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In this article, we propose an innovative way for modelling oil bull seasonals taking 

into account seasonal speculations in oil markets. Since oil prices behave very 

seasonally during two periods of the year (summer and winter), we propose a 

modification of  Mackey Glass equation by taking into account the rhythm of seasonal 

frequencies. Using monthly data for WTI oil prices, Seasonal Cyclical Mackey Glass 

estimates indicate that seasonal interactions between heterogeneous speculators with 

different expectations may be responsible for pronounced swings in prices in both 

periods. Moreover, the seasonal frequency 3/ (referring to a period of 6 months) 

appears to be persistent over time. 
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1- Introduction 

 

Forecasting crude oil prices is still one of the big challenges encountered by economists and 

econometricians. Oil prices are clearly characterized by unpredictable and volatile price 

movements. The supply is inelastic in short run, and the future position of prices depends on 

the future situation of demand. Therefore, an additional demand for oil, triggers speculation 

and prices has moved up sooner than they would have otherwise (Collins & al., 2006; 

Kraugman, 2008; Kaufman & al. 2009 and Fattouh, 2010). It is in this spirit that, and in order 

to gain a deeper understanding of the underlying market, we have been becoming more 

interested in seasonals effects which affect oil prices. Since, crude oil is characterized by two 

particular times of year during which they behave very seasonally, due to the summer 

driving/hurricane season and the winter heating season.  

 

During the study period 1973-2008, crude oil shows some interesting seasonal highlights 

(figure 1). Going to each year, the price exhibited strongest strength on average in August. 

This surge can attribute it to various factors. One is anticipation of the hurricane season in the 

Gulf and hence possible supply disruptions spawned by hurricanes. Another is the fact that 

August is often the biggest vacation month which drives very strong gasoline demand. 

August tends to be the highest-demand month for gasoline, exerting upwards pressure on oil 

prices. Since a rational bull began, oil has risen. As the summer driving season ends, and the 

weather gets colder, the demand for all petroleum products wanes. This slowdown in demand 

is coupled with an increase in supply caused by the sharp curtail purchases of refiners to 

avoid year-end inventory tax, explain the pullback in prices during October-November period 

(Winston, 2009). 

 

Then starting from Decembre to January, the crude oil seasonal uptrend increases. For a 

variety reasons including high heating fuel demand and Christmas travel season, oil prices 

and oil stocks tend to do well in the winter months. They are a great winter speculation. 

Giving that demand is tied to temperature, with demand increasing as the temperatures drops. 

As seasonal weather variations are unpredictable, demand forecasting is almost impossible. 

Consequently, an additional demand caused by a cold snap, triggers speculation and drives up 

prices. Thus, a seasonal rational bubble can form. 
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Since and taking into account the underlying assumption is that there are different types of 

agents with heterogeneous expectations active in the market, heterogeneous speculators 

interactions in both supply and demand sides may are responsible of wide swings in oil prices 

in both periods. Therefore, the uncertainty and the anxiety on the future is a main factor that 

can play an important role in the large price changes of crude oil and can be an indication of 

speculative behaviour in the oil market. Thus, it is sufficient that an additional demand 

caused by the presence of fear factor or a climate hazard, lead to increase the seasonal 

speculative then a bull speculative is a potential result (Greenspan, 2006) 

 

Figure 1: Oil Bull Seasonals, Indexed Monthly, 1973-2008 

 
 

Econometrically, modelling oil seasonal speculations by non linear dynamics has aroused 

considerable interest. The classical seasonal linear models, based on seasonal auto-regressive 

integrated moving average models (SARIMA), are not strongly fitted. Therefore, treating the 

seasonal behaviour in presence of non linear structure has become necessarily. Thus, many 

studies used non linear processes to detect the presence of seasonal behaviours in time series 

structures. This class of models was introduced by Franses and Ooms (1997) who suggested a 

Periodic Auto-regressive procedure. Their model highlights the importance of considering 

seasonal behaviour in the presence of a nonlinear stochastic process. In another hand, 

Guiming and Getz (2007) used a stochastic approach of basic structural model (BSM), a 

state-space time series model, which exhibits seasonal and multi-annual variations in 

abundance. Moreover, in order to take into account complex structures, Kyrtsou and Terraza 
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(2009) introduced seasonal chaos-stochastic processes that permitted to capture seasonal 

fluctuations in stock prices. Ferrara and Guégan (2008) proposed a Seasonal Cyclical Long 

Memory model, which includes generalized long memory processes and seasonal long 

memory processes.  

 

Despite the fact that bull seasonals is a significant aspect of oil price time series, models cited 

above do not address to treat this kind of anomaly. Therefore, this paper intends to interrogate 

the role of market speculation in rising oil prices during both famous periods (winter and 

summer). Particularly, we will identify the hypothesis that whether the seasonal speculative 

activities of heterogeneous speculators are responsible of prices swings. To this aim, we propose 

a modification of the Mackey Glass equation taking into account the rhythm of seasonal 

frequency (we called Seasonal Cyclical Mackey Glass model). Using this kind of modelling 

to forecast oil prices appears to be an attractive alternative, due to its unique ability of 

modelling the seasonal effects in the presence of deterministic behaviour.  

 

This structure of the paper is as follow. Section 2 give a description of our stylized model of the 

oil market with heterogeneous interacting traders. In section 3, we present the Seasonal 

Cyclical Mackey-Glass models. Section 4 contains a description of the data that has been 

used, empirical and the estimation results. Our concluding remarks will end the paper.  

 

2- A stylized model 

 

Our models inspired by the chartist-fundamentalist approach, which has proven to be quite 

successful in replicating some important stylized fact of oil market (Ellen & Zwinkels, 2010). 

The underlying assumption of this model is that there are different types of agents with 

seasonal heterogeneous expectations active in both winter-summer seasons in the market. 

 

The group of speculators is divided between fundamentalists and chartist. The seasonal 

demand for oil for fundamentalists is based on the difference between the price at time t and 

the expected price at time t+1 of the season s. s represent winter and summer seasons. 

 

 stst

F

st

FF

st PPEaD ,,1,, )(                                     (1) 
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In which stP , is the price in period t and season s. Fa represent a positive reaction parameter 

and E the expectation operator. Fundamentalist seasonal demand will increase as they expect 

the future price to be higher than the current price in the season and vice versa. The 

fundamentalist expected seasonal price given by: 

 


  )()()( ,,2,,1,,1, stst

F

stst

F

stst

F

st FPbFPbPPE        (2) 

 

In which stF ,  is the fundamental price in period t at season s. The equation shows that the 

price movement expected by fundamentalists is caused by the deviation of the price from the 

fundamental value in the season. Fundamentalists‟ seasonals reactions to overvaluation 

(undervaluation) is captured by     0,10,1 21  FF bb  and expected to be negative, since, in 

the season s, fundamentalists will expect the oil price to decrease (increase) if the current 

price is above (below) the fundamental value. Whenever, Fb1 equals Fb2  , there is a symmetric 

reaction to overvaluation and undervaluation. 

 

The second group of speculators is called chartists. These speculators apply a very simple 

form of technical analysis to form their expectations about future prices. The seasonal 

demand of chartists is linearly conditional on the expected price changes. 

 

      stst

C

st

CC

st PPEaD ,,1,, )(                                           (3) 

 

Where Ca denotes a positive reaction parameter. This implies that demand will rise as 

chartists expect the future price to be higher than the current price in the same season s. 

chartists seasonals expectations are given by: 

 






  )()()( ,1,2,1,1,,1, stst

C

stst

C

stst

C

st PPbPPbPPE               (4) 

 

A distinction is made between an upward or downward trend, or past price decrease and 

increase. Since technical traders expect trend movements to continue in the same direction, 

we expect both Cb1 and Cb2 to be positive. Negative parameters would imply contrarian 

behavior. If Cb1 > Cb2 , chartists react more to price increase. In the other hand, if Cb1 < Cb2 , 

chartists are more eager to sell in a downtrend than to buy in an upward trend. 
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Total market seasonal demand for oil consists of the real demand plus the weighted average 

of the seasonal demand of technical traders and fundamentalists: 
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Where  1,0,stW  is the part of fundamentalist in the market, such that stW ,1  is the 

fraction of chartist in period t in the same season. Parameter  is the intensity of choice and 

represent the extent to which performance of a certain strategy determines whether it is 

adopted. With 0 , a strategy that is performing better in period t is more broadly applied 

on time t+1 at season s, and therefore the seasonal demand of that group will weigh more 

heavily in period t+1. Conversely, if 0 the reverse situation would take place (DeJong et 

al., 2009a ; Ellen & Zwinkels, 2010). Price changes, finally, are a function of excess seasonal 

demand plus a noise term. 

 

  tst

M

sttst SDPP   ,,,1          (6) 

 

Where S is the supply of oil is assumed to be a linear function of price.  is a positive price 

adjustment parameter governing market frictions and t is supposed to be a random noise 

term. Therefore, the solution for the oil price can be derived as: 

 

                          

  stststststtst FPFPWbPaP ,,2,,1,,1   

                               stststststst PPPPW ,,1,2,1,1,1  






                 (7) 

 

From equation (7) we can see that, for a given value of  and  , fundamentalist and chartists 

traders‟ stabilizing seasonal impact on the oil price increases nonlinearly with their confidence in 

fundamental and technical analysis. We now turn to the empirical implementation of the model. 

 

3- The seasonal cyclical Mackey Glass model 

 

The particular systems we chose are the famous Mackey-Glass (1977) non linear time delay 

differential equation. The model is given by the following equations:  

 

   1
1





 


 tc

t

t P
P

P

dt

dp




   Where 0c            (8) 
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We must note that the choice of lags   and c  is crucial since they determine the 

dimensionally of the system.   and   are parameters to estimates.  Let us now modify the 

MG equation and take into account the rhythm of seasonal frequency. This rhythm defines 

the frequency of separate seasons. During each cycle period prices increase to some maximal 

value and decreases back to its normal situation. The seasonal frequencies are defined as 

f
s




 2
2

  where
s

f
1

 and s is the number of observations per year (for example, 1s  

for annual data, 12s  for monthly data...etc). Hence, for oil prices, the instantaneous 

ventilation V is a non negative periodic function. We suppose that it can be modelled 

as     tV sin1 .  

 

      tt
Pt

c
t

P

t
P

t
P 



 








1

sin1
1

               (9) 

 

Where t  is i.i.d. Much of chaos properties are still valid when noise is added to the system, 

provided the noise level is not too high (Guégan, 1994). Moreover, the stochastic part added 

in the Mackey Glass equation takes two cases. In the first case, we add white noise to the 

Modified Mackey Glass equation (Homoskedastic errors) where N(0,1)~t . When 

anomalies are Heteroskedastics, the stochastic part added on the Modified Mackey Glass 

equation follows an ARCH(1) process, where  ).hN(0,~/ ttt I th  is the conditional 

variance (Kyrtsou and Terraza, 2003). 

 

The local asymptotic stability of the equilibrium of equation (9) implies global asymptotic 

stability, that is, all solutions converge to zero when t  tends towards infinity. To formulate a 

criterion of asymptotical statibility for equation (9), stability of seasonal point can be studied 

as suggested by Landa and Rosenblum (1995). As a results,  0*  PPt   is oscillatory 

instable if ** SPV   and 

 

    
 

22 **2

** /arcsin
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            (10) 

 

Where *P is the singular point of equilibrium, *

*
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t
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 . The 

period of oscillations close to the stability boundary is approximately equal to 6  
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(approximately one pick per 6 months). We suppose that the frequency of the seasonal 

rhythm f  weakly depends on prices level at some previous moment of time, and that the 

purpose of this control is to maintain the linearity of prices level. We also assume that the 

estimated level of prices may not necessarily be in the equilibrium state but may vary around 

it neighbourhood  *P . This suggests that we consider small modulations of the frequency of 

the seasonal rhythm: 

 

    *

0 PPff t      Where 10                (11) 

 

Where   is the parameter of modulation, and the frequency of normal seasonality rhythm 0f  

is equal to 3/  (referring to a period of 6 months). As shown previously, this small 

modulation leads, nevertheless, to a nontrivial effect. For cr   and   varying nearly 

around zero we obtain a periodic effects in time and in level. For cr  and 0 we 

observe a quasi periodic regime with a basic frequency 0f . For cr   and 0  we observe 

irregularly seasonal effects in level. 

 

4- Empirical results. 

 

The data consists of the following real monthly spot prices at the New York Mercantile 

exchange (NYMEX) of light crude oil of West Texas (WTI) from January 1973 to December 

2008. We focus, however, on market returns from these spot prices. The data was obtained 

from the Information Administration Energy (IAE). In order to proceed to an unbiased and 

unambiguous interpretation of long memory and nonlinearity phenomena, oil prices should 

first be rendered stationary. ADF applied on oil raw series and showed that the presence of 

unit root in oil spot prices (table 1). Therefore, we consider first order differencing of raw 

series, denoted (DLOIL) and defined by 1)ln()ln(  ttt OILOILDLOIL .  

 

Table 1 presents the descriptive statistics for the oil returns. Using ADF for testing the unit 

root, we firmly accept stationary of oil series at 5% significance level. We observe that there 

is excess kurtosis relative to the standard distribution. The distribution is positively skewed. 

The combination of a significant asymmetry and leptokurtosis indicates that oil prices series 

is not normally distributed as is suggested by Jarque-Bera statistic. The Engle (1982) test 

result confirms the presence of Heteroskedasticity and residuals are auto correlated. 
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Moreover, the fractional integration parameter d estimated by the GPH, The null hypothesis 

of interest is whether the return series are integrated of order zero ( :0H 0d ), versus the 

alternative of fractional integration ( :1H 0d ). Estimates for the fractional integration 

parameter d are provided in table 1, along with t-statistics for the null hypothesis 0d . We 

consider the point estimates by the GPH estimator with an estimation window of 8.0T . These 

estimates indicate evidence of long memory in oil spot prices, but with 0GPHd . Positive 

values of the fractional differencing parameters indicate predictability in variance. The point 

estimates are characterized by persistent process, suggesting that the variance of the series is 

dominated by low frequency (slow cycle) and the spectral density tend to infinity when the 

frequency tends towards zero. The statistic test shows that the movement of oil prices appears 

as results of an exogenous shock affecting the oil market (Elder and Serletis, 2008). 

 

  Table 1: Statistics Summary of DLOIL 

 ---------------------------------------------------------------------------------------------------------- 
         Skew  Kurt     JB             ADF    ARCH (12)     Q(12)  GPH 

           Raw         ∆ 

  ----------------------------------------------------------------------------------------------------------------------------- -- 

  DLOIL           1.97   26.8     10513
a
       0.48      -49.25

a
      24.87

a
         27.92

a  
0.274

a 

    (0.00)        (0.81)      (0.00)      (0.01)        (0.00)  (0.02) 

  ----------------------------------------------------------------------------------------------------------------------------- -- 
a 
Reject the null hypothesis at 5% significance level. The Q(12) statistic represents the Ljung-Box (Q) statistics 

for autocorrelations in the residuals.
 

 

In testing presence of seasonal effects in oil prices, we first estimate autoregressive models 

for oil series with control for possible seasonal effects, as in: 

 

                                 tjt

j

jt

p

i

it DDLOILDLOIL   






12

1

1

1

                                             (12) 

 

Where jtD represent the 12
th

 month-of-the-year dummies. The lag length is selected based on 

the Akaike criterion. Table 2 reports results from OLS regressions. There is evidence of 

seasonal effects in oil returns series. We found a significantly positive coefficient in August 

and negatively in January. This result coincides with those of Hamilton (2006) which showed 

that the demand of crude oil in both August and January months are the highest in year, thus 

prices are logically the highest in both months. Moreover, in the context of descriptive tests, 

we have to test whether oil prices structure contains non linear and the chaos process. But the 

presence of linear structure may be is responsible for the rejection of chaos. Therefore, we 

have to eliminate the low frequencies signals from oil prices structure. 
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Table 2: Seasonality test 

---------------------------------------------------------------------------------------------------------------- 
Oil      Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov Dec 

----------------------------------------------------------------------------------------------------------------------------- ---------- 
Est        - 0.035

w
 -0.021 0.006 0.020 -0.013 0.047  0.022 0.026

s
 -0.003 -0.014   -0.02

     
-0.033

w 

                (0.01)
* 
 (0.1)

**
 (0.64) (0. 08)

** 
 (0.35) (0.01)

*
 (0.87) (0.04)

*
 (0.80)  (0.34) (0.03)

*   
(0.02)

* 

------------------------------------------------------------------------------------------------------------------------------------ --- 

*Represent the significance level of 5%. ** Represent the significance level of 10%. 
W

 is the winter effects. 
S
 is 

the summer effects. 

 

However, we filter our series using the ARFIMA model. Then we apply the non linear 

statistics test on ARFIMA filtered residuals (RFDLOIL) to investigate the hypothesis of non 

linear seasonal process after controlling for long memory. Statistics results of ARFIMA 

(p,d,q) processes are summarized in Table 3. The value of the fractional integration parameter 

is 39.0ˆ d  and is accepted at 1% significant level (between 5.0 ). Applying ARCH-LM 

test on the ARFIMA filtered residuals (RFDLOIL) confirms that the errors are 

Heteroskedastics but are not auto correlated and also the RFDLOIL series is not normally 

distributed as is suggested by Jarque-Bera statistic. 

 

Table 3: ARFIMA tests on DLOIL 

------------------------------------------------------------------------------------------------------------------- 

AM ˆ   d̂   )12(LMARCH   )12(Q   J.B 

------------------------------------------------------------------------------------------------ 
0.10             0.39          11.83  17.68            3687 

(0.00)
*
             (0.00)

*
          (0.00)

*
  (0.12)           (0.00)

* 

------------------------------------------------------------------------------------------------ 
*results accepted at 1% significant level.  

 

Due to the fact that nonlinearity is a necessary (but not sufficient) condition for chaos, the 

BDS test (Brock and al., 1996) is used to test the null of whiteness against the alternative of 

non-white linear and non-white nonlinear dependence. It is based on the estimation of the 

correlation integral, which was introduced in the context of dynamical systems by 

Grassberger and Procaccia (1983). 

 

Table 4: The BDS test results (RFDLOIL) 
----------------------------------------------------------------- 

 /     BDS Statistic (0.5)             P-Value 

------------------------------------------------------ 
 m=2               0.05   0.00

* 

 m=3           0.11    0.00
*
 

 m=4          0.15   0.00
* 

 m=5          0.17   0.00
*
 

 m=6           0.18   0.00
* 

-----------------------------------------------------------------  

* The critical value is 1.96 for the 5% significant level. 
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Practitioners of BDS test usually consider different embedding dimensions. We use six 

embedding dimensions for BDS test. We set  5.0 . It is obvious from table 4 that the null 

of whiteness is rejected according to all computed statistics, and hence the remaining 

dependence is consistent with nonlinear dynamic explanation. We can conclude that there is 

evidence of nonlinearity of general form. 

 

To test the chaos, we use Wolf and al. (1985) test to compute the Lyapunov exponents. To 

that end the notion of Lyapunov exponent is introduced since it is usually taken as an 

indication of the underlying dynamic system characteristic. In the presence of noise, as it is 

often the case with real world data sets, the meaning of „detecting deterministic chaotic 

dynamics‟ is ambiguous. Thus, the algorithm developed by Wolf and al. (1985), which is 

used to estimate the growth rate of the propagation of small perturbations in the initial 

conditions, appears to be not robust
4
. Therefore, given that there is large amount of 

exogenous influence perturbing the endogenous dynamics, it is necessary to define 

Lyapunov exponent in a stochastic context (see Tong 1992). Nychka et al. (1992) defined as 

11 )(   ttt XFX  . 

 

Since the largest Lyapunov exponent 1  has often been of main interest in the literature, we 

mainly focus our analysis on the largest Lyapunov exponent and simply denote it as  . 

However, it should be noted that other exponents i  for di 2 also contain some 

important information related to the stability of the system, including the directions of 

divergence and contraction of trajectories (see Nychka et al., 1992) and the types of non-

chaotic attractors (see Dechert and Gençay, 1992). The presence of a positive exponent is 

sufficient for diagnosing particular classes of chaos and presents local instability in a given 

direction. The results obtained of the log-differenced price series are reported in the table 5. 

The best Lyapunov exponent is that which minimises the SIC criteria. Results show that the 

minimum SIC value occurs when we use 6 hidden units. In this case, the corresponding 

Lyapunov exponents are 1 =0.1239 e-05 and 2 =-0.1972. For both cases, 1  is positive and 

2  is negative. Consequently, we conclude that there is clear evidence for a mixture of 

process. The fact that 1  is slightly positive could be due to the existence of high dimensional 

chaos which could be confused with stochastic process
5
.  

                                                 
4
 Lyapunov exponents test of Wolf and al. (1985) is very sensitive to the noise level. Thus, we cannot be sure 

that the test is robust when we have a high noise level in financial series. 
5
 Noise can be always be interpreted as a deterministic time evolution in infinite dimension (Ruelle, 1994) 
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On the other hand, since   is negative, we cannot conclude that there is a stochastic 

behaviour; behaviours may be periodic (Mosekilde and Laugesen, 2007). In the case where 

we have high periodic effects, seasonality can produce high variance, similar to that of 

stochastic behaviours. In other words, the presence of heteroskedasticity in the series may 

result from seasonal effects.  Therefore, we suppose that we are facing a complex structure 

composite of mixture of process: a slightly irregular behaviour that is sensitive to small 

perturbations (chaos) and periodic behaviour. 

 

Table 5: Lyapunov exponents‟ estimates on ARFIMA filtered residuals  

-----------------------------------------------------------------------------------------  

Hiddens                  1       2   SIC  

-----------------------------------------------------------------------------------------  

1  -0.2934 e-05 -1.9076  -12.98 

2   0.2798 e-05 -0.9528  -12.94 

3   0.1955 e-05 -0.5671  -13.24 

4    0.1788 e-05 -0.4190  -13.38 

5   0.1388 e-05 -0.2918  -13.47 

6   0.1239 e-05 -0.1972  -13.55 

7  -0.1299 e-05 -0.1311  -13.52 

8   0.1179 e-05 -0.0576  -13.47 

9   0.2100 e-05 -0.0202  -13.49 

10                -0.2222 e-05   -0.0418                -13.51 

-------------------------------------------------------------------------- 

 

From preceding applications, we conclude that the hypothesis of nonlinearity in oil spot 

prices movements cannot be rejected and is not an i.i.d. process. Moreover, it is not clearly 

determine, according to the Lyapunov exponents‟ statistics, what exactly is the source of the 

nonlinear behaviour. The plausible explanation is that there are both chaotic and periodic 

behaviours in log-differenced oil prices returns. To this hypothesis, we apply Seasonal 

Cyclical Mackey-Glass models. Using 5  and 2c
6
 with frequency 3/  (referring to 

period of 6 months), the SCMG parameters estimated are significant at 5% level (table 6). 

Therefore, the model detects important evidences of non linearity is the seasonal bull in oil 

return. Moreover, the found seasonal solution for 5   cr   and 0029.0 (around 

zero) seems to be chaotic solution. Furthermore, one can say that it can be quasi periodic. 

The difficult to distinguish clearly between both processes may be due to high noise level. In 

consequence, the seasonal bull detected in oil prices at frequency 3/  appears to be 

persistent over time. Finally, tests on SCMG filtered residuals showed that residuals are 

empty of heteroskedasticity and autocorrelation, despite that of presence of no normality 

                                                 
6
 Selection with SIC criterion. 
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(JB)
7
. Meaning that, the heteroskedasticity in residuals may due to periodic behaviours in oil 

prices. 

 

Table 6:  The parameters results of SCMG model at frequency 3/   

------------------------------------------------------------------------------------------------------------------------------------ 

Coefficient             Coefficients        p-value  ARCH-LM Q(12)          JB 

------------------------------------------------------------------------------------------------------------------------------------ 

       ̂                            4016.0     
*05.0        2.56  12.66          124

* 

      ̂                                    1493.0     
*00.0       (0.24) (0.39)         (0.01) 

     ̂                       0029.0     
**06.0   

------------------------------------------------------------------------------------------------------------------------------------ 

*̂ and ̂ , are accepted at 5% significance level. 
**

 The coefficients are accepted at 10% significant level. 

Equation (5) applied on SCMG residuals to verify whether residuals structure contain a cyclical effects. 

Statistics test showed that residuals are empty of cyclical effects. 

 

We describe now the forecasting experience. We apply four models on the RFDLOIL series 

to compute the root-mean-squared error (RMSE hereafter) of each model. The models are 

SARIMA, SCLM, SMG-GARCH and SCMG. To have a quick summary of the results, we 

compute the ratios of the RMSE, by dividing the RMSE from the SCMG model by the one 

from each model. Thus, a ratio lowers than one indicates a better forecasting performance of 

the SCMG model (table 7). 

 

Table 7: Ratios of the RMSE for the SCMG model over the RMSE of each model 
----------------------------------------------------------------------------------------------------------------------------- ------- 

    SCMG/SARIMA  SCMG/SCLM           SCMG/SMG-GARCH 

--------------------------------------------------------------------------------------------------------------------------------- --- 

Ratio of RMSE                    0.919          0.992            0.92 

------------------------------------------------------------------------------------------------------------------------------------ 

The table reports forecast evaluation statistics for a full sample horizon. The sample cover total of 433 forecasts 

for the horizon considered. The forecasting models are: 6)0,1,2)(0,0,3(SARIMA , where the estimates model as 

follow:     ttXBBIBBBIBI  1126326 188.0542.0132.0279.0224,0 , 147.02 R . The second 

is Seasonal Cyclical Long Memory model. The parameter estimate of the model associated to the cycle of 

period six months 3/ . The estimates model defined as:     tt
d

XBIBBI  1065.02 119.0244279.0321,0 , 

where 23.02 R . Finally, the seasonal MG-GARCH (1,1). We used the Dummy variable from the period of the 

15 December to 30 January and from the period of 1 August to 30 september equal to 1 and 0 otherwise. Using 

1  and 2c , the model is accepted at 5% significance level. 192.02 R . 

 

 

5- Conclusion 

 

In this paper we developed an empirical oil market model to detect the dynamic seasonal 

cyclical behaviours in oil prices series. The main conclusion obtained from this application 

                                                 
7
 Residuals remained structure is not identified. This may due to an unknown structure or to a misspecification 

of one of our parameters.  
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is that oil has more potential to be existing strong seasonally in both December-January and 

August time of year. Therefore, the movements associated with frequency 3/  appeared to 

be persistent over time. Moreover, results suggest that speculative activities are responsible 

for changes in spot prices in both peaks of year, especially when the speculative trading 

strategies are influenced by periodic information. Thus, heterogeneous agents‟ hypothesis 

and their non linear trading impact influenced by seasonal effects may explain the 

pronounced swings in oil prices, as witnessed in recent years. As consequence, these results 

are interesting for this crucial commodity investors, which contain an excellent information 

that can help fine-tune the timing of entry and points for oil-stocks investors and speculators 

to maximize gains in this ongoing oil-stock bull, and it is important to be looking at all 

aspects of the markets. Finally, the SCMG models can be very competitive in terms of 

forecasting in comparison with classical linear and non linear models. 
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