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Abstract

This paper analyzes the empirical performance of two alternative ways in which multi-factor models

with time-varying risk exposures and premia may be estimated. The first method echoes the seminal two-

pass approach advocated by Fama and MacBeth (1973). The second approach extends previous work by

Ouysse and Kohn (2010) and is based on a Bayesian approach to modelling the latent process followed by

risk exposures and idiosynchratic volatility. Our application to monthly, 1979-2008 U.S. data for stock,

bond, and publicly traded real estate returns shows that the classical, two-stage approach that relies on

a nonparametric, rolling window modelling of time-varying betas yields results that are unreasonable.

There is evidence that all the portfolios of stocks, bonds, and REITs have been grossly over-priced. On

the contrary, the Bayesian approach yields sensible results as most portfolios do not appear to have

been misspriced and a few risk premia are precisely estimated with a plausibile sign. Real consumption

growth risk turns out to be the only factor that is persistently priced throughout the sample.

Key words: Bayesian estimation, Latent jumps, Stochastic volatility, Linear factor models.

JEL codes: G11, C53.

1. Introduction

What are the key features of the general pricing mechanisms–sometimes called the pricing kernel–

underlying the observed prices for securities that can be traded in the capital market? This is of course

one of the key questions in financial economics and has originated an entire field devoted to this very ques-

tion, asset pricing. However, a related but not less important question is: What are the most appropriate

methods available to researchers as well as practitioners to learn about the pricing kernel that underlies

the observed cross-section of asset prices and returns? Our paper offers a contribution to the voluminous
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literature that has tackled both questions specializing to a particular set of models (of the pricing kernel),

of empirical methods, and applying novel methods to an interesting application.1 With reference to an

application to 25 years of monthly data on excess returns on 28 key portfolios of securities traded in the

U.S., we show that while commonly used methods to estimate macro-based linear factor models fail to lead

to sensible conclusions, an encompassing Bayesian estimation approach that allows for instability in factor

exposures and risk premia delivers encouraging (at times, surprising) and sensible results.

The paper has three building blocks. First, our paper postulates and estimates using two alternative

empirical approaches a standard multifactor asset pricing model (MFAPM) in which the proposed risk

factors consists of shocks to observable macroeconomic variables that appear to be commonly tracked by

researchers, policy-makers, and the press (e.g., aggregate market returns, the rate of growth of industrial

production, changes in the unemployment rate, the spread between long- and short-term nominal rates,

etc.). Going back to the seminal paper by Chen, Roll and Ross (1986) there is of course an ever expanding

literature that has worked with such a class of models, to test their performance and to ask applied

questions. In particular, Ferson and Harvey (1991) extended the early work on MFAPMs to incorporate

the case of time-varying risk premia and exposures. In general terms, a MFAPM has a very simple structure:

the risk premium on any asset or portfolio is decomposed as the sum of a certain number () of products

between risk exposures (also called betas) to each of the factors and the associated unit price of the factor.

The difference at each point in time between actual, realized excess returns and the risk premium implied

by the model is called residual or idiosyncratic risk and it is supposed to pick up all the variation in excess

returns that is specific to each individual portfolio.

Second, our paper jointly uses data on publicly traded stock, bond, and real estate securities (or

traded funds invested in the underlying securities), instead of focussing on only one of these asset classes.

Therefore, our paper relates to a vast literature that has examined the empirical performance of MFAPMs

across asset classes. For instance, Chan, Hendershott and Sanders (1990) have shown that MFAPMs that

include predetermined macroeconomic factors explain a significant proportion of the variation in equity

real estate investment trusts (henceforth REITs) returns. Karolyi and Sanders (1998) have extended this

evidence and allowed for time-varying risk premia and betas in a similar framework to the seminal paper

by Ferson and Harvey (1991).

Third, our key contribution consists of comparing the heterogeneous results derived from two alternative

“implementations” of a rather standard, Ferson and Harvey (1991)-style MFAPM.2 The first approach

follows the now standard, Fama and MacBeth (1973) two-stage methodology, first proposed for the plain

vanilla CAPM but then extended to the wider class of linear factor models. Basically, Fama-MacBeth’s

approach uses a first set of rolling window, time series regressions to obtain least-square estimates of the

risk exposures, followed by a second-pass set of cross-sectional (across assets or portfolios) regressions

1A general introduction to linear factor models, their relationship to the general notion of the pricing kernel in asset pricing,

and related estimation methods can be found in textbooks such as Cochrane (2005), and Singleton (2006).
2The use of the concept of implementation intends to stress that in a given asset pricing model–for instance, in which risk

exposures and premia are in principle time-varying–alternative estimation methodologies can be deployed to learn from the

data the dynamics over time of betas and risk premia.
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that–using the first-pass rolling window betas as inputs–derives time-varying (monthly) estimates of

the associated risk premia. The problems with this methodology are notorious and well-visible to any

applied econometrician: most inferential statements made as a result of the second-pass would be valid

if and only if one could assume that the first-pass betas were fixed in repeated samples, which clearly

clashes with them being least squares estimates (and therefore random sample statistics). Obviously,

unless additional (and generally dubious) assumptions are introduced, this creates a potentially enormous

problem with generated regressors being used in the second-step, which tends to make invalid most the

inferential statements commonly made when the resulting error-in-variables problems are ignored. Fama-

MacBeth’s approach also suffers from another problem: although now common, identifying time-variation

in risk exposures and risk premia with a need to perform rolling window least square estimation is surely

robust (because, in a way, nonparametric) but always arbitrary and often unsatisfactory. As a result of

these drawbacks of Fama-MacBeth’s approach, we follow a different path based on two steps:

• Time variation in risk exposures and premia is explicitly modelled as a break-point process; the
parameters of interest (s and log-idiosyncratic volatilities, see Section 2 for details and definitions)

are constant unless a break-point variable () takes a unit value, in which case the parameters are

allowed to jump to a new level, as a result of a normally distributed shock; the break-point variable

 takes a value of one, signalling the occurrence of a jump, with some probability () which is itself

an estimable parameter; finally, the breaks themselves are latent, which implies that the data ought

to be used also to make inferences on the dates and magnitudes of the breaks.

• The model is estimated using a Bayesian approach that not only is numerically practical, and as usual
allows a researcher to feed her own priors on the quantities of interest in the estimation problem, but

also allows us to naturally overcome the issues with generator regressors described above.3

We model both factor sensitivities and idiosyncratic volatility as latent stochastic processes within a

Bayesian framework by means of the mixture innovation approach as in Giordani, Kohn and van Dijk

(2007) and Giordani and Kohn (2008). Furthermore, we estimate the sequence of risk premia following

Ouysse and Kohn (2010) to consistently overcome the problems with generated regressors. We show that

this approach helps reduce the extent of variations in estimated risk premia. Notice that our claim here

is not that our Bayesian, latent variables approach is the only possible solution to the issues plaguing the

classical Fama-MacBeth’s approach.4 However, our paper shows–for a case in which Fama-MacBeth’s

method can be illustrated to fail and to lead to rather nonsensical economic results–that the payoff may

be substantial and that the extra computational issues to be dealt with are certainly worth it.

Our main results can be summarized as follows. The general lesson is that–at least in our appli-

cation and with our data–a standard two-stage Fama-MacBeth approach yields unreasonable economic

3Although this is hard to prove, there are considerable doubts on whether and how such a break-point MFAPM model

could be estimated using classical methods, i.e., relying on the likelihood of the data only.
4For instance, Cochrane (2005) features a textbook-level discussion of how the Generalized Method of Moments (GMM)

may be deployed to overcome the effects of the errors-in-variables problem within typical Fama-MacBeth applications.
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implications and is drastically rejected in a statistical sense. First, our Bayesian estimates of the loadings

(the betas) are considerably smoother than the rolling window, Fama-MacBeth ones, which are instead

subject to massive instability, often impossible to interpret. This is a seemingly counter-intuitive result:

even though a Bayesian model with latent breaks formally allows the risk exposures to be subject to jumps

over time, the resulting posterior densities are actually smoother than what one could retrieve using a

näıve rolling window estimation procedure. Second, the two-step Fama-MacBeth case leads to the rather

implausible finding that all the 28 test portfolios display large and negative estimates of a parameter (0)

that measures the existence of abnormal returns that cannot be justified by exposure to systematic risks.

This means that all of our portfolios would have been systematically and persistently over-priced during

our sample period. This would be an overwhelming indication of irrational exuberance of the U.S. market

over a 25 year long sample. On the contrary, in the Bayesian case, the values of the posterior means of

the 0 parameters as well as their signs are economically plausible. Even more interestingly, once we take

into account their 90% confidence bands, it is clear that in 28 out of 28 portfolios, the reported posterior

means fail to be precisely estimated, in the sense that the 90% band always includes a zero abnormal return

during the period 1983-2008. However, there is some evidence that durable stocks (especially after 2000),

high-tech stocks (throughout the entire sample, a persistent tech bubble), small capitalization stocks, and

mortgage REITs (especially after 2000) have gone through episodes of excess returns substantially below

the levels justified by their risk exposures and therefore can be considered to have been over-priced.

Third, the Fama-MacBeth approach shows that idiosyncratic risk is large for most portfolios investi-

gated, a sign that the two-pass method provides a very rough explanation to the 28 time series of excess

returns data. In the Bayesian case, when all the uncertainty is taken into account, there is no strong evi-

dence of trends in idiosyncratic risk, even though the plots for the individual portfolios show some evidence

of a peak in the early 2000s and some sign of a growing trend towards the end of our sample, consistently

with some earlier literature (see e.g., Campbell, Lettau, Malkiel and Xu, 2001, and Zhang, 2010).

Fourth, under Fama-MacBeth, none of the risk premia turns out to be precisely estimated, apart from

the risk premium on a riskless yield curve slope factor. However, this premium is significantly negative,

which–assuming that a steeper yield curve forecasts an improvement in business cycle conditions –is

puzzling. The only quantity for which there is compelling evidence is 0, which is a measure of abnormal

returns not justified by risk exposures. 0 is estimated to be negative and massive (-3.92% per month),

with an essentially zero p-value. In a sense, all that a standard Fama-MacBeth approach reveals is that

U.S. asset data contain strong evidence of structural misspricings in the form of negative abnormal returns.

On the opposite the Bayesian (posterior median) estimates of the risk premia are considerably more stable

and–more importantly–a few of them are precisely estimated. Here one result is striking: with reference

to the full sample, real consumption growth yields the only precisely estimated risk premium and it displays

the expected positive sign. Also, the Bayesian design gives evidence of moderate but precisely estimated

misspricings, with an average posterior median of 0 equal to 0.37% per month. However, these misspricings

now correspond to over-pricing of the risk factors captured by the model and to an (indeed modest)

structural under-pricing of the assets over time. Moreover, a sub-sample (1983-1992) is found over which
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the average posterior median of 0 is small (0.26%) and fails to be significant.

A closely related paper that deserves discussion is Ouysse and Kohn (2010) who use Bayesian variable

selection and Bayesian model averaging in inferring factors for MFAPMs. Modelling these sources of

uncertainties increases estimation accuracy, particularly in finite samples, as it is often the case. Ouysse and

Kohn find new empirical evidence of time-varying risk premiums with higher and more volatile expected

compensation for bearing systematic risk during contraction phases. However, Ouysse and Kohn limit

themselves to the analysis of an unconditional APT model and focus only on stock portfolios, excluding

bond and real estate data. Moreover, they do not investigate the issue of parameter instability, which is

instead the main goal of our paper.

The remainder of the paper is organized as follows. Section 2 outlines our theoretical MFAPM and

describes both the classical Fama-MacBeth implementation based on rolling window estimates of risk

exposures and premia, and our Bayesian approach to estimate models with latent stochastic breaks and

variances. The Section also briefly presents a few standard (variance) ratios used in the literature to

evaluate the “economic” fit of MFAPMs. Section 3 describes the data used in the empirical analysis.

Section 4 reports the main empirical results and performs a comparison between two-pass Fama-MacBeth

results and Bayesian posterior results. Section 5 performs robustness checks, concerning the MFAPM

implementation as well as the priors, as customary. The concluding section summarizes our findings.

2. Research Design and Methodology

2.1. The Asset Pricing Framework

Our research design is based on an extension of the multi-factor models first introduced by Ferson and

Harvey (1991) in the asset pricing literature and applied to a variety of contexts and empirical research

questions (see e.g., Chan, Henderhott and Sanders, 1990, and Karolyi and Sanders, 1998, for an application

to public real estate investment vehicles; Ferson, 1996, for an application to mutual fund performance

evaluation; Ilmanen, 1995, for an application to bond pricing, etc.). The common thread of these papers

is their attempt at connecting return predictability to variation in the expected compensation for risk. In

particular, the literature on multifactor asset pricing models (MFAPMs) posits a linear relationship between

asset returns and a set of macroeconomic factors that are assumed to capture business cycle effects on beliefs

and/or preferences (as summarized by a pricing kernel factor with time-varying properties) and hence on

risk premia. These macroeconomic factors with general effects on the kernel are typically market portfolio

(i.e., aggregate wealth) returns, the default spread on corporate bond yields, the term spread incorporated

in the riskless (Treasury) yield curve, and changes in the rate of growth of industrial production (see Chen,

Roll and Ross, 1986, and Liu and Mei, 1992, with specific reference to real estate finance applications).

If we call the process of the (shocks to) macroeconomic risk factors  ( = 1 ) and  the period

excess return on asset or portfolio  = 1   , then a typical MFAPM can be written as:

 = 0 +

X
=1

 +  (1)
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where it is customary to assume that [] = [] = [] = 0 for all  = 1  and  = 1 .

The  are returns in excess of the risk-free rate proxied by the 1-month T-bill. Normally, the advantage

of MFAPMs such as (1) consists of the fact that a number of systematic factors    may prove useful

to efficiently capture relatively large portions of the variability in asset returns. Importantly, even though

the notation  lets us understand that the factor loadings are allowed to be time-varying, such patterns

of time variation are in general left unspecified.

In the conditional version of Ross’ (1976) APT or Merton’s (1973) ICAPM, the expected excess return

on asset  over the interval [− 1 ] (the risk premium on asset ) may then be related to its “betas” (i.e.,

factor loadings measuring the exposure of asset  to each of the priced, systematic risk factors) and the

associated unit risk premia (i.e., average return compensations for unit exposure to risk):

[|Z−1] = 0(Z−1) +
X
=1

(Z−1) (2)

where both the betas and the risk premia are conditional on the information publicly available at time ,

here summarized by the  × 1 vector of “instruments” Z.

2.2. Standard Fama-MacBeth Implementation

The framework in (1)-(2) just describes a general conditional pricing framework that is actually known

to hold under a variety of assumptions and conditions.5 However, a variety of alternative methodologies

have been proposed to perform three related tasks which impinge on the empirical performance of (1)-

(2): (i) how many factors ought to be selected, i.e., picking an appropriate ; (ii) given  devising a

methodology to be able to rank competing factors and selecting only those that are “required” by the

data; (iii) estimating the factor loadings {} (over time and for each possible pair  ) and the risk
premia  (over time and for each possible ). These tasks are logically distinct from the formulation of

the asset pricing framework and–albeit their optimal implementation affects our ability to learn about

the asset pricing questions under investigation–they have an exquisite statistical nature. In this paper

we align ourselves to a number of related papers in the empirical finance literature (see e.g., Chen, Roll

and Ross, 1986) as far (i)-(ii) are concerned–which means that we pre-select both  and which specific

macroeconomic risk factors ought to be considered in the light of the existing literature–and pursue two

alternative econometric approaches with regard to task (iii).6

The first approach is the classical, two-stage procedure ̀ la Fama and MacBeth (1973) also used by

Ferson and Harvey (1991).7 In the first stage, for each of the assets, the factor betas are estimated using

5For instance, standard arguments in Cochrane (2005) show that (1)- (2) holds when the stochastic discount factor can be

written as an exact linear function of the systematic risk factors 1 2 ...,  .
6See Groen, Paap and Ravazzolo (2009) for an example on how to extend the time-varying framework in (1) to incorporate

the variable selection and model averaging methods proposed by Ouysse and Kohn (2010). More efficient algorithms than in

Groen, Paap and Ravazzolo (2009) for variable search as in Hofmann, Gatu, Kontoghiorghes (2007), and Kapetanios (2007)

could also find application.
7In fairness we need to add that Ferson and Harvey (1991) have explored a range of alternative beta estimation techniques,

including conditional betas estimated from regressions on past information variables, sixty-month rolling betas regressed on
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time-series regressions from historical excess returns on the assets and economic factors. That is, for month

, we estimate equation (1) using the previous sixty months (ranging from −61 to −1) in order to obtain
estimates for the betas, ̂

60

−1. This time-series regression is updated each month. In the second stage, we

estimate a cross-sectional regression, for each month, using ex-post realized excess returns

 = 0 +

X
=1

̂
60

−1 +   = 1  (3)

(and for each  = 60   ). In (3) 0 is the zero-beta (abnormal) excess return and the s are proxies

for the factor risk premiums on each month,  = 1 . Notice that 0 should equal zero ∀ if the
model is correctly specified, because in the absence of arbitrage all zero-beta assets should command a

rate of return that equals the risk-free rate. Tests of multi-factor models evaluate the importance of these

economic risk variables by evaluating whether their risk premiums are priced or whether, on average, the

(second-stage, estimated) coefficients ̂ are significantly different from zero.

2.3. A New Bayesian Estimation Approach

Although widely used in the applied finance literature, the classical two-stage Fama-MacBeth approach

has a number of obvious statistical drawbacks. To name only two, first–it is clear that the second stage

multivariate regression in (3) suffers from obvious generated regressor (error-in-measurement) problems as

the estimated first-stage, rolling window beta estimates ̂
60

−1 are used as regressors on the right-hand

side. For instance, Ang and Chen (2007) have stressed that when the cross-sectional estimates of the betas

̂
60

−1 covary with the underlying but unknown risk premia, (3) may easily yield biased and inconsistent

estimates of the risk premia themselves. Unfortunately, this co-variation is extremely likely: for instance,

the asset pricing literature seems to contain a general presumption that during business cycle downturns

both the quantity of risk (here captured by the size of the betas) and the unit risk prices tend to increase,

simply because recessions are characterized by higher systematic uncertainty as well as by lower “risk

appetite” (for instance, in a Campbell and Cochrane’s, 1999, habit-formation asset pricing framework).

Second, the need to perform the necessary estimation to implement (1)-(2) in two distinct stages that use

rolling windows to capture parameter instability is not only ad hoc but also largely inefficient because

the lack of more specific parametric forms makes it testing for time-variation very hard and dependent on

hard-to-justify choices of the rolling window length, the updating rules applied to select whether constant

or decaying weights should be applied, etc.

Clearly, both issues are tackled by any full-information estimation method that would avoid using

estimates of the first-stage betas as if these were observed variables constant in repeated samples and

that would take into account the existence of time-varying factor loadings and idiosyncratic variance in

specific parametric forms. This is what our Bayesian, time-varying beta, stochastic volatility (henceforth

BTVBSV) approach accomplishes. Stochastic, time-varying betas have been recently found to be crucial

economic risk variables and past information variables, and ARCH-style conditional betas à la Bollerslev, Engle andWooldridge

(1988). The results in their paper are unaffected by selecting simple, Fama-MacBeth style five-year rolling OLS regression

betas and therefore represent our baseline, classical approach to the implementation of MFAPMs.
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ingredients of conditional asset pricing, in the sense that there is a growing evidence that careful modelling

of the dynamics in factor exposures may provide a decisive contribution to solve the typical anomalies

associated with unconditional implementations of multi-factor models. For instance, Jostova and Philipov

(2005) find that in the typical Fama and MacBeth’s style exercise, the CAPM is rejected with rolling OLS

beta estimates while the opposite verdict emerges when they allow for stochastic variation (in the form of

a simple AR(1) process) in the conditional CAPM betas.8 Similarly, Ang and Chen (2007) show that the

persistence in the betas help explain the book-to-market effect in the cross section of stock returns. In

practice, we specify the relationship between excess returns and factors and the time-varying dynamics in

factor loadings and idiosyncratic volatility in the following state-space form

 = 0 +

X
=1

 + 

 = −1 + 1  = 0 

ln(2) = ln(2−1) + 2  = 1   (4)

where ² ≡ (1 2  )
0 ∼ (0 I), η ≡ (0 1   )

0 ∼ (0Q) with Q a diagonal

matrix characterized by the parameters 20 
2
1  

2
  

2
. Stochastic variations (breaks) in the level of

both the beta coefficients and of the idiosyncratic variance 2 are introduced and modelled through a

mixture innovation approach as in Ravazzolo, Paap, van Dijk and Franses (2007) and Giordani and Kohn

(2008). The latent binary random variables 1 and 2 are used to capture the presence of random

shifts in betas and/or idiosyncratic variance and–for the sake of simplicity–these are assumed to be

uncorrelated among one another (i.e., across assets as well as factors) and over time.

This specification is very flexible as it allows for both constant and time-varying parameters. When

1 = 2 = 0 for some  =   then (4) reduces to (1) when the factor loadings and the quantity of

idiosyncratic risk are assumed to be constant, as  = −1 and ln2 = ln2−1. However, when

1 = 1 and/or 2 = 1 then a break hits either beta or idiosyncratic variance or both, according to

the random walk dynamics  = −1 + and ln(2 ) = ln(
2
−1)+ (or 

2
 = 2−1 exp( )).

Note that because when a break affects the betas and/or variances, the random shift is measured by

variables collected in η, we can also interpret Q not only as a standard, “cold” measure of the covariance

matrix of the random breaks in η, but also of the “size” of such breaks: a large 
2
 means for instance

that–whenever  is hit by a break–such a shift is more likely to be large (in absolute value). This

process for factor loadings and idiosyncratic residual risk is considerably more plausible than structures

typical of the time-varying parameter asset pricing literature in which factor loadings are assumed to

vary continuously (i.e., in every period) and usually according to simplistic AR(1) structures with high

persistence and small variance for the shocks, such as  = 1−1 + and ln(2) = 2 ln(
2
−1)

+ with 1 and 2 close to but less than one.
9

8Jostova and Philipov (2005) point out that OLS betas allow a resarcher to easily estimate the average level of systematic

risk but they do not track very well its time patterns, especially when the true but unknown betas are very persistent.
9The likelihood tends to be not well-behaved when 1 and 2 are close to one and their estimation might be difficult, see

the discussion and examples in De Pooter, Ravazzolo, Segers and van Dijk (2008).
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We estimate (4) using a Bayesian approach, which is in fact the only numerically feasible estimation

method for a model with the features of our BTVBSV framework.10 Realistic values for the different prior

distributions obviously depend on the problem at hand. In general, we use weak priors, excluding the

size of the breaks Q and the probabilities Pr(1 = 1) and Pr(2 = 1) for which our priors are quite

informative. All other priors imply that the posteriors tend to be centered around their maximum likelihood

estimates which eases comparisons with the existing literature.11 Once estimates of the posterior density

for unknown coefficients are obtained, we also implement a second-stage estimation pass by estimating, for

each month, the following cross-sectional multivariate regression:

 = 0 +

X
=1

|−1 +   = 1  (5)

where  ∼ (0 2 ) and |−1 measures the expected time  sensitivity of asset  to factor , based on

all information available on and upon to time  − 1. |−1 is carefully constructed for the purposes of

our investigation: it is obtained by taking the lagged value from the updating step of the Kalman filter

(see the Appendix for details) and simulating the occurrence of future breaks and the shock magnitude

from the appropriate posteriors. This is the exact analog of the logic that has advised Ferson and Harvey

(1991) to estimate (3) using one-month lagged value of ̂
60

−1: time  excess return on asset  should be

determined by investors with reference only to information available up to time  − 1 but keeping into
account all features of the model (4) known up to time − 1.

Even though our Bayesian estimation approach is still articulated on two distinct steps, it is built to

avoid all kinds of generated regressor problems that have plagued applications of Fama-MacBeth’s methods

so far. The second pass estimation is performed similarly to Ouysse and Kohn (2010) to overcome the

notorious error-in-variables problem that plagues traditional empirical MFAPMs in small samples. In fact,

our Bayesian approach provides an elegant way to take into account estimation uncertainty by averaging

out over parameter draws. In particular, we consider the full posterior distribution of the expected factor

sensitivities |−1: for each draw of the betas at a given time , corresponding values for the risk premia

are “drawn” from the relevant posterior distribution; then for each time  we obtain the entire empirical

distribution of a given large number of draws of  on which to base our multivariate inferences on. To

avoid generated regressor problems in the most resolute form, for each time  we avoid collapsing the

posterior density of the factor loadings |−1 to a single value (e.g., their mean or median) and use

instead the entire posterior for the betas. In practice, we draw a large number of times from such a

posterior across all  assets and for each draw we estimate a multivariate cross-sectional regression to

obtain a corresponding (implicit) draw for the risk premia. As a result,  draws from the joint posterior

of the |−1 will generate  implicit (estimated by OLS regression) draws for the risk premia , which

10For instance, in classical MLE framework it would be hard to separately identify the stochastic shifts represented by the

variables 1 and 2 from the continuous shocks in  and  without specifying a parametric process for 1 and 2

which is however undesirable. In a Bayesian framework, proposing plausible priors informed by economic principles greatly

helps to deal with these issues.
11These priors are commonly referred to as uninformative or “flat”. However, Section 5.3 reports results obtained using

tighter, more informative priors and show that these have a negligible impact on our qualitative findings.
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represents their posterior joint density.

2.4. Decomposition Tests

Independently of the estimation methods employed, we use the estimated time series of factor loadings

and risk premia from Sections 2.2-2.3 to perform a number of decomposition exercises. In the case of our

BTVBSV approach, of course we shall be obtaining posterior densities for the time series of factor loadings

and risk premia, and not simply time series of point estimates. In particular, (3)-(5) decompose excess asset

returns in each time period in a component related to risk, represented by the term
P

=1 |−1 plus a

residual 0+.
12 In principle, a multi-factor model is as good as its implied percentage of total variation

in excess returns explained by the first component,
P

=1 |−1. However, here we should recall that

even though (3)-(5) refer to excess returns, these are simply statistical implementations of the asset pricing

framework in (1). This implies that in practice it may be excessive to expect that
P

=1 |−1 be able

to explain most (or even much) of the variability in excess returns. A more sensible goal seems to be thatP
=1 |−1 ought to at least explain the predictable variation in excess returns.

We therefore follow earlier literature, such as Karolyi and Sanders (1998), and adopt the following

approach. First, the excess return on each asset is regressed onto a set of instrumental variables that proxy

for available information at time − 1, Z−1,

 = 0 +

X
=1

−1 + , (6)

to compute the sample variance of the resulting fitted values,

 [ (|Z−1)] ≡  

"
̂0 +

X
=1

̂−1

#
 (7)

where the notation  (|Z−1) means “linear projection” of  on a set of instruments, Z−1. Second, for
each asset  = 1   , a time series of fitted risk compensations,

P
=1 |−1, is derived and regressed

onto the instrumental variables,

X
=1

|−1 = 00 +
X
=1

0−1 + 0 (8)

to compute the sample variance of fitted risk compensations:

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ ≡  

"
̂
0
0 +

X
=1

̂
0
−1

#
 (9)

The predictable component of excess returns in (6) not captured by the model is then the sample variance

of the fitted values from the regression of the residuals ̂ on the instruments:

 

"


Ã
 − ̂0 −

X
=1

̂−1|Z−1
!#
≡  

h
̂

i


12Because there are slight differences in the notations used in (3) vs. (5), even though both models have the same economic

meaning, in what follows notations from (5) are adopted without any loss of generality. For instance,


=1 |−1 is

written as


=1
̂̂

60

−1 in the standard Fama-MacBeth implementation.
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At this point, it is informative to compute and report two variance ratios, commonly called  1 and  2,

after Ferson and Harvey (1991):

 1 ≡
 

h

³P

=1 |−1|Z−1
´i

 [ (|Z−1)]  0 (10)

 2 ≡
 

h

³
 − ̂0 −

P
=1 ̂−1|Z−1

´i
 [ (|Z−1)]  0 (11)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the predictable

variation in excess returns ought to be captured by variation in risk compensations; at the same time, VR2

should be equal to zero if the multi-factor model is correctly specified.13 Notice that  1 = 1 does not

imply that  2 = 0 and viceversa, because

 [ (|Z−1)] =  

"
̂0 +

X
=1

̂−1

#

6=  

⎡⎣
⎛⎝ X

=1

̂̂|−1|Z−1

⎞⎠⎤⎦+  

"


Ã
-̂0-

X
=1

̂−1|Z−1
!#

(12)

Therefore testing whether either  1 = 1 or  2 = 0 or both, remains a sensible strategy in logical terms.

Importantly, when these decomposition tests are implemented using the estimation outputs obtained

for our BTVBSV framework, we preserve complete consistency with our Bayesian framework: drawing from

the joint posterior densities of the factor loadings |−1 and the implied risk premia   = 1   ,

 = 1 , and  = 1   , and holding the instruments fixed over time, it becomes possible to actually

compute VR1 and VR2 in correspondence to each of such draws. This means that any large set  of draws

from the (matching) posterior distributions for the {|−1} and {} generates a posterior distribution
for the statistics  1 and  2 as well. This makes it possible to conduct standard Bayesian “inferences”

concerning the properties of  1 and  2 in our sample.

Finally, the predictable variation of returns due to the multi-factor model is further decomposed into

the components imputed to each of the individual systematic risk factors, by computing the factoring of

 [ (
P

=1 |−1|Z−1)] as

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ =
P
=1

 
h

³
|−1|Z−1

´i
+

+
P
=1

P
=1

[
³
|−1|Z−1

´
 
³
|−1|Z−1

´
](13)

and tabulating and reporting  
h

³
|−1|Z−1

´i
for  = 1  as well as the residual factorP

=1

P
=1[

³
|−1|Z−1

´
 

³
|−1|Z−1

´
] to pick up any interaction terms. Note that

13Ferson and Harvey (1991) claim that this is too strong a condition to be met by any model. Therefore it cannot be

interpreted too strictly.
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because of the existence of the latter term, the equality

X
=1

 
h

³
|−1|Z−1

´i
 

h

³P

=1 |−1|Z−1
´i = 1 (14)

fails to hold, i.e., the sum of the  risk compensations should not equal the total predictable variation

from the asset pricing model because of the covariance among individual risk compensations.14

3. Data and Summary Statistics

Our paper is based on a large number of monthly time series (31) sampled over the period 1979:12 -

2008:07 for a total of 344 observations per series. The series belong to three main categories. The first

group, “Portfolio Returns”, includes several asset classes like stocks, bonds and real estate, organized in

portfolios, a procedure that is useful to tame the contribution of non-diversifiable risk. The stocks are

publicly traded firms listed on the NYSE, AMEX and Nasdaq (from CRSP) and sorted according to two

criteria. First, we form 10 industry portfolios by sorting firms according to their four-digit SIC code.

Second, we form 10 additional portfolios by sorting (at the end of every year, and recursively updating this

sorting in every year in our sample period) NYSE, AMEX and Nasdaq stocks according to their size, as

measured by aggregate market value of the company’s equity. Using industry and size-sorted criteria to

form spread portfolios of stocks to trade-off “spread” and reduction of idiosyncratic risk due to portfolio

formation, is typical in the empirical finance literature (see e.g., Dittmar, 2002). Moreover, industry-

and size-sorting criteria are sufficiently unrelated to make it plausible that industry- and size-sorted equity

portfolios may contain different and non-overlapping information on the underlying factors and risk premia.

Data on long-term (10-year) and medium-term (5-year) government bond returns are from Ibbotson and

available from the CRSP return tapes. Data on 1-month T-bill, 10-year and 5-year government bond yields

and returns are from FREDII
R°
at the Federal Reserve Bank of St. Louis and from the CRSP return tapes.

Data on junk bond returns are approximated from Moody’s (10-to-20 year maturity) Baa average corporate

bond yields and converted into return data using Shiller’s (1979) approximation formula.15 Finally, data on

REIT total returns come from the North American Real Estate Investment Trust (NAREIT) Association

and consists of data on three major categories of tax-qualified REITs, i.e. equity, mortgage, and hybrid

equity/mortgage REITs using breakdowns common in the literature.16 We also use the Wilshire Real

14The fact that in (1) the risk factors are assumed to be orthogonal does not imply that their time-varying total risk

compensations (|−1 for  = 1 ) should be orthogonal. For instance, unit risk premia on many factors are well-

known to co-move during the business cycle and very precise counter-balancing moves in risk exposures will be required for

the covariance term in (13) to equal zero.
15Approximated returns from this formula are correlated with actual, Baa rating bracket returns (from Bloomberg) over

recent years (2005-2008), with a correlation in excess of 0.8.
16REITs (Real Estate Investment Trusts), estabilished in the United States in 1960, constitute a way to invest into large

scale, income producing real estate. They have a unique structure: among the requirements to meet, at least 75% of their

assets has to be invested in real estate and at least 90% of their taxable earnings have to be paid out as dividends. A popular

view, backed by some academic work during the 1990s (e.g., see Karolyi and Sanders, 1998), represents REITs either as

mixture of equity- and bond-like features or as equity products similar in many respects to small capitalization stocks. Of

course, the two views are hardly consistent with each other.
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Estate Securities Index for equity and hybrid REITs and real estate operating companies (office, retail,

industrial, apartment, and miscellaneous). All excess return series are computed as the difference between

total returns and 1-month T-bill returns, as usual.

Finally, we use a range of macroeconomic factors as standard proxies for the systematic, economy-wide

risk factors potentially priced in asset returns. Lagged values of these risk factors (or simple transformation

of the factors) are also used as “instruments” when relevant in our methodology, our logic being that all

these variables belonged to the information set of the investors when they had made their portfolio decisions.

In practice, we employ seven factors (as in Ling and Naranjo, 1997): the excess return on a wide, value-

weighted market portfolio ( ) that includes all stocks traded on the NYSE, AMEX, and Nasdaq (from

CRSP); the trailing, 12-month dividend yield on all stocks traded on the NYSE, AMEX, and Nasdaq

(computed from CRSP data); the default risk premium () measured as the difference between Baa

Moody’s yields and yields on 10-year government bonds; the change in the term premium (∆), the

difference between 5-year and 1-month Treasury yields; the unexpected inflation rate (), computed

as the residual of a simple ARIMA(0,1,1) model applied to (seasonally adjusted) CPI inflation; the rate

of growth of (seasonally adjusted) industrial production (); the rate of growth of (seasonally adjusted)

real personal consumption growth (); the 1-month real T-bill rate of return computed as the difference

between the 1-month T-bill nominal return and realized CPI inflation rate (not seasonally adjusted).

Table 2 presents summary statistics for the time series under investigation. Note that the table concerns

the shorter period 1983:01 - 2008:07 (307 observations per time series) although data for the 1979:12 -

1982:07 data were actually available. There are three reasons for this choice. First, in a portion of our

estimation experiments, we use this 3-year period to compute the priors that investors were likely to hold

as of the beginning of 1983 based on their recent experience in the difficult financial markets of the early

1980s. Second, the classical Fama-MacBeth methodology ends up requiring the loss of initial observations

to initialize the estimation of time-varying betas. Third, 1983:01 is the starting sample data in an important

benchmark paper, Karolyi and Sanders (1998), who have also jointly analyzed the properties of U.S. stock,

bond, and equity portfolios within a MFAPM. To preserve maximum consistency with their experiments

and results, we have chosen to approximately align our initial sample date to theirs. In fact, to favor

additional comparability, Table 2 also presents summary statistics for two different sub-samples, 1983:01 -

1992:12 and 1993:01 - 2008:07. In particular, the table reports sample means, sample standard deviations,

and the resulting Sharpe ratios (computed with reference to 1-month T-bill returns).

None of the summary statistics in Table 2 is surprising. Most industry portfolios and all cap-sorted

portfolios have mean returns between 12 and 14% per year in the overall sample period. Moreover, for

all stock portfolios (but one, energy stocks) median returns are substantially higher than mean returns,

which is a clear indication of asymmetric return distributions (negative skewness). Volatilities tend to be

between 14 and 24 percent in annualized terms, which is also to be expected. Here precise patterns appear,

in the sense that small stock portfolios generally tend to be more volatile than large stocks, while the

most volatile industries are high tech and durable goods stocks, which may indeed be the most exposed

sectors in terms of business cycle dependence. As a result, most Sharpe ratios are in the 0.1-0.17 range
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(on a monthly basis), with very few outliers such as high tech, durable goods (with ratios below 0.1) and

non-durable goods with a Sharpe ratio close to 0.2. There is nothing special to report with reference to

returns on 5- and 10-year government bonds, apart from their stunning Sharpe ratios in excess of most

stock portfolios, due to the fact that our sample is dominated by the disinflation and declining interest

rates of the early 1980s. The Moody’s Baa corporate bond portfolio is characterized by mean and median

returns that exceed, as they should, those of government bonds free of default risk, although such extra

return seems to be compensating their volatility with an exceptional monthly Sharpe ratio of 0.26. The

summary performance statistics for real estate portfolios contain instead some unexpected information.

While equity REITs are characterized by means (12% per year), volatility (13%), and a Sharpe ratio

(0.18) directly comparable to those of stocks (for instance, the value-weighted CRSP portfolio has a mean

return of 12%, volatility of 14.8% and a Sharpe ratio of 0.14), mortgage and hybrid REITs have produced

much lower mean returns (around 5% per year) but display volatilities in excess of long-term bonds, with

resulting Sharpe ratios close to zero. However, because for most of our sample overall REIT portfolios such

as NAREIT composite and DJ Wilshire US REIT have come to be dominated by equity REITs, the result

is that the corresponding Sharpe ratios are generally close to those of the stock market indices.

The second and third groups of statistics in Table 2 concern the shorter 1983-1992 sample. As for

1983-1992, the summary statistics can be compared to Karolyi and Sanders’ (1998) and in general we fail

to notice any significant differences. However, the differences between sub-periods are considerable. For

instance, and possibly contrary to common perception, it is evident that the post-1992 age has been a rather

disappointing period for stocks, and this emerges independently of the portfolio sorting criterion employed,

with the only exception of small and energy stocks. Even though a few volatilities are lower in the post-1992

periods than in the earlier sub-sample, the generalized decline in mean stock returns implies lower Sharpe

ratios in the 1993-2008 period. This is also reflected in the statistics concerning the market portfolio,

which has recently yielded lower mean returns (9% vs. 15%), imposed higher volatility on investors (15%

vs. 14%), and has yielded as a result a Sharpe ratio of 0.10 vs. 0.18 in the 1983-1992 period. These

conclusions are reversed when it comes to real estate returns: for four of the portfolios analyzed, the post-

1992 Sharpe ratio exceeds the 1983-1992 ratios; for instance the ratio for NAREIT composite jumps to 0.16

from 0.09 in the earlier period, and a solid contribution is given by mortgage REITs which had negative

Sharpe ratios in the 1980s and switch to positive ratios in the past 10 years. Finally, some instability

characterizes our return data for long-term bonds returns: these display significantly less volatility in the

post-1992 period but also lower mean returns. As a result, their Sharpe ratios decline from an exceptionally

high range of 0.23-0.36 over the 1983-1992 period to 0.13-0.17 in the post-1992 sample.

4. Empirical Results

4.1. Factor Loadings

Figures 1-2 plot a selection (see below) of the time series of 5-year rolling window estimates of the betas in

(1), obtained from a classical two-pass Fama-MacBeth approach. To save space, Figures 1-2 report plots
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of time series of rolling window betas for all the 28 portfolios used in our estimation, but for two specific

(potential) risk factors only: the U.S. market portfolio and the term premium (the slope of the riskless

yield curve).17 Other, similar Figures concerning the remaining risk factors–the default spread, the real

short term rate, the IP growth rate, the unemployment rate, and real consumption growth–are available

upon request even though we summarize their contents and implications below. Clearly–unless one is

ready to make very restrictive assumptions–the two-pass Fama-MacBeth does not allow us to compute

and report standard error bands around the estimated coefficients.18

Figure 1 shows that all the 20 equity-like portfolios yield a positive and high beta on the value-weighted

market portfolio, with rather limited dynamics over the sample (the only exception seems to be utility

stocks, whose market beta declines towards zero during the 1980s and 1990s and then jumps up after

2000). As one would expect, high-tech and, to some extent, stocks in the two lowest size deciles are

aggressive portfolios, with their market betas often exceeding 1 and appear to have somewhat increased

over time. Non durable, energy, utility, and to some extent decile 10 stocks are instead defensive and yield

market betas at or below 1. The three bond portfolios are characterized by negligible or even slightly

negative market betas. REITs appear instead to be a mixture between equities and bonds, as their market

betas are generally positive but also centered around a value of 0.5. However, most real estate indices also

display a visible upward trend that becomes strong in the late 1990s. Figure 2, with reference to term

premium exposures gives a general impression of instability in betas. For most equities, the mid-1990s

and recently the post-2005 period are all characterized by large, positive, and increasing exposures to term

structure risk. Although most equity portfolios start with zero or even slightly negative term structure

betas, by the end of our sample durables, high tech, retail, and the first two size deciles (positive and large),

and utilities (negative) display large betas in absolute value. If we take the term premium to be a business

cycle indicator–in the sense that a higher (lower) term premium signals an improvement (deterioration)

of business cycle conditions, see e.g. Estrella and Hardouvelis (1991)–these results for industrial and

size-sorted stock portfolios are sensible. Both medium- and long-term Treasury bond excess returns have a

negative exposure to the term premium, while corporate bonds generally do not. Real estate index returns

display strong time-variation in term spread betas, with a massive downward trend (starting from 0—0.5

to -4 or -5, in the case of equity REITs) between 2001 and 2006. However, the yield curve betas recover

ground towards zero or even the positive range between 2006 and 2008.

Results (unreported) for the credit risk premium show that instability also dominates the exposures of

U.S. traded assets to default risk. The betas for all 20 equity portfolios change sign at least three times

over our sample period. In many cases (e.g., non durables, high-tech, utilities, size deciles 1-4 and 10)

the range of variation of the default premium beta equals or exceeds 8, with betas that typically start

out positive and large (between 3 and 6) decline and turn negative by the late 1990s, and then increase

17These two risk factors are selected because we perceive a widespread belief in the asset pricing literature that variables

such as market portfolio returns and the term structure of interest rates may heavily affect excess returns on all assets and

portfolios. As the paper will show, this may actually not be the case in the light of the empirical evidence.
18Reporting standard (asymptotic) normal-based standard error bands would be valid only assuming that the beta coefficients

are stable over time, which contradicts the nature of the entire experiment.
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again after the turn of the millennium. Since a variety of papers (see e.g., Fama and French, 1989, as well

as Stock and Watson, 2003) have argued that a surging default risk premium is a predictor of economic

downturns, it is sensible to find that durables, manufacturing, retail, and the first three size decile stocks

have the highest exposures to default premium-type business cycle risk, while non-durables, utility, health

and decile 10 stocks have essentially zero average exposures to this risk. Government bonds have a positive

an relatively stable exposure, while Baa corporate bonds tend to show more variation, with betas turning

negative in the late 1990s. A positive exposure of Treasury returns is quite interesting, because it means

that unexpected increases in the credit risk premia ought to cause–net of the contemporaneous effects

of the business cycle on other variables–an increase in government security prices. This is a “flight to

quality” effect in which the credit spread may increase not only (or not even mainly) because Baa yields

increase, but also because Aaa yields decline. Real estate indices that include any equity components yield

wildly gyrating exposures, oscillating between -2 and +7 and with peaks in correspondence to the early

1980s and mid-1990s. As one would expect given the nature of the underlying business, the NAREIT

mortgage index generates the maximal exposures in absolute value but oscillates over time.

First-stage rolling estimates of the loadings on the level of the (real, ex-post) Treasury bill rate imply

that, as stressed by a number of recent papers (e.g., see Ang, Piazzesi and Wei, 2006), it may be often ad-

visable to use not only the slope of the yield curve but also some measure of level–for instance as measured

by the T-bill rate–to capture the dynamics of the business cycle. In this case, we observe tremendous vari-

ability over time as well as heterogeneity across industries. In the presence of such wild swings in betas any

analyst would be really best advised to refrain from expressing any economic interpretation. It is difficult

to make sense of exposures that are at the same time close to +50 in some industries while in others they

are approaching -50, not to mention the enormous loading provided by a beta of 50 (in absolute value),

even after discounting the modest variability of changes in real T-bill rates. In all equity portfolios there

are dramatic reversals with betas changing sign between the late 1990s and 2002. In some industries (e.g.,

non durables, retail) the exposure to real rate shocks plummets and then bounces back to almost zero after

2005. For other portfolios (e.g., high-tech, utilities, the intermediate size deciles) the opposite occurs. We

are at a loss at trying to tell a story for what type of economic phenomena may cause such a pervasive and

puzzling gyrations. If we take the real short-term rate as a business cycle indicator–for instance, because

the Fed tries to push the real rate down (up) reacting to weakening (over-heating) economic conditions,

according to a Taylor rule–it is hard to imagine why high-tech and utility stocks may present similarly

signed exposures and trends over time. It is even more shocking to find positive exposures of government

bond excess returns to real short term rates during the period 1998-2002, as increasing rates should lead

to losses and negative excess returns in bond portfolios. Finally, REIT portfolios (with the only exception

of hybrids) all have negative and relatively stable exposures to this factor.

Finally, the betas on economic factors that directly link to business cycle conditions–IP growth, the

change in the unemployment rate, and real consumption growth–all reveal exposures that generally wildly

oscillate around zero although their averages tend to be slightly positive, as if pure measures of the level

of real economic activity may have played at best a minor role over our sample. This of course related to
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the typical and puzzling finding of a disconnect between asset returns and real business cycle conditions,

observed by a vast literature. However, the IP growth betas of mortgage and hybrid excess REIT returns

are volatile but generally negative, which is sensible if interest rate effects–an economic upturn generally

causes an increase in long-term mortgage rates–are more important determinants of property values than

the state of the business cycle.

Figures 3-9 report instead medians and 90% Bayesian credibility intervals computed from the posterior

densities of the loadings  over time from the BTVBSV model. The plots are structured in the same way

as Figures 1-2, to favor comparisons. However, Figure 5-9 report results for a subset of 16 portfolios only

(8 industry stock portfolios, and all bond and real estate portfolios) for reasons of space. An overview of

the plots reveals immediately that the Bayesian estimates of the loadings are considerably smoother than

the rolling window ones. This is a first interesting result: even though (4) formally allows the  to be

subject to jumps over time, as a result of the realization of a latent binary random variable, the resulting

posterior densities are actually smoother than what one could retrieve using a näıve rolling window scheme.

Interestingly, this smoothness mimics exactly what many earlier papers have imposed by assuming near

unit root processes ( = −1+) with small variance of the shocks, but is derived endogenously,

as required by the data, which means that occasional large jumps in exposure and/or high volatility of the

corresponding process may be accommodated.19 Second, with a limited number of exceptions that will

noted below (mostly concerning market betas), the 90% confidence bands are generally wide and often end

up including zero, which means that the betas are estimated with very little reliability.

In particular, Figure 3 collects most of the loadings for which we have evidence they are not zero. All

equity portfolios have positive betas, although none of them display reliably estimated trends or variability

in exposures.20 However, four portfolios (non durables, energy, health, utilities) yields betas with an upper

90% band that is always below 1, an indication that these are equity portfolios that are reliably estimated to

be defensive; two portfolios (high-tech and size decile 2) yields betas with an upper 90% band that is always

above 1, an indication that these are equity portfolios that are reliably estimated to be aggressive. These

findings confirm similar results reported with reference to first-stage Fama-MacBeth betas. None of the

bond portfolios gives evidence of non-zero exposure to the market portfolio, even when such exposures are

precisely estimated. Similarly to what reported in Figure 1, real estate portfolios confirm their defensive

nature–the corresponding upper 90% bound rarely includes 1, although their lower 90% bound is also

never touching zero–which may be also interpreted as resulting from some hybrid nature, between stocks

and bonds. In Figure 4, concerning the term premium betas, we start getting the first strong differences

between the implications of BTVBSV and the classical Fama-MacBeth approach: most equity portfolios

fail to be significantly exposed to term premium risk, in the sense that their 90% bands systematically

include zero.21 Here the naive two-stage Fama-MacBeth approach may have proven misleading, inducing

19For instance in Figure 3 the high-tech beta on the market portfolio jumps by non-negligible amounts a few times.
20This means that for most of the 20 equity portfolios it is always possible to draw a straight horizontal line that is everywhere

contained in the 90% credibility bands. The only exceptions are size deciles 9 and 10 but this occurs not because of the presence

of important trends, but because the 90% bands are narrow and closely track the trendless variation in the betas.
21The solitary exception is given by high-tech stocks, which yield a positive exposure with a posterior median centered
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a researcher into assessing large yield curve slope exposures for durables, high tech, retail, and small caps

(positive) and utilities (negative) that do not appear to be there when any instability in betas and residual

variances are formally incorporated in the analysis. It is even more striking to note that in Figure 4 none of

the government bond portfolios yields non-zero or accurately estimated term premium exposures, once the

effects of the market betas are netted out. Finally, there is some residual evidence of real estate exposure to

the yield curve slope factor, and as in Figure 2 the corresponding betas are positive and small for mortgage

REITs, and negative and small for equity REITs. All in all, it seems that explicitly accommodating the

instability in exposures through (4) may substantially weaken the popular belief that the term structure

of interest rates is an important business cycle factor driving realized excess asset returns.

Figure 5 concerns instead credit risk premium betas and provides further confirmation of the differences

induced by the adoption of (4). With minor exceptions, none of the equity portfolios carries a reliably

estimated exposure to the default factor. In the case of the 10 industry portfolios, the betas are mostly

flat with posterior medians centered around zero. In this case, also bond and real estate portfolios do not

have any important exposures: only mortgage REITs and (over the period 1983-1997) equity REITs show

positive betas with a lower 90% bound that fails to include zero. Therefore our earlier finding that a number

of equity portfolios (e.g., durables, manufacturing, retail, and size decile 1-3) and especially Treasury bonds

had significant exposure to a credit risk factor seem to vanish when instability in betas is formally modelled

and not only naively captured by rolling window estimates. However, the finding of some positive exposure

of real estate to this factor seems robust. Figure 6 confirms these findings with reference to changes in the

level of the real short rate, the only marginally exception being that the smallest, first-decile stocks are

characterized by a small negative beta whose posterior does not include zero.

Figures 7-9 give a homogeneous message as far the exposures of equity portfolios are concerned: for

each of them, either the real activity factors–IP growth, changes in the unemployment rate, and personal

consumption growth–never mattered, in the sense that their 90% posterior bands always included a zero

beta exposure, or they have stopped mattering over time, in general after 1989. Consider for instance

Figure 7: for all the stock portfolios presented (but the same holds for the remaining 12 equity portfolios

not in the picture), either the 90% bands always include a zero beta, or (this is the case for non durables

and retail stocks, that start with negative exposures) the bands widen to include zero after the late 1980s.

The picture is more complex when it comes to bond and real estate portfolios. However the implication

remains simple: IP growth matters quite a bit for long-term bonds (both Treasuries and corporate junk)

and real estate; changes in the unemployment rate and the rate of personal consumption growth do not.

4.2. Where There Any Persistent Misspricings?

Figures 10 and 11 report estimates of 0. In an ICAPM interpretation of (1) and under the null of correct

specification, the time series {0} gives indications on time-varying misspricing. If  represents returns
in excess of the riskless rate and the  factors have been correctly specified, 0 6= 0 represents evidence
of non-zero excess returns for a portfolio  with zero exposures to the  risk factors, which implies the

between 0.5 and 1.
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existence of an arbitrage opportunity and it is inconsistent with first principles (e.g., non-satiation). In the

finance literature, estimates of quantities like 0 are often named Jensen’s alphas (see Jensen, 1968) and

interpreted as measures of abnormal (excess) returns, where their abnormality refers to the principle that

only systematic risk ought to be priced.

Figure 10 starts by presenting 5-year rolling window estimates obtained from Fama-MacBeth first stage

regressions. In each of the 28 panels we also report the mean of the ̂0s over time and the p-value of a

test of the null [0] = 0 using the sample mean as an estimator and HAC-corrected standard errors to

remove the effects of the MA(59) structure induced by the 5-year rolling window estimation scheme. Figure

10, for the two-step Fama-MacBeth case, reports a rather incredible finding: all 28 portfolios display large

and negative estimates of 0 for most of the sample. The means over the entire 1983-2008 sample range

from -2.6% per month in the case of energy stocks and -8.5% in the case of high tech stocks. Even taking

into account the fact that the estimates are largely overlapping, all the means appear to have been precisely

estimated and negative. The ̂0s start out at very low values (sometimes close to a stunning -20% per

month) during the early 1980s, increase to zero between the mid-1990s and the 2000s (depending on the

portfolio considered), and in some cases (for most equity portfolios and all the real estate ones) become

positive between the late 1990s and 2005. Between 2006 and 2008, as it is reasonable to expect in the light

of the recent financial crisis, all ̂0s decline again and all become negative. This set of implications for

misspricings from the standard Fama-MacBeth procedure is clearly implausible: on average, over a rather

long 25-year period, all the 28 portfolios would have been significantly over-priced, and as a result their

abnormal returns would have been negative.22 The under-pricing of the risk exposures derives from the

fact that–when their time-varying, rolling window risk exposures are taken into account–the 28 portfolios

appear to have yielded excess returns that are meager with respect to what the model would have required.

The over-pricing appears to have been substantial, although a considerable portions of the ̄0 reported in

Figure 10 derive from the large, negative abnormal returns from 1983-1986. From a statistical perspective,

it is also difficult to forget that many time series of rolling window betas turned out to be extremely

volatile, almost erratic, and that in many situations it has been hard to provide any intuitions to the

patterns revealed by Figures 1-2. Finally, note that while in the last three decades the literature has

often debated the existence of bubbles in portions of the U.S. capital markets (e.g., in the technology

industry in the late 1990s, in the long-term government bond market in 2005-2006, and in the real estate

market in 2004-2007), the two-pass estimation procedure points to a situation of generalized, persistent

and significant over-pricing of all publicly traded assets in the U.S., which seems rather implausible in the

light of a widespread faith in the efficiency of U.S. capital markets.

Although a reaction to the poor performance of the model would advise to revise the structure of

the MFAPM–for instance, by increasing the number of factors, or changing their identity–the goal of

22Note that when looking at excess realized returns, a negative sequence of ̂0 over time implies under-pricing of risk

because this means that historical excess returns have been lower than what their risk exposures imply. However, a negative

̂0 at time  implies a low expected excess returns and hence (for instance, in a simple risk-adjusted present value model)

over-pricing of the asset at time . The two perspectives are logically consistent because under-pricing the risk exposures of

an asset implies that the asset will be over-priced and will fail to yield adequate rates of capital gain and pay-outs over time.
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this paper is to show that by revising the method of implementation of the MFAPM, and by explicitly

modelling the existence of instability in risk exposures and in the level of idiosyncratic risk, a much more

satisfactory outcome may be obtained. Figure 11 reports posterior medians and 90% credibility intervals

for the 0s estimated from (4). For comparability, we report in each panel the average of the median

posteriors over time, although strictly speaking such a statistic has no precise inferential meanings. First,

out of 28 portfolios, in 5 cases we find 0s with a posterior median that is uniformly positive over our

entire sample period (this occurs for non durables, energy, telecommunication, health, and utility stocks),

although there are other 14 portfolios (durables, high tech, retail, size deciles 1-6 stocks, as well as long-term

government bonds and all the NAREIT portfolios) for which the posterior means of the abnormal returns

are negative. In the remaining 9 cases, the mean 0 changes sign over time. In essence, the values of the

posterior means of the 0s as well as their sign are economically plausible. Even more interestingly, once

we take into account of the 90% confidence bands, it is clear that in 28 out of 28 portfolios, the reported

posterior means fail to be precisely estimated, in the sense that the 90% band always includes a zero

abnormal return throughout the entire period 1983-2008. Although this might be premature, one might

say that the posterior means of the 0s fail to give a reason to think that the model is inadequate.
23

4.3. Idiosyncratic Risk

A growing literature (see e.g., Campbell, Lettau, Malkiel and Xu, 2001, Brandt, Brav, Graham and Kumar,

2008, and Zhang, 2010) has stressed that the idiosyncratic variance of the excess returns of most sets of

test portfolios, 2, has undergone interesting shifts and/or dynamics over the last two decades. Figure

12 displays plots from the classical, two-pass Fama-MacBeth method. The presence of rich dynamics is

obvious for all the portfolios. Two patterns emerge. First, idiosyncratic variance tends to be large for

most portfolios investigated, a sign that the two-pass method provides a very rough explanation to the 28

time series of excess returns data. To make this impression compelling, in each of the panels in Figure 12

we have reported the ratio between the average of the two-pass estimate ̂2 and the sample variance of

portfolio returns in Table 1, over the period 1983-2008. Note that because of the rolling window nature

of the {̂}, this ratio may actually exceed one. Anything close to 1 or in excess of 1 of course denotes a
very poor average fit of the MFAPM. We note that a large fraction (14) of the 28 portfolios investigated

yields a ratio between ̂2 and the sample variance that is close to or in excess of 0.5, with all the bond

portfolios with ratios in excess of one, and all the real estate portfolios with ratios between 0.6 and 0.8. In

this cases, the non-systematic component of excess returns still explains at least 50% (and often exceeds

100%, meaning that the factor model in some sense clouds our understanding) of the total variance of

excess returns. For instance, an analysis of the fitted excess returns from the MFAPM shows that the

variations in expected excess returns hardly correspond to any of the realized variations in excess returns.

Second, most equity portfolios (in practice, all the industry portfolios and size deciles 1-8) record a peak

23Figure 11 shows that durable stocks (especially after 2000), high-tech stocks (throughout the entire sample), and size

deciles 1-6, and mortgage REITs (especially after 2000) have yielded excess returns substantially below the levels justified by

their risk exposures and therefore can be considered to have been over-priced.
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in idiosyncratic variance between 2000 and 2003. In some cases, the rolling window idiosyncratic variance

practically doubles between 1999 and 2004, meaning that the MFAPM loses most of its ability to fit excess

returns using risk exposures.24 This is partially visible also in the case of the real estate portfolios, although

here the trend for idiosyncratic risk to increase seem to have continued after 2004. This is consistent with

the evidence in Campbell, Lettau, Malkiel and Xu (2001) and Zhang (2010) who report a positive trend in

idiosyncratic volatility during the 1962-2001 period (while aggregate market volatility remained constant)

that has strongly reverted from 2001 onwards to start climbing up again since 2007.

Figure 13 reports instead the posterior medians for 2 estimated from (4), along with 50% credibility

intervals.25 For all equity portfolios it is always possible to draw a horizontal line that fits within the

50% confidence bands (being wider, this clearly applies to 90% bands as well). This implies that when

all the uncertainty is taken into account, there is no strong evidence of trends in idiosyncratic variance,

even though the plots for the individual portfolios show some evidence of a peak in the early 2000s and

some sign of a growing trend towards the end of our sample. The ratios between posterior medians for

the 2 and sample variances for excess returns, are generally similar to those found in the case of Figure

12, although the specific values differ. The BTVBSV model performs poorly for energy and health stocks,

while it explains away almost all the variability in excess returns in the case of medium and large cap stocks.

The most important differences between classical two-step Fama-MacBeth results and the Bayesian results

appear for the bond and REIT portfolios. While long-term government bonds are now characterized by

a idiosyncratic variance comparable to equity portfolios (as a fraction of sample variance), medium-term

Treasuries practically do not have any idiosyncratic variance. This means that the Bayesian estimates

of (4) are severely tilted to fit 5-year Treasury excess returns.26 However, this is not the case for Baa

corporate bonds, for which the ratio in Figure 13 is 1.54, only modestly below the 1.99 in Figure 12.

4.4. Risk Premia

Figure 14 reports second-pass Fama-MacBeth time series of estimates of the risk premia {̂} ( = 1 )
from (3). In the figure, 8 panels appear, seven for the macro risk factors assumed in the paper, and one

for ̂0 which can be interpreted as a measure of overall, cross-sectional abnormal performance. Also in

this case, as in Figures 1-2, the instability in the estimates is overwhelming, with most ̂ series either

frequently switching sign or being even centered around a general, negative sample mean, which means

negative premia for positive risk exposures. In Figure 14, we also report in the boxes within each plot, the

time series sample mean of each of the risk premia as well as the p-value of a test of the null of [] = 0

using the sample mean as an estimator and HAC-corrected standard errors. None of the risk premium series

turns out to be estimated with any statistical precision, apart from the risk premium on the (change in

the) yield curve slope factor, for which the average ̂ is -0.19 with a p-value between 1 and 5%. However,

24Some equity portfolios (e.g., manufacturing, shops, middle cap stocks) also display a first peak in correspondence to the

mid-1980s.
25In the case of idiosyncratic variance the 90% bands would be so large to completely obscure any time variation in the

posterior median for the purposes of visualization.
26The same applies to size deciles 7-10 stock portfolios.
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such a premium is then significantly negative, which–assuming that a steeper yield curve forecasts an

improvement in business cycle conditions–is puzzling. Moreover, the average risk premium on market

risk turns out to be imprecisely estimated, and to be small (0.28). The only quantity for which there

is compelling evidence is in fact ̂0 which is estimated to be negative and massive (-3.92% per month),

with an essentially zero p-value. In a sense, all that a standard estimation Fama-MacBeth approach to

(1) reveals is that U.S. asset return data contain strong evidence of structural misspricings in the form of

negative abnormal returns, which is consistent with our remarks on Figure 10.

The Bayesian (posterior median) estimates in Figure 15 are more stable and–more importantly–a few

of them are precisely estimated. This is only superficially paradoxical: when a model that incorporates

instability is adopted, stable estimates are obtained. However, it is clear that a better (correctly) specified

model offers efficiency gains and impresses a stability in the resulting estimates that may be responsible for

this finding. In particular, the market risk premium has an average (over time) posterior median of 0.232

that is often significant (i.e., the corresponding 90% confidence band fails to contain zero) in 56% of our

sample. A careful inspection of Figure 15 reveals that there is some persistence in market risk premium

medians, with long periods over which this premium is either significantly negative (1984-85, 1987-88 after

the October ’87 crash, late 1992-1993, and 2001-2002) or positive (e.g., 1996-1997 and again 2004-2006).

Figure 15 also shows that two other risk premia–on default and IP growth risk–can be estimated with

some precision, at least over sub-samples (e.g., 1993-1995 and 2005-2006 for the default risk premium and

2003-2005 for IP growth). However, on average both risk premia have posterior medians that are very

small, 0.018 in the case of default risk and 0.056 in the case of IP growth.

Table 2 reports summary statistics for median posteriors of the s, compared with those for the

second-pass point estimates, the ̂s, from Fama-MacBeth. In this case, we also report the empirical (over

the entire 1983-2008 period) 5th and 95th percentiles of each series, besides the sample standard error for

the average of the s (note that using them for inference implicitly embraces a frequentist perspective).

To gain additional insights, we split our 25-year long sample in two, 1983-1992 and 1993-2008. Once more,

the classical estimation procedure that non-parametrically tracks time-variation in the parameters using

5-year rolling window estimates delivers nonsensical insights. Over the full sample, only one factor seems

to be precisely priced in U.S. asset returns–this is default/credit risk–but this seems to happen with the

wrong sign, -0.19. If we realistically assume that an increase in default risk spreads forecasts business cycle

downturns, the result is that publicly traded assets would imply a negative price for business cycle risk.

During the first 1983-1992 sub-sample, the results make even less sense because not only default risk would

command a reliably estimated and negative price (-0.35), but the same now occurs also for IP growth risk

(-0.30). However, during the longer and final sample 1993-2008, volatility takes over and none of the risk

premia is reliably estimated. On the top of these issues, the fact that the ̂0s are significant, large, and

negative re-emerges throughout the three samples: U.S. financial markets would have been characterized

by massive under-pricing of risk and hence over-pricing of all asset classes.

Fortunately, a much more comforting picture emerges from the Bayesian estimation exercise, when a

parametric model for unstable exposures and idiosyncratic risk are imposed. Here one result is striking:
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consistently with earlier evidence centered on real estate data (see e.g., Ling and Naranjo, 1997) in the

overall sample, real consumption growth is the only precisely estimated (p-value is 0.030) risk premium, it

displays the expected positive sign, even though the size of the premium tends to be small (0.06). Also the

Bayesian design gives evidence of moderate but precisely estimated misspricings, with an average posterior

median of 0 equal to 0.37% per month. However, these misspricings now correspond to over-pricing of

the risk factors captured by the model and to a structural but mild under-pricing of the assets over time.

Also in this case, there is evidence of a better performance of the MFAPM in the first sub-sample than in

the second: during the 1983-1992 period, the average posterior median of 0 converges to zero (0.26%)

and fails to be significant. Three factors are significantly priced, two–the term spread and changes in

real short term rates (i.e., in some ways both level and slope of the yield curve)–with the expected signs

(0.51 and 0.09, respectively), while unemployment risk carries a negative sign (-0.07, with p-value between

5 and 10%) that however is not completely surprising in the light of some asset pricing literature (see e.g.,

Boyd, Hu and Jagannathan, 2005). During the second sub-sample, the finding of an accurately estimated

over-pricing of the risk factors (0.45%) and of real consumption growth being the only accurately estimated

risk premium (now 0.11 with a p-value below 1%) re-appears. This evidence is surprisingly tilted towards

concluding that U.S. assets are priced by business cycle-related factors–real consumption growth as in the

C-CAPM paradigm, but with periods in which also riskless yield curve factor seems to play an important

role–than towards the typical finding that the cross-section of excess returns would depend on other

financial factors, in this case the value-weighted market portfolio factor. Moreover, the fact that at least

one sub-sample could be found for which 0 does not seem “significant” in a traditional sense–along with

the evidence in Figure 11 that very few of the 0 posterior series would yield sample medians estimated

with any precision–may be taken as an encouraging first step towards failing to reject the BTVBSV model.

5. Economic Tests

So far our discussion has focussed on the statistical performance of the models with emphasis on whether

there was evidence of either the 0s or the 0s coefficients being different from zero. We have concluded

that (1)-(2) is rejected in its standard, two-pass Fama-MacBeth implementation based on 5-year rolling

window estimates. However, there was encouraging evidence that the BTVBSV model may be less at odds

with the data. Therefore, with reference to (4), we compute the VR1 and VR2 ratios in Section 5.1. In

Section 5.2 we factor  [ (
P

=1 |−1|Z−1)] as the sum of the contributions given by each of the

factors, leaving the covariance terms as a residual interaction effect. In both Sections, the information at

time  − 1 (Z−1) is proxied by the instrumental variables listed in Section 3, plus a dummy variable to
account for the “January effect”.

5.1. Variance Ratios

The first two columns of Table 3 present posterior medians of  1 and  2 obtained from (4) for each

of the 28 portfolios under examination. Variance ratio results are encouraging, although there is some
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difference between the  1 vs. the  2 perspectives. Under a VR1 perspective, we can claim that

approximately half of the predictable variation in excess returns is indeed captured by our MFAPM. Such

percentages are in fact very high and satisfactory for the size-sorted stock portfolios, more heterogeneous

(but again, generally encouraging) for the industry equity portfolios, mediocre for REIT portfolios, and

rather low when it comes to bond portfolios. In the case of size-sorted portfolios,  1 always exceeds 50%

and it averages close to 70%, which is quite impressive. In the case of industry portfolios, one goes from

peaks in excess of 70% for high tech and retail stocks, to a minimum of 22% in the case of utility stocks,

even though most portfolios comfortably exceed 50%. Also the REIT portfolios yield VR1 statistics around

50%. Finally, it is well know from work by Cochrane and Piazzesi (2005 and following papers) that–albeit

certainly present in the data–the predictability in excess bond returns (at least as far as riskless bonds

are concerned) remains hard to pin down using macroeconomic factors and appears instead to be driven

by the implicit dynamics of the riskless yield curve, as captured by special (tent-like) patterns implicit in

forward rates.

However, because  1+ 2 = 1 does not hold, the finding of good VR1 ratios fails to imply that the

VR2 ratios are as close to zero as much as we would want, which is consistent with the finding in Figure

13 of large and (to some extent) time-varying idiosyncratic variances. In 19 portfolios out of 28 we at least

find that VR2 is below 50%. VR2 is indeed uniformly moderate (below 0.4, with the only exception of very

small caps) for the size-sorted equity portfolios. However, it is much less satisfactory for the REIT and

bond portfolios, for which there is evidence that large chunks of predictable variation is actually picked up

by the dynamics in idiosyncratic risk.

5.2. Decomposing Predictable Variation

Table 3 shows that the predictable variation in excess stock returns is mostly explained by the market risk

factor: with one exception (the smallest capitalization portfolio), all the ratios  [ (|−1|
Z−1)]  [ (

P7
=1 |−1|Z−1)] exceed 0.6 with peaks in excess of 0.8 for a number of industries as

well as the medium- and large-cap portfolios.27 This result on the importance of the market portfolio to

explain predictable variation in stock excess returns stands in contrast to our statistical findings in Section

4. The origin of such findings is soon obvious: the market factor explains little or nothing of the predictable

variation in excess bond returns. REIT portfolios stand in between, with a contribution of the market risk

factor between 0.19 and 0.47. As far as stocks are concerned, the next most important factor contributions

come from IP growth and changes in the real short term rate, although the heterogeneity across portfolios

is strong and mostly concentrated among industry portfolios. In the case of bond portfolios, many other

factors–e.g., default and yield curve slope risks, but to some extent also business cycle factors such as

unemployment and the real short term rate–different from the market give contributions to explain the

predictable variation in excess returns. For instance, the (large) predictable portion of long-term bond

27As explained in Section 2.4, these ratios may exceed 100% because  [ (
7

=1 |−1|Z−1)] will also reflect the
contribution of covariance terms between factor terms. In fact, in Table 3 the only two contributions exceeding 100% are

obtained in the presence of sizably negative covariance contributions.
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excess returns seems to be mostly driven by default risk (representing a likely flight-to-quality effect during

economic downturns), the yield curve spread factor, and the real short term rate. Once more, real estate

assets fall in between with important contributions from the credit risk factor as well as the market. Finally,

in spite its statistical importance, the contribution of the real consumption growth tends to be modest.

This is not inconsistent with our earlier findings because even though the posterior median series for the

consumption risk premium reveals its entity with great precision, this has no implication for the behavior

of the exposures to such a risk, which we have seen to be very imprecisely estimated in Figure 9.

6. Robustness Checks

Because our research design, especially in its Bayesian implementation, has implied a number of choices

at several steps, in this Section we conclude with a few remarks on the main qualitative differences when

estimation has been repeated after changing any of the choices made. In general we have found modest

differences and this provides further support to the encouraging results revealed by Section 4 and 5. To save

space, we have not plotted or tabulated complete set of results, that remain available from the Authors.

6.1. Bayesian Two-Stage Fama-MacBeth Strategies

As explained in Section 2.3, our Bayesian implementation follows Ouysse and Kohn (2010) as a way to side-

step all kinds of generated regressor problems that have plagued applications of Fama-MacBeth’s methods.

In practice, this means that we have considered the full posterior distribution of the time − 1 (expected)
factor sensitivities |−1: for each draw of the betas at time , corresponding values for the risk premia

are “drawn” from the relevant posterior distribution; then, again at time , we obtain the entire empirical

distribution of a given large number of draws of  on which to base our multivariate inferences. In spite

of its internal consistency and the fact this appears to be the only way in which all relevant (estimation)

uncertainty may be taken into account, to see whether our economic insights may be mostly driven by this

innovative choice, we have repeated the entire analysis by using the simpler but traditional approach of

using plain (median, in our case) betas from the first pass rather than their full posterior distribution at

time . Moreover, for each draw  of the risk premia (), we compute their average over time (b) in order
to obtain their empirical distribution. Equivalently, this is the same as stating that we have constructed

a time series of estimated risk premia for each iteration  of the Bayesian algorithm and consequently

computed the average risk premia, for which a posterior distribution can then be easily obtained.28

Because this robustness exercise is a compromise between the advantages of the Bayesian approach

that allows the estimation of complex models such as (4) and the classic two-step approach, in this case

we have reported this mixed “Bayesian/Fama-MacBeth” results in Table 2. Even though the posterior

28We have also tried to simply use median betas from the first pass rather than their full posterior distribution at time 

leaving the portion of the algorithm concernint the  intact. While there are no sharp differences in terms of uncertainty

surrounding the  for each  as revealed by their posterior distributions, the results are quite different as far as the dynamics

of such posterior distributions over time is concerned. The increased dispersion in the estimates is striking and would prevent

us from drawing any of the implications currently in Section 4.4.
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median estimates are never dramatically different from those obtained in the “correctly estimated” Bayesian

implementation (e.g., the posterior medians switch sign in only 5 cases out of 24), there are a few important

changes in the inferential implications vs. the previous two methods in the other panels of Table 2. First,

during the second, more recent sub-sample, the MFAPM is a complete “wash-out” in the sense that none

of the risk premia is precisely estimated and presumably different from zero, including 0 On the one

hand, a 0 centered at zero is good news for a MFAPM; on the other hand, the fact that none of the risk

premia is precisely estimated means that the model has little to say. During the two remaining periods, it is

interesting to note that default, term structure, real short rate, and real consumption growth risks all stop

being significantly priced, while the market risk factor is, with p-values always below 1%. However, during

the full sample it remains the case that even this mixed implementation reveals substantial over-pricing of

risks, in the sense that the average 0 is 038% and precisely estimated, so that the chances for this model

to hold throughout our sample are identical to those discussed in Section 4.4.29

6.2. Informative Priors

Finally, we have experimented with an informative prior in the second pass in order to put some structure

(constraints) on the distribution and moments of the risk premia. These are now postulated to be normally

distributed with zero mean and variance such that there is 95% probability that annualized premia are

smaller in absolute value than the maximum return observed in the sample for all the assets.30 We record a

striking reduction in the variability of the estimated posterior distributions (as well as their medians) for the

risk premia relative to the baseline case. Although the qualitative results and insights from Figure 15 and

Table 2 apply intact, there is one important change: the market risk premium becomes now “significant”

in both the full sample and in the first sub-sample, 1983-1992. In essence, using informative priors on the

premia which constraints their variability, we find both less variable premia (so far the result has been

built in the type of prior used) and economic implications that encompass the second and third panels

of Table 2: both real consumption growth and market risks are important drivers of the cross section of

U.S. returns, even though during the initial samples other factors (term spread, unemployment, and the

real short term rate) appear to have been priced. However, we have decided to present the results of this

further exercise as a mere robustness check because it should be clear that the selection of the priors exerts

a first-order effect on our conclusions on whether the classical CAPM-style market risk factors are priced.

7. Conclusions

We have analyzed and compared the empirical performance of two alternative ways in which a standard

MFAPM with time-varying risk exposures and premia may be estimated. The first method echoes the

two-pass approach advocated by Fama and MacBeth (1973) used in a substantive body of applied work in

empirical finance. However, as it is well known, such an two-stage approach is plagued by difficult problems

29In fact, the 90% confidence bands for 0 stop including zero also for the 1993-2008 sample, although a classical-style

t-test yields a p-value of 0.157.
30A complete description of prior distributions and hyperparameters used can be found in the Appendix.
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with errors-in-variables and arbitrariness of the choice of the rolling windows. The second approach extends

previous work by Ouysse and Kohn (2010) and is based on a formal modelling of the latent process followed

by risk exposures and idiosyncratic volatility capable to capture structural shifts in parameters.

Our application to monthly, 1979-2008 U.S. data for stock, bond, and publicly traded real estate returns

shows that the classical, two-stage approach that relies on a nonparametric, rolling window modelling of

time-varying betas yields results that are unreasonable. For instance, there is evidence that all the portfolios

of stocks, bonds, and REITs examined in this paper would have been grossly over-priced during our sample

period, which is a rather bizarre result inconsistent with any faith in the efficiency of U.S. capital markets.

Moreover, very few risk factors appear to be priced and, when they are, they carry the wrong sign (in

the sense that more business cycle exposure ought to lead to negative risk premia). On the contrary, the

empirical implications of our Bayesian estimation of (4) are plausible and there are indications that the

model may be consistent with the data. For instance, most portfolios do not appear to have been grossly

misspriced and a few risk premia are precisely estimated with a plausible sign. Real consumption growth

risk turns out to be the only factor that is persistently priced throughout the sample. However, we cannot

claim to have achieved complete success: the BTVBSV ends up giving an acceptable empirical performance

only “on the shoulders” of what is a dwarf, in the sense that the Fama-MacBeth methodology leads to a

disappointing fit. It would be interesting both to further fine-tune the standard, more traditional part of

the model–such as the number of factors to be specified as well as their nature and definition–and at the

same time to work on the specific structure and assumptions appearing in (4) to test whether its empirical

performance may be improved and/or any different insights may be derived.
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Appendix

We separately present each of the steps of our Bayesian implementation of the two-step Fama-MacBeth

(1973) approach.

First pass:

For each asset  = 1  , the model in (4) is

 = 0 +

X
=1

 + 

 = −1 +   = 0 

ln(2) = ln(2−1) + 2  = 1   ,

where ² ≡ (1 2  )
0 ∼ (0 I), η ≡ (0 1   )

0 ∼ (0Q) with Q a diagonal

matrix characterized by the parameters 20 
2
1  

2
  

2
, and κ ≡ (0   2)

0 is a ((+2)×1) vector
of unobserved uncorrelated 0/1 processes with Pr[ = 1] =  for  = 0  +1 and Pr[2 = 1] = 2.

The model parameters are the structural break probabilities π ≡ (0    2)0 and the vector of variances
of the break magnitude q2 ≡ (20 21  2  2). They are collected in a (2(+1)×1) vector θ ≡ (π0 (q2)0)0.

Independent conjugate priors are used to ease posterior simulation. For the break probability we assume

simple Beta distributions,

 ∼ (  ) 2 ∼ (2  2 ) (15)

where the hyperparameters  and  ( = 0  + 1) reflect prior beliefs about the occurrence of breaks.

For the variance parameters the inverted Gamma-2 prior is chosen,

2 ∼ (  ) 2 ∼ ( ), (16)

where  expresses the strength of the prior mean.
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For posterior simulation we run the Gibbs sampler in combination with the data augmentation technique

by Tanner and Wong (1987). The latent variables  = {}=1,  =
©
2
ª
=1

 and K = {}=1 are
simulated alongside the model parameters, θ. The complete data likelihood function is given by

(K |θ  ) =

Y
=1

(|  2 )
Y
=0

(|−1  2 )×

(2 |2−1 2 2)
Y

=0



 (1− )

1−22 (1− 2)
1−2 

Combining the prior and the data likelihood, we obtain the posterior density

(K |  ) ∝ ()(K |  ) (17)

Defining K = {0  }=1 and K = {2}=1, the sampling scheme consists of the following iterative
steps:

1. Draw K conditional on Kθ, and .

2. Draw  conditional on Kθ and .

3. Draw K conditional on Kθ, and .

4. Draw  conditional on Kθ and .

5. Draw θ conditional on K and .

The first step applies the efficient sampling algorithm of Gerlach, Carter and Kohn (2000), the main

advantage being drawing  without conditioning on the states , as Carter and Kohn (1994) instead

do. The conditional posterior density for ,  = 1   unconditional on  is:

(|K−K θ ) ∝ (|KK θ)(|K−θ)

∝ (+1 |1K θ)(|1−1 1−1 θ )(|K−θ) (18)

Gerlach, Carter and Kohn (2000) show how to evaluate the first two terms while the last one is obtained

from the prior. When K and  are highly dependent, the sampler of Carter and Kohn (1994) breaks

down completely: the higher the correlation (dependence), the bigger the efficiency gain. The latent process

for the betas is estimated by means of the forward-backward algorithm of Carter and Kohn (1994).

K and  are drawn in the same way as K and . To do so we follow Kim, Shepard and Chib (1998)

and approximate the log of a 2(1) distribution by means of a mixture of seven normals. In each iteration of

the Gibbs sampler we simulate a component of the mixture distribution in order to get a conditional linear

state space model for ln(2 ). Finally, the vector of parameters θ is easily sampled as we use conjugate

priors.

We use a burn-in period of 1,000 and draw 5,000 observations storing every other of them to simulate

the posterior distributions of parameters and latent variables. The resulting autocorrelations of the draws

31



are very low.31

Second pass:

To estimate the cross section in (5) at each time  and for each draw of |−1 = (1|−1  |−1)
where each |−1 is a (( +1)× 1) vector and  is the total number of assets, we use natural conjugate

priors. In particular,

( 2) = (|2)× (2) (19)

where

(|2) ∼ ( 2 ) and (2) ∼ (


2
2
1

2
) (20)

Combining them with the data likelihood we obtain a joint posterior density with convenient analytical

form. The resulting marginal posterior distributions are

(|) ∼ ( 2  ) (21)

(2|) ∼ (


2
2
1

2
) (22)

with

(|) =  (23)

(|) =
2

 − 2 (24)

(2|) =
2

 − 2 (25)

(2|) =
(2)2

( − 2)2(
2
− 2) (26)

where

 = ( −1 + ( 0−1)−1 (27)

 = ( −1 + ( 0−1)−1( −1+ ( 0−1̂) (28)

 =  + (29)

and ̂ is the OLS estimate.32

Results are presented with two different sets of priors. In the former case we are noninformative

( = 0 and  −1 = 0) and use the well known Jeffreys’ prior while in the latter case we impose some prior
information. In more detail, we opted for a small amount of strength ( = 5) supporting a prior view

for premiums with zero mean and standard deviation equal to a twelfth of the maximum absolute return

observed in the sample. Finally, the prior residual variance is centered at about 10, a value that appeared

in the higher range of the maximum likelihood estimates.

31In order to gain a rough idea of how well the chain mixes in our algorithm we follow Primiceri (2005) in looking at the

autocorrelation function of the draws. Primiceri (2005) plots the 20-h-order sample autocorrelation for some of the parameters.

He bases his assessment on two further and more elaborate indicators, such as the inefficiency factor (IF) and the Raftery

and Lewis (1992) diagnostic. As for the stochastic variances, we report satisfactorily low levels of autocorrelation that in

most cases essentially vanishes after a handful of lags. However, for the long term government bonds we observe a persistent

autocorrelation which reaches values close to 0.4 after 20 lags, especially at the end of the sample. It would be interesting to

investigate to what extent this lower inefficiency is harmful for inference.
32Intermediate steps to derive the marginal posterior distributions have been skept. Interested readers can refer to Koop

(2003) for details.
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Table 1 
Summary Statistics for Financial and Macroeconomic Time Series Used in the Paper 

 

Mean Median Std. Dev. Sharpe Ratio Mean Median Std. Dev. Sharpe Ratio Mean Median Std. Dev. Sharpe Ratio

Non Durable Goods 1.240 1.260 4.260 0.195 1.656 1.390 4.686 0.244 0.810 1.100 3.736 0.135

Durable Goods 0.825 1.010 5.956 0.070 1.144 1.045 5.753 0.110 0.496 0.980 6.161 0.031

Manufacturing 1.170 1.410 4.610 0.165 1.325 1.610 4.789 0.170 1.011 1.010 4.426 0.159

Energy 1.314 1.040 5.102 0.177 1.241 1.285 4.567 0.160 1.389 0.920 5.615 0.193

High Tech 0.991 1.150 7.273 0.080 1.034 1.155 5.708 0.092 0.946 1.150 8.616 0.074

Telecommunications 0.938 1.410 5.181 0.102 1.520 1.835 4.393 0.230 0.338 0.570 5.840 0.005

Shops and Retail 1.074 1.270 5.109 0.130 1.329 1.315 5.502 0.149 0.811 1.160 4.672 0.108

Health 1.141 1.200 4.772 0.153 1.485 1.420 5.202 0.187 0.786 0.690 4.271 0.112

Utilities 1.053 1.340 3.926 0.164 1.209 1.145 3.427 0.204 0.892 1.340 4.388 0.133

Other 1.018 1.440 4.776 0.127 1.311 1.830 4.731 0.169 0.715 1.130 4.818 0.085

Decile 1 1.029 1.180 5.762 0.107 0.897 1.170 5.042 0.077 1.165 1.180 6.435 0.133

Decile 2 1.062 1.440 6.018 0.108 1.020 1.650 5.157 0.099 1.105 0.940 6.812 0.117

Decile 3 1.121 1.770 5.579 0.127 1.239 2.350 5.081 0.143 0.999 1.400 6.065 0.114

Decile 4 1.046 1.580 5.439 0.117 1.199 1.920 5.113 0.135 0.887 1.420 5.770 0.101

Decile 5 1.137 1.710 5.296 0.137 1.317 1.995 4.937 0.164 0.951 1.510 5.653 0.114

Decile 6 1.087 1.410 4.876 0.139 1.335 1.615 4.680 0.176 0.831 1.170 5.074 0.103

Decile 7 1.168 1.410 4.739 0.160 1.314 1.240 4.613 0.174 1.018 1.440 4.876 0.146

Decile 8 1.111 1.480 4.803 0.146 1.280 1.730 4.559 0.169 0.936 1.060 5.052 0.125

Decile 9 1.146 1.660 4.343 0.169 1.336 1.740 4.387 0.188 0.949 1.620 4.303 0.149

Decile 10 1.005 1.180 4.223 0.141 1.328 1.485 4.033 0.203 0.670 1.040 4.400 0.083

10‐Year Treasury Notes 0.629 0.616 1.180 0.185 0.806 0.826 1.267 0.234 0.446 0.423 1.057 0.132

5‐Year Treasury Notes 0.580 0.552 0.771 0.220 0.735 0.738 0.823 0.274 0.419 0.435 0.681 0.165

Baa Corporate Bonds (10‐20) 0.824 0.934 1.587 0.261 1.078 1.148 1.582 0.359 0.561 0.582 1.554 0.164

1‐month Treasury Bills 0.410 0.410 0.187 0.000 0.510 0.490 0.171 0.000 0.306 0.360 0.141 0.000

NAREIT ‐ Composite 0.891 1.047 3.687 0.131 0.788 0.655 3.114 0.089 0.998 1.448 4.206 0.164

NAREIT ‐ Equity TR 1.084 1.200 3.790 0.178 1.092 1.033 3.333 0.175 1.075 1.354 4.221 0.182

NAREIT ‐ Mortgage TR 0.448 0.885 5.599 0.007 0.401 0.514 3.744 ‐0.029 0.497 1.977 7.032 0.027

NAREIT ‐ Hybrid TR 0.437 0.718 5.239 0.005 0.690 0.563 3.679 0.049 0.177 1.031 6.471 ‐0.020

DJ Wilshire US REIT TR Index 0.976 0.970 3.929 0.144 0.838 0.545 3.430 0.095 1.120 1.478 4.392 0.185

Excess Value‐Weigted Market 0.598 1.030 4.253 0.141 0.740 1.030 4.127 0.179 0.451 0.940 4.388 0.103

Default Premium (annualized) 2.093 1.960 0.520 __ 1.984 1.920 0.407 __ 2.207 2.110 0.596 __

Change in Term Spread 0.000 0.000 0.624 __ ‐0.010 ‐0.025 0.728 __ 0.010 0.010 0.496 __

Unexpected Inflation 0.009 0.004 0.288 __ 0.008 0.006 0.224 __ 0.011 0.003 0.342 __

Industrial Production Growth 0.246 0.282 0.532 __ 0.285 0.294 0.536 __ 0.205 0.199 0.528 __

Real Pers. Consumption Growth 0.228 0.226 0.174 __ 0.265 0.243 0.150 __ 0.191 0.177 0.190 __

Real 1‐month T‐Bill Returns 0.145 0.176 0.310 __ 0.219 0.217 0.239 __ 0.068 0.120 0.354 __

5Y Govt. Yield ‐ 1m T‐Bill (annual) 1.534 1.540 1.092 __ 2.028 2.155 1.028 __ 1.023 1.000 0.908 __

Yield Spread Baa ‐ Aaa (annualized) 0.553 0.540 0.496 __ 0.785 0.790 0.456 __ 0.314 0.390 0.417 __

Dividend Yield (annualized) 2.548 2.370 1.017 __ 3.417 3.315 0.640 __ 1.650 1.690 0.297 __

Real Estate Returns (Source: NAREIT and Dow Jones)

Economic Risk Variables (Source: FREDII and CRSP, Ibbotson)

Instrumental Variables (Source: FREDII, CRSP, Ibbotson via CRSP)

1983 ‐ 1992 1993‐2008

10 Industry Portfolios, Value‐Weighted (Source: CRSP, NYSE/AMEX/NASDAQ)

10 Size‐Sorted Portfolios, Value‐Weighted (Source: CRSP, NYSE/AMEX/NASDAQ)

Bond Returns (Source: FREDII, Ibbotson via CRSP)

1983 ‐ 2008
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Table 2 
Summary Statistics for Second-Pass Fama-MacBeth and Bayesian Posterior Median Estimates of Risk Premia 

 

Average Std. Error t‐stat p‐value 5% CI 95% CI Average Std. Error t‐stat p‐value 5% CI 95% CI Average Std. Error t‐stat p‐value 5% CI 95% CI

Intercept (Avg. cross‐sectional 

abnormal returns)
‐3.922 0.233 ‐16.826 0.000 ‐10.128 2.857 ‐4.963 0.385 ‐12.894 0.000 ‐12.282 0.914 ‐3.254 0.282 ‐11.520 0.000 ‐9.187 3.183

Market 0.281 0.265 1.060 0.289 ‐7.351 7.307 0.369 0.460 0.804 0.421 ‐6.468 7.406 0.224 0.321 0.699 0.485 ‐7.548 7.032

Default (credit) spread ‐0.190 0.075 ‐2.518 0.012 ‐2.204 2.008 ‐0.348 0.116 ‐3.000 0.003 ‐2.217 1.793 ‐0.089 0.099 ‐0.900 0.368 ‐2.198 2.175

Term spread riskless yields 0.123 0.108 1.145 0.252 ‐2.797 2.853 0.105 0.203 0.517 0.605 ‐4.167 3.600 0.135 0.120 1.125 0.261 ‐2.542 2.646

Unemployment 0.009 0.036 0.243 0.808 ‐0.845 0.914 0.007 0.051 0.139 0.890 ‐0.975 0.828 0.010 0.050 0.199 0.843 ‐0.795 0.988

IP growth ‐0.096 0.096 ‐1.007 0.314 ‐2.717 2.777 ‐0.300 0.182 ‐1.644 0.100 ‐3.433 2.973 0.034 0.104 0.329 0.742 ‐2.066 2.412

Real consumption growth 0.008 0.029 0.286 0.775 ‐0.862 0.791 0.015 0.055 0.276 0.782 ‐0.968 1.115 0.004 0.032 0.119 0.905 ‐0.616 0.611

Real Treasury Bill ‐0.035 0.049 ‐0.705 0.481 ‐1.451 1.114 ‐0.022 0.083 ‐0.265 0.791 ‐1.647 1.308 ‐0.043 0.061 ‐0.702 0.483 ‐1.168 0.951

Intercept (Avg. cross‐sectional 

abnormal returns)
0.374 0.119 3.145 0.002 ‐2.876 4.017 0.257 0.181 1.416 0.157 ‐2.733 3.603 0.449 0.157 2.862 0.004 ‐2.916 4.140

Market 0.232 0.264 0.877 0.381 ‐7.113 7.115 0.395 0.464 0.852 0.394 ‐6.283 7.841 0.127 0.317 0.401 0.689 ‐7.113 6.783

Default (credit) spread 0.018 0.107 0.168 0.866 ‐2.653 2.876 ‐0.159 0.103 ‐1.539 0.124 ‐1.724 1.590 0.131 0.163 0.808 0.419 ‐3.216 3.747

Term spread riskless yields 0.150 0.137 ‐1.096 0.273 ‐3.707 3.787 0.507 0.199 ‐2.546 0.011 ‐4.000 2.931 0.080 0.183 0.436 0.663 ‐3.616 4.192

Unemployment ‐0.006 0.044 ‐0.127 0.899 ‐1.259 1.167 ‐0.072 0.042 ‐1.716 0.086 ‐0.768 0.641 0.037 0.068 0.546 0.585 ‐1.373 1.383

IP growth 0.056 0.109 0.515 0.607 ‐2.770 3.531 ‐0.166 0.126 ‐1.320 0.187 ‐2.254 2.236 0.199 0.159 1.251 0.211 ‐2.956 3.855

Real consumption growth 0.059 0.027 2.166 0.030 ‐0.734 0.842 ‐0.014 0.030 ‐0.452 0.652 ‐0.612 0.561 0.106 0.040 2.638 0.008 ‐0.801 1.003

Real Treasury Bill 0.010 0.049 ‐0.199 0.842 ‐1.223 1.105 0.090 0.042 2.149 0.032 ‐0.693 0.868 0.074 0.076 ‐0.974 0.330 ‐1.447 1.473

Intercept (Avg. cross‐sectional 

abnormal returns)
0.376 0.178 2.118 0.034 0.170 0.579 0.258 0.314 0.822 0.411 ‐0.090 0.590 0.420 0.297 1.416 0.157 0.082 0.786

Market 0.232 0.087 2.657 0.008 0.020 0.436 0.398 0.123 3.237 0.001 0.090 0.700 ‐0.075 0.145 ‐0.516 0.606 ‐0.470 0.285

Default (credit) spread 0.013 0.219 0.059 0.953 ‐0.183 0.224 ‐0.162 0.186 ‐0.869 0.385 ‐0.048 0.160 0.145 0.280 0.519 0.604 ‐0.228 0.540

Term spread riskless yields 0.155 0.243 0.638 0.523 ‐0.452 0.162 0.514 0.432 1.191 0.234 ‐1.003 0.007 ‐0.002 0.407 ‐0.005 0.996 ‐0.470 0.539

Unemployment ‐0.007 0.305 ‐0.023 0.982 ‐0.133 0.116 ‐0.070 0.886 ‐0.079 0.937 ‐0.290 0.134 0.043 0.381 0.113 0.910 ‐0.170 0.238

IP growth 0.061 0.205 0.297 0.766 ‐0.172 0.262 ‐0.160 0.451 ‐0.355 0.723 ‐0.530 0.160 0.336 0.320 1.051 0.293 ‐0.037 0.710

Real consumption growth 0.058 0.467 0.124 0.901 ‐0.067 0.182 ‐0.017 0.924 ‐0.018 0.985 ‐0.200 0.175 0.127 0.666 0.191 0.849 ‐0.086 0.354

Real Treasury Bill ‐0.005 0.357 ‐0.014 0.989 ‐0.154 0.126 0.091 0.935 0.097 0.922 ‐0.160 0.330 ‐0.083 0.372 ‐0.223 0.823 ‐0.302 0.120

Full sample (1983‐2008) 1983‐1992 1993‐2008

Classical Two‐Step Fama‐MacBeth

Bayesian Model with Instability in Loadings and Idiosynchratic Variances

Mixed Bayesian/Fama‐MacBeth Approach
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Table 3 
Variance Ratio Coefficients and Predictable Variation Decompositions from Bayesian Factor 

Model with Instability in Risk Exposures and Idiosyncratic Variance 
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Figure 1 
First-Stage Fama-MacBeth Loadings on Macroeconomic Risk Factors: VW Market Portfolio 
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Figure 2 
First-Stage Fama-MacBeth Loadings on Macroeconomic Risk Factors: Term Premium 
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Figure 3 
Bayesian Loadings on Macroeconomic Risk Factors: VW Market Portfolio 
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Figure 4 
Bayesian Loadings on Macroeconomic Risk Factors: Term Premium 
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Figure 5 
Bayesian Loadings on Macroeconomic Risk Factors: Default Premium 
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Figure 6 
Bayesian Loadings on Macroeconomic Risk Factors: Real 1-month T-Bill Rate 
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Figure 7 
Bayesian Loadings on Macroeconomic Risk Factors: Industrial Production Growth Rate 
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Figure 8 
Bayesian Loadings on Macroeconomic Risk Factors: Changes in the Unemployment Rate 
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Figure 9 
Bayesian Loadings on Macroeconomic Risk Factors: Real Personal Consumption Growth Rate 
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Figure 10 
First-Stage Fama-MacBeth Rolling-Window Estimates of the Jensen’s Alpha 

 

-2.72 (0.000) -6.96 (0.000) -5.82 (0.000)

-2.64 (0.001)

-8.47 (0.000) -6.52 (0.000)

-5.83 (0.000)

-5.12 (0.000)

-6.81 (0.000) -4.83 (0.000) -5.71 (0.000) -5.92 (0.000)

-6.26 (0.000) -6.45 (0.000) -6.00 (0.000) -6.34 (0.000)

-5.58 (0.000) -6.00 (0.000)

-5.63 (0.000)

-4.92 (0.000)

-6.27 (0.000) 

-5.14 (0.000)

-5.93 (0.000) 

-6.36 (0.000)

-6.32 (0.000) -6.07 (0.000) -5.79 (0.000) -6.88 (0.000)



 

46 
 

Figure 11 
Bayesian Posterior Medians of the Jensen’s Alpha 
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Figure 12 
Fama-MacBeth Rolling-Window Estimates of Residual (Idiosyncratic) Variance 
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Figure 13 
Bayesian Posterior Medians of Residual (Idiosyncratic) Variance 
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Figure 14 
Fama-MacBeth Rolling-Window Cross-Sectional Estimates of Risk Premia 
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Figure 15 
Bayesian Cross-Sectional Posterior Median Estimates of Risk Premia 

 

  

  

  

 


