norm || · ||c; hence assumption 3.13 is satisfied. Given the choice of the sieve

space Hn and the definition of || · ||c, we have for h0 ∈ H,

‖h0 − Πnh0‖c ≤ c{k1(n)}−γ1/d + c′n{k2(n)}−γ2/d = o(1),

thus assumption 3.2(i) holds. Assumptions 3.2(ii), 3.7(ii) and 3.4(b) are already verified in the proof

of Proposition 6.1. Now the results follow from Theorem 3.3 provided that max{δ2m,n, E[m(X,Πnh0)
2]} =
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O(λn). We already have δ2m,n = Jn

n + J−2rm
n = O(λn). By conditions 6.1(ii)(iii)(iv), we also have

E{‖m(X,Πnh0)‖2
E}

= E{
∣∣E
[
fY3|Y1,Y2,X(h1(Y1) + h2(Y2)){Πnh01(Y1) − h01(Y1) + Πnh02(Y2) − h02(Y2)}|X

]∣∣2}
≤ E

{
E
([
fY3|Y1,Y2,X(h1(Y1) + h2(Y2)){Πnh01(Y1) − h01(Y1) + Πnh02(Y2) − h02(Y2)}

]2 |X
)}

≤ CE
{

[Πnh01(Y1) − h01(Y1) + Πnh02(Y2) − h02(Y2)]
2
}

≤ 2CE{[Πnh01(Y1) − h01(Y1)]
2} + 2CE{[Πnh02(Y2) − h02(Y2)]

2}
≤ const. ‖h0 − Πnh0‖2

c = O
(
max

[
{k1(n)}−2γ1/d, {k2(n)}−2γ2/d

])
= O(λn),

the result now follows. For (2), it directly follows from Lemma 3.1 (1). Q.E.D.

Proof of Proposition 6.3: We obtain the results by verifying that all the assumptions of

Corollary 3.2 (convex penalty) are satisfied. Again assumptions 3.9 and 3.10 hold with b2m,Jn
=

J−2rm
n . Assumptions 3.1(i)(iii) are already assumed, and assumption 3.1(ii) holds trivially given the

choice of the norm ||h||c = supy1
|h(y1)| + | |h2w||L2(Rd,leb) for the spaces H = Λγ1

1 ([0, 1]d) ×H2 ⊂
H = L∞([0, 1]d) × {h2 : | |h2w||L2(Rd,leb) <∞}. By the choice of the spaces Hn and H, we have:

||Πnh01−h01||L2(fY1 ) ≤ sup
h1∈H1

||Πnh1−h1||L2(fY1 ) ≤ sup
h1∈H1

sup
y1

|Πnh1(y1)−h1(y1)| ≤ c{k1(n)}−γ1/d,

||Πnh02 − h02||L2(fY2 ) ≤
√

sup
y2

fY2(y2)

w2(y2)
× ||w(Πnh02 − h02)||L2(Rd,leb) ≤ c′{k2(n)}−γ2/d,

thus assumption 3.2(i) holds. Assumption 3.2(ii) is already verified in the proof of Result (2) of

Proposition 6.1. Assumption 3.11 follows from the fact that P̂ (h) = P (h) = ||(wh2)||2L2(Rd,leb) and

P (Πnh0) − P (h0) = ||w(Πnh02 − h02)||2L2(Rd,leb) + 2〈wh02, w(Πnh02 − h02)〉L2(Rd,leb) = o(1).

Assumption 3.14 follows from

P (h) − P (h0) = ||w(h − h02)||2L2(Rd,leb) + 2〈wh02, w(h− h02)〉L2(Rd,leb)

with g(ε) = ε2 and t0 = 2wh02. Assumption 3.16 follows by our choice of norm and space.

Assumption 3.17’ is implied by condition 6.5. Finally assumption 3.18(b) follows from the fact that

P (h) = ||wh2||2L2(Rd,leb) is convex and continuous. Finally, by conditions 6.1(ii)(iii)(iv), we have

E{‖m(X,Πnh0)‖2
E} ≤ const. ‖h0 − Πnh0‖2

c = O
(
max

[
{k1(n)}−2γ1/d, {k2(n)}−2γ2/d

])
.

The result now follows from Corollary 3.2. Q.E.D.

Proof of Proposition 6.4: We obtain the results by verifying that all the assumptions

of Corollary 5.1 are satisfied. As assumptions 3.1, 3.2, 3.9 and 3.10 are already verified in the

proofs of Propositions 6.1, 6.2 and 6.3, assumption 5.1 is automatically satisfied. Condition 6.8

implies assumption 5.4 (hence 5.2). It remains to verify assumptions 4.1. For assumption 4.1(i), by

condition 6.1(ii) we have

dm(X,h0)

dh
[h− h0] = E{fY3|Y1,Y2,X(h01(Y1) + h02(Y2))[h1(Y1) − h01(Y1) + h2(Y2) − h02(Y2)]|X},
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‖h− h0‖2 = E

(
dm(X,h0)

dh
[h− h0]

)2

≤ const. ‖h− h0‖2
s ,

where ‖h− h0‖2
s = E

{
(h1(Y1) − h01(Y1) + h2(Y2) − h02(Y2))

2
}
,

hence assumption 4.1(i) holds. For any h ∈ Hos we recall the linear integral operator Th[g1 + g2] ≡
E{fY3|Y1,Y2,X(h1(Y1)+h2(Y2))[g1(Y1)+g2(Y2)]|X} that maps from Dom(Th) → L2([0, 1]dx , fX). By

condition 6.6(i)(ii) and proposition 7.33 of Zeidler (1985), Th is compact for any h ∈ Hos. Moreover,

by conditions 6.6, for all h ∈ Hos, Th shares the same domain, range, and aj(Th) ≍ aj(Th0);

hence µj(Th) ≍ µj(Th0) for all j (the same speed of singular value decay), and ||Th[g]||L2(fX ) ≍
||Th0 [g]||L2(fX ) for all g ∈ Dom(Th) (see Edmunds and Triebel (1996)). By the mean value theorem,

for all h ∈ Hos, E
[
(m(X,h) −m(X,h0))

2
]

= ||Th[h1 − h01 + h2 − h02]||2L2(fX ), where h is a convex

combination of h and h0 in Hos. While ‖h− h0‖2
= ||Th0 [h1 − h01 + h2 − h02]||2L2(fX ) by definition.

Thus for all h ∈ Hos, c
2 ‖h− h0‖2 ≤ E

[
(m(X,h) −m(X,h0))

2
]
≤ C2 ‖h− h0‖2

, and assumption

4.1(ii) holds. The conclusions now follow directly from Corollary 5.1. Q.E.D.

Proof of Proposition 6.5: We obtain the results by verifying that all the assumptions

of Corollary 5.3 are satisfied. First, if the conditions of Proposition 6.2 holds, then we are in the

“lower semi-compact case”, and most of the verifications follow directly from those for Proposition

6.4. Given our choices of space, sieve and condition 6.8(ii), we only need to verify assumption 5.3,

which directly follows from our choice of H2
os.

If the conditions of Proposition 6.3 holds, then it suffices to verify that assumption 4.2 is satisfied

with the penalty P (h2) = ||(wh2)||2L2(Rd,leb). We have for all h ∈ Hosn,

P (h2) − P (Πnh02) − 〈2wΠnh02, w(h2 − Πnh02)〉L2(Rd,leb) = ||w(h2 − Πnh02)||2L2(Rd,leb) ≥ 0.

Let t0 = 2wΠnh02 then

|〈t0, h− Πnh0〉H∗,H| = 2
∣∣〈wΠnh02, w(h2 − Πnh02)〉L2(Rd,leb)

∣∣

≤ 2||(wΠnh02)||L2(Rd,leb) × ||w(h2 − Πnh02)||L2(Rd,leb)

thus assumption 4.2 is satisfied. Q.E.D.

Proof of Proposition 6.6: Result (1)(i) directly follows from Theorem 3.3 (lower semicom-

pact penalty). Result (1)(ii) follows from Result (1)(i) and the Sobolev interpolation inequalities:

||∇k(w[ĥ− h0])||L2(R,leb) ≤ C × (||w[ĥ− h0]||L2(R,leb))
1−ς × (||∇k(w[ĥ − h0])||L2(R,leb))

ς ,

||∇k[ĥ− h0]||L2(fY2 ) ≤ C × (||ĥ− h0||L2(fY2 ))
1−ς × (||∇k[ĥ− h0]||L2(fY2 ))

ς

for some ς ∈ (0, 1) depends on k > k. Result (2) can be easily obtained by applying Theorem

1 of Chen, Linton and van Keilegom (2003). Using their notation, we define M(β, h) ≡ E[β −
a(Y2)∇kh(Y2)] and Mn(β, h) ≡ n−1

∑n
i=1(β − a(Y2i)∇kh(Y2i)). Then their conditions (1.1) - (1.4)

are trivially satisfied with the pseudo-metric ||h||H = ||∇kh||L2(fY2 ) (since ||∇k[ĥn − h0]||L2(fY2 ) =

oP (1) by result (1)(ii)). Their condition (1.5) is satisfied provided that the class {β−a(Y2)∇kh(Y2) :
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β ∈ B, h ∈ Hosn} satisfies Glinvenko-Cantelli. Since the data is i.i.d., the class is Glinvenko-

Cantelli provided that its L1(fY2)−covering number with bracketing is finite, which is true as for

any (β, h), (β′, h′) ∈ B ×Hosn,

∣∣(β − β′) − a(Y2i)∇k[h(Y2i) − h′(Y2i)]
∣∣ ≤ |β − β′| + sup

y2

|a(y2)| ×
∣∣∇k[h(Y2i) − h′(Y2i)]

∣∣

and Hosn ⊂ {h ∈ H : ||h− h0||L2(fY2 ) = o(1), ||∇k[h− h0]||L2(fY2 ) = o(1), P (h) ≤ const.}, condition

6.10 and result (1) imply that B ×Hosn has a finite cover. Q.E.D.

Proof of Proposition 6.7: We apply Theorem 4.1 of Chen (2007), which is a slight

refinement of Theorem 2 of Chen, Linton and van Keilegom (2003). Given Proposition 6.6, it

suffices to restrict our attention to Aos = {α = (β, h) ∈ B × Hos : |β − β0| = o(1)} and

Aosn = {α = (β, h) ∈ B × Hosn : |β − β0| = o(1)}. Following their notations, M(β, h) ≡
E[β−a(Y2)∇kh(Y2)] = E[β− (−1)kl(k)(Y2)h(Y2)] (the second equation is due to condition 6.11(i)),

and Mn(β, h) ≡ n−1
∑n

i=1(β − a(Y2i)∇kh(Y2i)), conditions (4.1.1) - (4.1.4) of Chen (2007) are

trivially satisfied with Γ1 = Γ1(β, h0) = 1, W = 1 and

Γ2(β0, h0)[h− h0] = Γ2(β, h0)[h− h0] = −E{a(Y2)∇k[h(Y2) − h0(Y2)]}
= (−1)k+1E{l(k)(Y2)[h(Y2) − h0(Y2)]}.

Chen’s condition (4.1.5) is satisfied given i.i.d. data and the class {(β − a(Y2i)∇kh(Y2i)) : (β, h) ∈
Aosn} is a Donsker class. For any (β, h), (β′, h′) ∈ Aosn, under condition 6.10, we have


E


 sup

|β−β′|≤δ,||∇k[h−h′]||L2(fY2
)≤δ

∣∣(β − β′) − a(Y2i)∇k[h(Y2i) − h′(Y2i)]
∣∣2





1/2

≤ 2δ + 2 sup
y2

|a(y2)|



E



 sup
||∇k[h−h′]||L2(fY2

)≤δ

∣∣∇k[h(Y2i) − h′(Y2i)]
∣∣2







1/2

≤ const.δ.

Let N(ε,Hosn, ||∇k[.]||L2(fY2 )) denote the covering number of the class Hosn ⊂ {h ∈ H : ||h −
h0||L2(fY2 ) = o(1), ||∇k[h− h0]||L2(fY2 ) = o(1), ||∇k(̟h)||L2(R,leb) ≤ const.}. Then

N(ε,Hosn, ||∇k[.]||L2(fY2 ))

≤ N(ε, {h ∈ H : ||∇k(wh)||L2(R,leb) + ||∇k(̟h)||L2(R,leb) ≤ const.}, ||∇k[.]||L2(fY2 ))

≤ const.

(
1

ε

)1/(k−k)

.

Thus
∫∞

0

√
logN(ε,Hosn, ||∇k[.]||L2(fY2 ))dε < ∞ provided k − k > 0.5; hence the class {(β −

a(Y2i)∇kh(Y2i)) : (β, h) ∈ Aosn} is a Donsker by Theorem 3 of Chen, Linton and van Keilegom

(2003).

To verify Chen’s condition (4.1.6), we need to establish that
√
nΓ2(β0, h0)[ĥ− h0] = OP (1) and

it has an asymptotic linear expansion:

√
nΓ2(β0, h0)[ĥ− h0] = (−1)k 1√

n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗]

)′

ρ(Zi, h0) + oP (1), (D.1)
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and thus

√
n{Mn(β0, h0) + Γ2(β0, h0)[ĥ− h0]}

=
1√
n

n∑

i=1

{
(β0 − a(Y2i)∇kh0(Y2i)) + (−1)k

(
dm(Xi, h0)

dh
[v∗]

)
ρ(Zi, h0)

}
+ oP (1)

and by theorem 4.1 of Chen or theorem 2 Chen, Linton and van Keilegom (2003), we obtain:
√
n
(
β̂ − β0

)
⇒ N(0, V −1) with

V −1 = V ar
{
(β0 − a(Y2i)∇kh0(Y2i)) + (−1)k (Th0 [v

∗]) ρ(Zi, h0)
}
.

To finish the proof, it remains to establish (D.1). Denote θ0 ≡ E{l(k)(Y2)h0(Y2)} and θ̂ =

E{l(k)(Y2)ĥ(Y2)}. It suffices to show that
√
n(θ̂ − θ0) = OP (1) and is asymptotically linearly

distributed, where ĥ(Y2) is the penalized SMD estimator of h0 :

ĥ = arg min
h∈Hn

{
1

n

n∑

i=1

||m̂(Xi, h)||2E + λn||∇k(̟h)||2L2(leb)

}
.

Following AC (2003) or Chen and Pouzo (2008), we first compute the Riesz representor v∗ for θ−θ0:

||v∗||2 ≡ sup
h:0<||h−h0||<∞

(θ − θ0)
2

||h− h0||2
= sup

h:0<||h−h0||<∞

(E{l(k)(Y2)[h(Y2) − h0(Y2)]})2

E
[
(Th0[h(Y2) − h0(Y2)])

2
]

= sup
h:0<||h−h0||<∞

(〈
l(k), h− h0

〉
L2(fY2 )

)2

〈
T ∗

h0
Th0 [h− h0], h− h0

〉
L2(fY2 )

=
〈
l(k), (T ∗

h0
Th0)

−1l(k)
〉

L2(fY2 )
=
∥∥∥(T ∗

h0
Th0)

− 1
2 l(k)

∥∥∥
2

L2(fY2 )
<∞

and

E{l(k)(Y2)[h(Y2) − h0(Y2)]} = θ − θ0 = 〈v∗, h− h0〉 = E{(Th0 [v
∗]) (Th0 [h− h0])}

by condition 6.12(i). Moreover, condition 6.12(ii) implies that we can solve v∗ in a closed form:

v∗ = (T ∗
h0
Th0)

−1l(k) ∈ L2(fY2).

Denote ||| · |||2 ≡ n−1
∑n

i=1 || · ||2E and m̃ as the LS projection of m(X,h) onto the linear sieve

basis pJn(X). By lemma B.3 (for which both assumptions 3.9 and 3.10(i) hold), i.i.d. data and

condition 6.15 we obtain:

sup
h∈Non

|||m̂(·, h) − m̃(·, h) − m̂(·, h0)|||2

= sup
h∈Non

n−1
n∑

i=1

(m̂(Xi, h) − m̃(Xi, h) − m̂(Xi, h0))
2

≤ sup
h∈Non

E
[
pJn(Xi)(P

′P )−1P ′(∆ǫ(h))(∆ǫ(h))′P (P ′P )−1pJn(Xi)
′
]

≤ sup
h∈Non

E
[
pJn(Xi)(P

′P )−1P ′E [(∆ǫ(h))(∆ǫ(h))′|X1, . . . , Xn]P (P ′P )−1pJn(Xi)
′
]

≤ sup
h∈Non

E
[
Λn × Tr

{
n−1pJn(Xi)

′pJn(Xi)(P
′P/n)−1

}]

≤ K sup
h∈Non

E
[
E
[
(ρ (Zi, h) − ρ (Zi, h0))

2 |X
]]

× Jn

n

≤ K sup
h∈Non

Jn

n
‖h− h0‖2κ

s ≤ OP

(
Jn

n

(
δ∗s,n

)2κ
)

= oP (n−1),
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where Λn ≡ E[(ρ (Z, h) − ρ (Z, h0))
2 |X ], ǫ(Z, h) ≡ ρ(Z, h)−m(X,h) (i.e., a populational projection

error), ∆ǫ(h) ≡ ǫ(Z, h) − ǫ(Z, h0) and Tr is the trace operator. With this, we can now follow the

arguments in Chen and Pouzo (2008) and obtain

sup
h∈Non

|||m̂(·, h)|||2 = C sup
h∈Non

|||m̃(·, h) + m̂(·, h0)|||2 + oP (n−1)

for a constant C > 0. By definition of ĥn, we have: |||m̂(·, ĥn)|||2+λnP (ĥn) ≤ |||m̂(·, h)|||2+λnP (h)

for all h ∈ N0n, we have: for all h ∈ N0n,

C|||m̃(·, ĥn) + m̂(·, h0)|||2 + λnP (ĥn) ≤ C|||m̃(·, h) + m̂(·, h0)|||2 + λnP (h) + oP (n−1).

Denote ℓ(·, h) ≡ m̃(·, h) + m̂(·, h0). Then, by condition 6.17(i), |||ℓ(·, h)|||2 + C−1λnP (h) is a

smooth criterion function with ĥn as its approximate minimizer. Let u∗n = ±v∗n, then, with 0 <

εn = o(1/
√
n), we have:

|||ℓ(·, ĥn)|||2 ≤ |||ℓ(·, ĥn + εnu
∗
n)|||2 + C−1λn{P (ĥn + εnu

∗
n) − P (ĥn)} + oP (n−1).

= |||m̃(·, ĥn + εnu
∗
n) + m̂(·, h0)|||2 + oP (n−1),

where the oP (n−1) in the above equation is due to condition 6.14(iii). After the second order Taylor

expansion to the term |||ℓ(·, ĥn)|||2 − |||ℓ(·, ĥn + εnu
∗
n)|||2, we have:

0 ≤ εn

n

n∑

i=1

(
dm̃(Xi, ĥn)

dh
[u∗n]

)′ (
m̃(Xi, ĥn) + m̂(Xi, h0)

)
+ In(h(s)) + IIn(h(s)) + oP (n−1),

with h(s) = ĥn + sεnu
∗
n ∈ N0n for some s ∈ (0, 1), and

In(h(s)) ≡ 2
ε2n
n

n∑

i=1

(
d2m̃(Xi, h(s))

dhdh
[u∗n, u

∗
n]

)′

(m̃(Xi, h(s)) + m̂(Xi, h0)) ,

IIn(h(s)) ≡ 2
ε2n
n

n∑

i=1

(
dm̃(Xi, h(s))

dh
[u∗n]

)′(
dm̃(Xi, h(s))

dh
[u∗n]

)
.

Applying Cauchy-Schwarz and condition 6.16(iii), we have:

sup
h∈N0n

|In(h)| ≤ const.ε2n

√√√√ sup
h∈N0n

1

n

n∑

i=1

‖m̃(Xi, h) + m̂(Xi, h0)‖2
E = ε2n ×OP (δ∗n +

√
Jn

n
),

where the second equality is due to assumption 4.1, conditions 6.14(i) and 6.15 (ii), and the definition

of m̃(Xi, h). (Lemma A.1(C) of AC (2003) and condition 6.15 (ii) imply 1
n

∑n
i=1 ‖m̂(Xi, h0)‖2

E =

OP (Jn

n ). Lemma B.2 and the definition of m̃ (X,h) imply

sup
h∈N0n

n−1
n∑

i=1

‖m̃ (Xi, h)‖2
E ≍ sup

h∈N0n

E
[
‖m̃ (X,h)‖2

E

]
≤ sup

h∈N0n

E
[
‖m (X,h)‖2

E

]

≍ sup
h∈N0n

||h− h0||2 = O(δ∗2n )

by assumption 3.8(i) and condition 6.14(i).)
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Next, by condition 6.17(i)(ii) and i.i.d. data, we have:

sup
h∈N0n

|IIn(h)| ≤ const.ε2n

{
sup

h∈N0n

1

n

n∑

i=1

∥∥∥∥
dm̃(Xi, h)

dh
[u∗n] − dm̃(Xi, h0)

dh
[u∗n]

∥∥∥∥
2

E

+
1

n

n∑

i=1

∥∥∥∥
dm̃(Xi, h0)

dh
[u∗n]

∥∥∥∥
2

E

}

= ε2n × oP (n−1/2) +OP (ε2n).

Therefore, we have

0 ≤ εn

n

n∑

i=1

(
dm̃(Xi, ĥn)

dh
[u∗n]

)′ (
m̃(Xi, ĥn) + m̂(Xi, h0)

)
+Op(ε

2
n) + oP (n−1)

holds for u∗n = ±v∗n; and hence

1√
n

n∑

i=1

(
dm̃(Xi, ĥn)

dh
[v∗n]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)
= oP (1).

Since both m̂ and m̃ are the LS projections onto the linear sieve basis pJn(X), we have:

1

n

n∑

i=1

(
dm(Xi, ĥn)

dh
[v∗n]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)

=
1

n

n∑

i=1

(
dm̃(Xi, ĥn)

dh
[v∗n]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)
= oP (

1√
n

).

Note that,
∣∣∣∣∣
1

n

n∑

i=1

(
dm(Xi, ĥn)

dh
[v∗n] − dm(Xi, h0)

dh
[v∗n]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)∣∣∣∣∣

≤ const.

√√√√ 1

n

n∑

i=1

∥∥∥∥∥
dm(Xi, ĥn)

dh
[v∗n] − dm(Xi, h0)

dh
[v∗n]

∥∥∥∥∥

2

E

×

√√√√ 1

n

n∑

i=1

∥∥∥m̂(Xi, h0) + m̃(Xi, ĥn)
∥∥∥

2

E

= oP (n−1/4) ×OP (

√
Jn

n
+ δ∗n) = oP (n−1/2),

where the first term is of order oP (n−1/4) by condition 6.17(ii) and Markov inequality. Thus, we

obtain:
1

n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗n]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)
= oP (

1√
n

).

Notice that ∣∣∣∣∣
1

n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗n − v∗]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)∣∣∣∣∣

≤

√√√√n−1

n∑

i=1

∥∥∥∥
dm(Xi, h0)

dh
[v∗n − v∗]

∥∥∥∥
2

E

×

√√√√n−1

n∑

i=1

∥∥∥m̂(Xi, h0) + m̃(Xi, ĥn)
∥∥∥

2

E

≤ OP (||v∗n − v∗||) ×OP (

√
Jn

n
+ δ∗n) = oP (n−1/2),

where the second inequality follows from the Markov inequality, i.i.d. data and the definition of

||v∗n − v∗||, and the least equality is due to conditions 6.13 and 6.14(i). Therefore,

1

n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗]

)′ (
m̂(Xi, h0) + m̃(Xi, ĥn)

)
= oP (

1√
n

).
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Denote g∗(X) ≡ dm(X,h0)
dh [v∗], then g∗() ∈ L2(fX). Let g̃∗ denote the LS projection of g∗ onto

the linear sieve basis pJn(X). Then by exchanging summation to the left hand side of the above

equation, we obtain

1

n

n∑

i=1

g̃∗(Xi)
′
(
ρ(Zi, h0) +m(Xi, ĥn)

)
=

1

n

n∑

i=1

g∗(Xi)
′
(
m̂(Xi, h0) + m̃(Xi, ĥn)

)
= oP (

1√
n

).

By Markov inequality, i.i.d. data, E[ρ(Zi, h0)|X1, ..., Xn] = 0, and condition 6.15 (ii), we have for

all ε > 0,

Pr

(∣∣∣∣∣
1√
n

n∑

i=1

(g̃∗(Xi) − g∗(Xi))
′
ρ(Zi, h0)

∣∣∣∣∣ ≥ ε

)

≤ ε−2E
(
| (g̃∗(Xi) − g∗(Xi))

′
ρ(Zi, h0)|2

)
≤ const.ε−2E

(
|g̃∗(Xi) − g∗(Xi)|2

)
= o(1).

Also, by Markov inequality, m(Xi, h0) = 0, assumption 4.1, conditions 6.14(i) and 6.16(iii), we have

for all ε > 0,

Pr

(∣∣∣∣∣
1√
n

n∑

i=1

(g̃∗(Xi) − g∗(Xi))
′
m(Xi, ĥn)

∣∣∣∣∣ ≥ ε

)

≤ ε−2
√
nE
(
| (g̃∗(Xi) − g∗(Xi))

′ {m(Xi, ĥn) −m(Xi, h0)}|
)

≤ ε−1
√
n×

√
E (|g̃∗(Xi) − g∗(Xi)|2) ×OP (δ∗n) = oP (1).

Thus
1

n

n∑

i=1

g∗(Xi)
′ρ(Zi, h0) +

1

n

n∑

i=1

g∗(Xi)
′m(Xi, ĥn) = oP (

1√
n

).

By condition 6.16(i)(ii), {g∗(Xi)
′m(Xi, h) : h ∈ Non} is a Donsker class, and sinceE[(g∗(Xi)

′[m(Xi, h)−
m(Xi, h0)])

2] = o(1) for all h ∈ Non, applying Lemma 1 of Chen et al (2003), we obtain that

{g∗(Xi)
′m(Xi, h) : h ∈ Non} satisfies stochastic equicontinuity; hence, uniformly in h ∈ Non,

1

n

n∑

i=1

(g∗(Xi))
′
m(Xi, h)

= E

[(
dm(Xi, h0)

dh
[v∗]

)′

(m(X,h) −m(X,h0))

]
+ oP (n−1/2)

= E

[(
dm(Xi, h0)

dh
[v∗]

)′(
dm(Xi, h)

dh
[h− h0]

)]
+ oP (n−1/2)

= 〈v∗, h− h0〉 + oP (n−1/2),

for some h ∈ No in the second equality (applying the mean value theorem to m(X,h)−m(X,h0)),

and the last equality is due to 〈v∗, h−h0〉 = E

[(
dm(Xi,h0)

dh [v∗]
)′ (

dm(Xi,h0)
dh [h− h0]

)]
and condition

6.17(iii). Therefore,

1

n

n∑

i=1

g∗(Xi)
′ρ(Zi, h0) + 〈v∗, ĥn − h0〉 = oP (

1√
n

),

that is

√
n(θ̂ − θ0) =

√
n〈v∗, ĥn − h0〉 = − 1√

n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗]

)′

ρ(Zi, h0) + oP (1).
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√
nΓ2(β0, h0)[ĥ− h0] =

√
n(−1)k+1(θ̂ − θ0)

= (−1)k 1√
n

n∑

i=1

(
dm(Xi, h0)

dh
[v∗]

)′

ρ(Zi, h0) + oP (1).

Hence we obtain result (D.1). Q.E.D.
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