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On the Impact of Independence of Irrelevant Alternatives∗

Bezalel Peleg† Peter Sudhölter‡ José M. Zarzuelo§

Abstract

On several classes of n-person NTU games that have at least one Shapley NTU value, Aumann
characterized this solution by six axioms: Non-emptiness, efficiency, unanimity, scale covariance,
conditional additivity, and independence of irrelevant alternatives (IIA). Each of the first five axioms
is logically independent of the remaining axioms, and the logical independence of IIA is an open
problem. We show that for n = 2 the first five axioms already characterize the Shapley NTU value,
provided that the class of games is not further restricted. Moreover, we present an example of
a solution that satisfies the first 5 axioms and violates IIA for 2-person NTU games (N,V ) with
uniformly p-smooth V (N).

Keywords: NTU game, Shapley NTU value, positive smoothness

Journal of Economic Literature Classification: C71

1 Introduction

Several versions of the axiom of independence of irrelevant alternatives (IIA) have been employed and

discussed in the literature in various fields of social sciences. In the context of NTU games, IIA (see

Axiom 2 in Section 2 for a formal definition) requires that, quoting Aumann (1985), “a value y of a

game W remains a value when one removes outcomes other than y (‘irrelevant alternatives’) from the set

W (N) of all feasible outcomes, without changing W (S) for coalitions other than the all player coalition.”

IIA is a natural generalization of one of the four properties – weak Pareto efficiency, equal treatment of

equals, and scale covariance are the three others – in Nash’s (1950) definition of the “Nash” solution

for bargaining problems. The NTU value introduced by Shapley (1969), called “Shapley” NTU value,

generalizes, on the one hand, the TU Shapley (1953) value and, on the other hand, the Nash solution

for bargaining problems. According to Aumann, the Shapley NTU value is characterized by IIA and five

further axioms whose TU versions characterize the TU Shapley value. Thus, the open question whether

IIA is really needed when NTU games are considered, is of particular interest. For the case of 2-person

games, we present a complete answer to the foregoing question.
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The paper is organized as follows. In Section 2 the basic notation is provided and those definitions

and results due to Aumann (1985) that are relevant for our presentation are recalled, including his

characterizations of the Shapley NTU value by 6 axioms, i.e., Theorem A and Theorem B.

Section 3 formulates our main results: In the 2-person case, IIA may or may not be logically independent

of the remaining axioms employed in Theorems A and B, depending on the considered set of NTU games.

Sections 4 and 5 are devoted to the proofs of the two main results and in Section 6 we discuss and show

the logical independence of the remaining 5 axioms.

2 Some Notation and Preliminaries

Let N be a finite nonempty set. We denote by RN the set of all real functions on N . So RN is the

|N |-dimensional Euclidean space. (Here and in the sequel, if D is a finite set, then |D| denotes the

cardinality of D.) If x, y ∈ RN , then we write x > y if xi > yi for all i ∈ N . Moreover, we write x > y

if x > y and x 6= y and we write x� y if xi > yi for all i ∈ N . We denote RN+ = {x ∈ RN | x > 0} and

RN++ = {x ∈ RN | x � 0}. A coalition (in N) is a nonempty subset of N and 2N denotes the set of all

subsets of N . For every S ∈ 2N and any x, λ ∈ RN , the indicator function on S is denoted by χS ∈ RN ,

i.e.,

χSj =

 1, if j ∈ S,

0, if j ∈ N \ S,

the scalar product
∑
i∈N λixi is denoted by λ ·x, λ∗x = (λixi)i∈N , λS is the restriction of λ to S, and 0S

denotes the zero of RS , i.e., 0S = 0λS . For A,B ⊆ RN , t ∈ R, we write A+ B = {a+ b | a ∈ A, b ∈ B},
tA = {ta | a ∈ A}, λ ∗A = {λ ∗ a | a ∈ A}, and the boundary of A, cl(A)∩ cl(RN \A), is denoted by ∂A,

where “cl” means “closure”. If A is convex and closed, then we say that A is smooth if it has a unique

supporting hyperplane at each z ∈ ∂A. We call A comprehensive if A = A− RN+ .

A TU game on N is a mapping v : 2N → R with v(∅) = 0. An NTU game on N is a mapping V that

assigns to each coalition S in N a nonempty comprehensive closed proper subset of RS such that

(1) V (N) is convex and smooth;

(2) V (N) is non-leveled, i.e., if x, y ∈ V (N) and x > y, then y /∈ ∂V (N);

(3) for each S ∈ 2N \ {∅, N} there exits xS ∈ RN such that V (S)× {0N\S} ⊆ V (N) + {xS}.

Moreover, we use the convention that V (∅) = ∅. Let γN and ΓN denote the set of all TU games and

NTU games on N , respectively. For any v ∈ γN the associated NTU game Vv ∈ ΓN is defined by

Vv(S) = {y ∈ RS | y · χSS 6 v(S)} for all coalitions S in N . Denote ΓTUN = {Vv | v ∈ γN}. For

T ∈ 2N \{∅}, the unanimity game on T , uT ∈ γN , is defined by uT (S) = 1 for all S such that T ⊆ S ⊆ N
and uT (S) = 0 for all S ⊆ N with T \S 6= ∅. The NTU unanimity game UT is the NTU game associated

with uT . The set γN with coalition-wise operations is the real vector space of dimension 2|N |−1 and the set

of TU unanimity games forms a basis of γN . Moreover, ΓN is closed under positive scalar multiplication,

but, if U, V ∈ ΓN , then U + V may not be a member of ΓN . However, for any λ ∈ RN++ and V ∈ ΓN ,

2



λ ∗ V ∈ ΓN (for any coalition S, (λ ∗ V )(S) = λS ∗ V (S)). One further notation is useful for the sequel.

For any V ∈ ΓN let d(V ) ∈ RN be defined by

di(V ) = maxV {i} ∀i ∈ N. (2.1)

Let V ∈ ΓN . By (1) and comprehensiveness of V (N), for any x ∈ ∂V (N), there exists a unique λV,x ∈ RN+
such that

χN · λV,x = 1 and V (N) ⊆ {y ∈ RN | λV,x · y 6 λV,x · x}. (2.2)

Moreover, by (2), λV,x � 0N and, by (3), for any S ∈ 2N ,

vVx (S) = sup{λV,xS · y | y ∈ V (S)} ∈ R, (2.3)

with the convention that vVx (∅) = 0, so that vVx ∈ γN . Using this notation note that

if U, V,W = U + V ∈ ΓN , x ∈ U(N), y ∈ V (N), and z = x+ y ∈ ∂W (N),

then x ∈ ∂U(N), y ∈ ∂V (N), λU,x = λV,y = λW,z, and vUx + vVy = vWz .
(2.4)

Now, the Shapley NTU value (the NTU value for short) of V introduced by Shapley (1969), denoted by

Φ(V ), is defined by

Φ(V ) = {x ∈ ∂V (N) | λV,x ∗ x = φ(vVx )},

where, for any v ∈ γN , the Shapley value (see Shapley (1953)) of v, denoted by φ(v) ∈ RN is defined by

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) ∀i ∈ N. (2.5)

Let Γ ⊆ ΓN . A solution on Γ is a mapping σ that assigns to each V ∈ Γ a subset σ(V ) of V (N). The

following properties of a solution σ on Γ ⊆ ΓN are employed.

• Axiom 1 (Non-Emptiness, NE): σ(V ) 6= ∅ for all V ∈ Γ.

• Axiom 2 (Efficiency, EFF): σ(V ) ⊆ ∂V (N) for all V ∈ Γ.

• Axiom 3 (Conditional Additivity, CADD): If U, V,W = U + V ∈ Γ, then σ(W ) ⊇ (σ(U) + σ(V )) ∩
∂W (N).

• Axiom 4 (Unanimity, UNA): If UT ∈ Γ, then σ(UT ) =
{
χT

|T |

}
for T ∈ 2N \ {∅}.

• Axiom 5 (Scale Covariance, SCOV): If V ∈ Γ, λ ∈ RN++, and λ ∗ V ∈ Γ, then σ(λ ∗ V ) = λ ∗ σ(V ).

• Axiom 6 (Independence of Irrelevant Alternatives, IIA): If U, V ∈ Γ, U(N) ⊆ V (N), and U(S) =

V (S) for all S $ N , then σ(U) ⊇ σ(V ) ∩ U(N).

In order to recall Aumann’s characterization of Φ, the following definition is useful.

Definition 2.1 Let N be a finite nonempty set and Γ ⊆ ΓN . Then Γ is a feasible domain if

(1) Φ(V ) 6= ∅ for all V ∈ Γ;
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(2) ΓTUN ⊆ Γ;

(3) If V ∈ Γ and λ ∈ RN++, then λ ∗ V ∈ Γ;

(4) If V ∈ Γ, then the game that is obtained by replacing V (N) by any of its supporting half-spaces

is an element of Γ, i.e., if x ∈ ∂V (N), and if W ∈ ΓN is the game that may differ from V only

inasmuch as W (N) = {y ∈ RN | λV,x · y 6 λV,x · x}, then W ∈ Γ.

Let N be a finite nonempty set. We remark that ΓΦ
N = {V ∈ ΓN | Φ(V ) 6= ∅} is a feasible domain.

Theorem 2.2 (Aumann (1985, Theorem A)) Let Γ ⊆ ΓN be a feasible domain. Then the Shapley

NTU value is the unique solution on Γ that satisfies Axioms 1 through 6.

Axiom 6, the IIA axiom, in the foregoing theorem may be replaced by “maximality”:

Theorem 2.3 (Aumann (1985, Theorem B)) Let Γ ⊆ ΓN be a feasible domain. Then the Shapley

NTU value is the maximum solution on Γ that satisfies Axioms 1 through 5; i,e., Φ satisfies Axioms 1

through 5 on Γ, and if the solution σ on Γ satisfies Axioms 1 through 5, then σ(V ) ⊆ Φ(V ) for all V ∈ Γ.

3 The Main Results

The main results of our investigation are the following two theorems that provide new insight into the

role of IIA in Aumann’s characterization of the Shapley NTU value for the 2-person case.

Theorem 3.1 If |N | = 2, then the Shapley NTU value on ΓΦ
N is characterized by Axioms 1 through 5.

For the proof of Theorem 3.1 see Section 4. In order to state the other theorem, the following definition

is needed. Let N be a finite nonempty set and let V ∈ ΓN . Then V is called uniformly p-smooth if there

exists ε > 0 such that λV,x > εχN for all x ∈ ∂V (N) (for the definition of λV,x see (2.2)).

Theorem 3.2 If |N | = 2 and Γ ⊆ ΓN is the set of uniformly p-smooth NTU games, then Γ is a feasible

domain and Axiom 6 (IIA) is logically independent of the remaining axioms in Theorem A.

Section 5 is devoted to the proof of Theorem 3.2 by means of an example of an appropriate subsolution

of the Shapley NTU value.

4 Proof of Theorem 3.1

Throughout this section, let |N | = 2, say N = {1, 2}. We postpone the proof and present several

preparatory remarks and lemmas.

Remark 4.1 Let V ∈ ΓN . If d(V ) ∈ V (N), then |Φ(V )| = 1. If d(V ) ∈ ∂V (N), then Φ(V ) = {d(V )}.
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For any function g : R→ R∪ {−∞} let dom(g) denote the effective domain of g, i.e., dom(g) = {x ∈ R |
g(x) ∈ R}. We say that g : R→ R ∪ {−∞} is differentiable if g′(x) exists for any x ∈ dom(g). Let

Γ0 = {V ∈ ΓN | d(V ) = 0} and

G = {g : R→ R ∪ {−∞} | g is concave and differentiable, dom(g) 6= ∅, g′(x) < 0 ∀x ∈ dom(g)}.

Note that, for any g ∈ G, by concavity of g, the derivative of g on dom(g) is continuous.

The mapping that assigns to each V ∈ Γ0 the function gV : R→ R ∪ {−∞} defined by

gV (x) = sup{y ∈ R | (x, y) ∈ V (N)},

where sup ∅ = −∞, is a bijection from Γ0 to G. Hence, for each V ∈ Γ0,

{(x, gV (x)) | x ∈ dom(gV )} = ∂V (N).

Let V ∈ Γ0 and g = gV . It is well-known that

(x, y) ∈ Φ(V )⇔ x ∈ dom(g), y = g(x), g′(x)x = −g(x). (4.1)

It is useful to use another parametrization of ∂V (N). Substituting any (x, g(x)), x ∈ dom(g), by

(t− f(t),−t− f(t)) yields g′(x)(1− f ′(t)) = −1− f ′(t) so that

f ′(t) =
−1− g′(x)

1− g′(x)
(4.2)

and hence −1 < f ′(t) < 1 and f : R→ R is convex. We have deduced that the mapping that assigns to

each V ∈ Γ0 the convex differentiable function fV := f is a bijection from Γ0 to F , where

F = {f : R→ R | f is a convex C1 function, − 1 < f ′(t) < 1 ∀t ∈ R}.

Lemma 4.2 Let V ∈ Γ0. For all t ∈ R, (t− fV (t),−t− fV (t)) ∈ Φ(V ) iff t = fV (t)fV
′(t).

Proof: Let f = fV , g = gV , x ∈ dom(g), and t = x−g(x)
2 . By (4.2),

f(t)f ′(t)− t =

(
−x− g(x)

2

)(
−1− g′(x)

1− g′(x)

)
− x− g(x)

2
=
g′(x)x+ g(x)

1− g′(x)
.

We conclude that f(t)f ′(t) = t if and only if g′(x)x = −g(x). The proof is complete by (4.1). q.e.d.

Corollary 4.3 Let U0 ∈ Γ0 satisfy

fU0(0) > 0, (4.3)

fU0(t)fU0
′(t) > t ∀t > 0, (4.4)

fU0(t)fU0
′(t) < t ∀t < 0. (4.5)

Then, for any U ∈ Γ0 that satisfies

fU (0) = fU0(0), (4.6)

fU
′(t) > fU0

′(t) ∀t > 0, (4.7)

fU
′(t) 6 fU0

′(t) ∀t < 0, (4.8)
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the following two properties are satisfied:

fU
′(R) = ]− 1, 1[, (4.9)

Φ(U) = {(−fU (0),−fU (0))}. (4.10)

Proof: In order to show (4.9), by (4.7) and (4.8), it suffices to verify that supq∈R fU0
′(q) = 1 and that

infq∈R fU0
′(q) = −1. However, by (4.4) and (4.5), fU0(t) > t for all t > 0 and fU0(t) < t for all t < 0 so

that the foregoing equations are implied by

fU0(t) 6 t sup
q∈R

fU0
′(q) + fU0(0) and fU0(t) > t inf

q∈R
fU0
′(q) + fU0(0) ∀t ∈ R.

By (4.3) – (4.8), t = fU (t)fU
′(t) iff t = 0. Thus, (4.10) follows from Lemma 4.2. q.e.d.

We now construct, for any α > 0, a game U0 ∈ Γ0 that satisfies (4.4), (4.5), and fU0(0) = α. Secondly,

a useful technical Lemma is proved.

For ε > 0 and c ∈ R, let V ε,c ∈ Γ0 be defined by

V ε,c(N) =
{
x ∈ RN

∣∣x1 < 0, x1x2 > ε2
}
−
{
cχN

}
. (4.11)

Remark 4.4 It is straightforward to verify that, for any t ∈ R,

fV ε,0(t) =
√
t2 + ε2 (4.12)

so that, by Lemma 4.2, Φ(V ε,0) = ∂V ε,0(N). By Definition of V ε,c, for any c ∈ R, fV ε,c(t) = fV ε,0(t) + c.

Again by Lemma 4.2, {(c, c)} = Φ(V ε,c) for all c ∈ R \ {0}. Furthermore, for any c > 0, U0 = V ε,c

satisfies (4.3) – (4.5) and fU0(0) = ε+ c.

Lemma 4.5 Let g, h : R+ → R+ be continuous and nondecreasing functions such that g(0) = h(0) = 0

and g(t) 6 h(t) for all t ∈ R+. Then there exist continuous and nondecreasing functions h̃, s : R+ → R+

such that

h̃(0) = 0, h̃(t) > h(t) ∀t ∈ R+, (4.13)

h̃(R+) = h(R+), (4.14)

h̃(s(t)) = g(t) ∀t ∈ R+, (4.15)

s(0) = 0 6 s(t)− s(t′) 6 t− t′ ∀t, t′ ∈ R+, t
′ 6 t. (4.16)

Proof: In order to construct h̃ : R+ → R, we introduce, for any q ∈ R+, the auxiliary function

gq : R+ → R defined by gq(t) = g(t + q) for all t > 0. Moreover, let f : R+ → R+ ∪ {∞} be defined by

f(q) = inf{t ∈ R+ | gq(t) = h(t)} for all q > 0 (with the convention that inf ∅ = ∞). Note that “inf” is

in fact “min”, because g and h are continuous. Now, define

h̃(t) = sup ({h(t)} ∪ {gq(t) | q > 0, f(q) 6 t}) ∀t ∈ R+.

By construction, h̃ is nondecreasing and satisfies (4.13).
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Let t ∈ R+. If there exists q with f(q) 6 t and gq(t) > h(t), then {q ∈ R+ | f(q) 6 t} is a compact

interval so that “sup” is, in fact, “max” in any case. Consequently, the continuities of h and g imply the

continuity of h̃ and, hence, (4.14).

For γ ∈ g(R+) denote

αg(γ) = min{t ∈ R+ | g(t) = γ}, αh̃(γ) = min{t ∈ R+ | h̃(t) = γ},

βg(γ) = sup{t ∈ R+ | g(t) = γ}, βh̃(γ) = sup{t ∈ R+ | h̃(t) = γ}.

We may now define s : R+ → R+ as follows. For t > 0 let s(t) = min{αh̃(γ) + t − αg(γ), βh̃(γ)}, where

γ = g(t). By construction, s is nondecreasing and satisfies (4.15). As βh̃(γ)−αh̃(γ) 6 βg(γ)−αg(γ) (note

that βg(γ) = ∞ is just possible if maxt g(t) exists and γ = maxt g(t)), s is continuous, and it satisfies

(4.16). q.e.d.

Now, we are prepared for the proof.

Proof of Theorem 3.1: By Aumann’s Theorem B we only have to show uniqueness. Let σ be a solution

on ΓΦ
N that satisfies NE, PO, CADD, UNA, and SCOV, let V ∈ ΓΦ

N . Again by Theorem B, σ(V ) ⊆ Φ(V )

so that it suffices to prove that Φ(V ) ⊆ σ(V ). If Φ(V ) is a singleton, then the proof is finished by NE.

Hence, by Remark 4.1 we may assume that d /∈ V (N), where d = d(V ). Let x̂ ∈ Φ(V ). It remains to

show that x̂ ∈ σ(V ). By SCOV we may assume that x̂ = d− 2χN .

By CADD and Remark 4.1 it suffices to construct U,W ∈ ΓΦ
N such that Φ(U) = {−2χN}, d = d(W ) ∈

∂W (N), and V = U +W .

In order to construct U , an auxiliary game U1 ∈ ΓΦ
N is constructed. Let U1 be the NTU game defined

by U1(N) = 1
2 (V (N) − {d}) − {χN} and d(U1) = 0. Then U1 ∈ ΓΦ

N and −2χN ∈ Φ(U1). By Remark

4.4 there exists U0 ∈ Γ0 that satisfies (4.3) – (4.5) and fU0(0) = 2. Let fi = fUi for i = 0, 1. Recall that

f ′0(R) =]− 1, 1[. Let F̃ : R→]− 1, 1[ be any continuous and strictly increasing function that satisfies

F̃ (t)

 > maxi∈{0,1} f
′
i(t) , if t > 0,

6 mini∈{0,1} f
′
i(t) , if t < 0.

By the aforementioned properties of the functions f ′i , F̃ (R) =]− 1, 1[ and F̃ (0) = 0.

Applying Lemma 4.5 to g, h : R+ given by g(t) = f ′1(t) and h(t) = F̃ (t) (or given by g(t) = −f ′1(−t)
and h(t) = −F̃ (−t), respectively), for all t > 0, guarantees the existence of continuous nondecreasing

functions F : R→]− 1, 1[ and s : R→ R that satisfy

F (t) > F̃ (t), F (−t) 6 F̃ (−t) ∀t ∈ R+, (4.17)

F (s(t)) = f ′1(t) ∀t ∈ R+, (4.18)

s(0) = 0 6 s(t)− s(t′) 6 t− t′ ∀t, t′ ∈ R, t′ 6 t. (4.19)

Let f : R → R be the unique function defined by f ′ = F and f(0) = 2. Then f a convex C1 function.

Let U be the 0-normalized NTU game defined by

U(N) = {x ∈ RN | ∃t ∈ R : x 6 (t− f(t),−t− f(t))}.
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As f ′(t) > f ′0(t) for all t > 0 and f ′(t) 6 f ′0(t) for all t < 0, Φ(U) = {−2χN} by Corollary 4.3 so that

U ∈ Γ0.

By (4.19), the real function ŝ : R→ R defined by ŝ(t) = 2t− s(t) for all t ∈ R is a monotonic continuous

bijection that satisfies ŝ(0) = 0. Hence there exists a unique C1 function g that satisfies g(0) = 2 and

g′(t) = f ′1(ŝ−1(t)). Then g is convex, g′(0) = 0, and g′(t) ∈]− 1, 1[ so that the NTU game W defined by

W ({i}) = V ({i}) for i ∈ N and

W (N) = {x ∈ RN | ∃t ∈ R : x 6 (t− g(t),−t− g(t))}+ {2χN + d}

satisfies (1) and (2) of Section 2. As d = d(W ) ∈ ∂W (N), Φ(W ) = {d} by Remark 4.1.

Let h = f ◦ s+ g ◦ ŝ. We claim that

h′(t) = 2f ′1(t) ∀t ∈ R. (4.20)

In order to show (4.20) define Df , Dg : R2 → R by

Df (t, t′) =


f(t)−f(t′)

t−t′ , if t 6= t′,

f ′(t) , if t = t′,
and Dg(t, t

′) =


g(t)−g(t′)
t−t′ , if t 6= t′,

g′(t) , if t = t′,

and note that Df , Dg are continuous. Hence, for any t ∈ R,

h′(t) = limt′→t
f(s(t))−f(s(t′))+g(ŝ(t))−g(ŝ(t′))

t−t′

= limt′→t
Df (s(t),s(t′))

(
s(t)−s(t′)

)
+Dg(ŝ(t),ŝ(t′))

(
ŝ(t)−ŝ(t′)

)
t−t′

= limt′→t

(
Df (s(t),s(t′))−Dg(ŝ(t),ŝ(t′))

)(
s(t)−s(t′)

)
+Dg(ŝ(t),ŝ(t′))(2t−2t′)

t−t′

As f ′(s(t)) = f ′1(t) = g′(ŝ(t)) for all t ∈ R, we may conclude from (4.19) and the continuities of s and ŝ

that

lim
t′→t

(
Df (s(t), s(t′))−Dg(ŝ(t), ŝ(t

′))
)

(s(t)− s(t′))

t− t′
= 0, lim

t′→t

Dg(ŝ(t), ŝ(t
′))(2t− 2t′)

t− t′
= 2g′(ŝ(t))

so that our claim follows.

Now, h(0) = 4 = 2f1(0) so that h = 2f1. By definition of f1,

U1(N) = {x ∈ RN | ∃t ∈ R : x 6 (t− f1(t),−t− f1(t))}

so that

∂V (N)− {d+ 2χN}

= 2∂U1(N)

= {(2t− 2f1(t),−2t− 2f1(t)) | t ∈ R}

= {(2t− h(t),−2t− h(t)) | t ∈ R}

= {(s(t)− f(s(t)) + ŝ(t)− g(ŝ(t)),−s(t)− f(s(t))− ŝ(t)− g(ŝ(t))) | t ∈ R}

so that V (N) ⊆ U(N)+W (N) is shown. In order to show that U(N)+W (N) ⊆ V (N), as U(N)+W (N) ⊆
{d}+ {x ∈ RN | x(N) 6 −4}, it suffices to show that any element of ∂(U(N) +W (N)) belongs to V (N).

Let x ∈ ∂(U(N) + W (N)). Then there exist y ∈ ∂U(N) and z ∈ ∂W (N) such that x = y + z.
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Let t, α ∈ R such that x − d − 2χN = (t − α,−t − α). By the definition of U and W there exist

t′, t′′ ∈ R such that y = (t′ − f(t′),−t′ − f(t′)) and z − d − 2χN = (t′′ − g(t′′),−t′′ − g(t′′)). As the

supporting hyperplane to U(N) at y is parallel to the supporting hyperplane to W (N) at z (see (2.4)),

f ′(t′) = g′(t′′). As s(t/2) + ŝ(t/2) = t, there exists β ∈ R such that t′ = s(t/2) + β and t′′ = ŝ(t/2)− β.

As f ′(s(t/2)) = g′(ŝ(t/2)) and f ′ and g′ are nondecreasing functions, f ′(t′) = f ′(s(t/2)) = g′(t′′) and

α = 2f1(t/2). q.e.d.

5 Proof of Theorem 3.2

Throughout this section, let |N | = 2, say N = {1, 2}, and let Γups denote the set of uniformly p-smooth

games (see Section 3 for the definition of this property) in ΓN . Clearly, Γups satisfies (2) – (4) of Definition

2.1. In order to show that Γups is a feasible domain in ΓN , it suffices to construct, for any V ∈ Γups, a

nonempty subset of Φ(V ). To this end let V ∈ Γups and define

σ0(V ) =

 Φ(V ) , if d(V ) ∈ V (N),

arg max{(d1(V )− x1)(d2(V )− x2) | x ∈ ∂V (N)} , if d(V ) /∈ V (N).

Note that σ0 is well-defined. Indeed, if d(V ) /∈ V (N), then ∂V (N) ∩
(
{d(V )} − RN+

)
is a nonempty

compact set by uniform p-smoothness of V (N) so that sup{(d1(V ) − x1)(d2(V ) − x2) | x ∈ V (N)} is

attained by some x ∈ ∂V (N), x� d(V ).

By Remark 4.1, σ0 satisfies NE. Moreover, it satisfies SCOV and UNA. In order to show that σ0(V ) ⊆
Φ(V ), we may assume that d(V ) /∈ V (N). Let x ∈ σ0(V ), t = (d1(V ) − x1)(d2(V ) − x2), and λ = λV,x

(see (2.2)). Then the hyperplane {z ∈ RN | λ · z = λ · x} is a tangent to the hyperbola

{z ∈ RN | z � d(V ), (d1(V )− z1)(d2(V )− z2) = t}

so that x ∈ Φ(V ) by (4.1) and the well-known translation covariance of Φ.

We now show that σ0 satisfies CADD.

Lemma 5.1 The solution σ0 on Γups satisfies CADD.

Proof: For i ∈ {1, 2}, let V i ∈ Γups, xi ∈ σ0(V i) such that, with V = V 1 +V 2 and x = x1 +x2, V ∈ Γups

and x ∈ ∂V. By CADD of Φ, x ∈ Φ(V ). It remains to show that x ∈ σ0(V ). If d = d(V ) ∈ V (N), then

the proof is finished. Hence, we may assume that d 6∈ V (N). As x ∈ ∂V (N), λV
i,xi

= λV,x for i = 1, 2,

by (2.4). By (2.5), there exists c ∈ R such that (d2 − x2) = c(d1 − x1), where di = d(V i) for i = 1, 2. As

d = d1 + d2, Remark 4.1 implies that x1 � d1 or x2 � d2. Without loss of generality we may assume

that x1 � d1. By definition of σ0,

V 1(N) ⊇ {z ∈ RN | z � d1, (d1
1 − z1)(d1

2 − z2) > (d1
1 − x1

1)(d1
2 − x1

2)} =: Z1 (5.1)

Let Z =
{
z ∈ RN

∣∣z � d,
∏
i∈N (di − zi) >

∏
i∈N (di − xi)

}
. Two cases may occur:

(1) x2 > d2. By (5.1), V (N) ⊇ {x2}+ Z1. Let z ∈ Z and define z1 = z − x2. It suffices to show that

z1 ∈ Z1. Now, z1 � d1, because x2 > d2 and z � d. The statement immediately follows from:

a, b ∈ RN++, a1a2 > b1b2, α > 0 =⇒ (a1 +αb1)(a2 +αb2) > (b1 +αb1)(b2 +αb2) = (1+α)2b1b2. (5.2)
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In order to show (5.2) we may assume that a1a2 = b1b2, i.e., a2 = b1b2/a1. Define f(a1) =

(a1 + αb1)
(
b1b1
a1

+ αb2

)
. Then f is a convex function and f ′(a1) = 0 iff a1 = b1.

(2) x2 � d2. Let

Z2 = {z ∈ RN | z � d2, (d2
1 − z1)(d2

2 − z2) > (d2
1 − x2

1)(d2
2 − x2

2)}.

By definition of σ0, V 2(N) ⊇ Z2. As Z1 + Z2 ⊇ Z, the proof is finished.

q.e.d.

Example 5.2 shows that σ0 6= Φ.

Example 5.2 Let X = {x ∈ RN | x � 0, x1x2 = 1} and U ∈ ΓN be defined by U(N) = X − RN+ and

d(V ) = 0N . If Y = {y ∈ X | xi > −3}, then Y 6= ∅ so that W (N) := {z ∈ RN | λU,y ·z 6 λU,y ·y ∀y ∈ Y }
is uniformly p-smooth. Let d(W ) = 0N . We may easily deduce that Φ(W ) = Y . Let d = χN and

V ∈ Γups be defined by V (N) = W (N) and d(V ) = χN . By symmetry of V , Φ(V ) 3 −d. Define x by

x1 = −3 and x2 = − 1
3 and observe that x ∈ ∂V (N). However, (d1 − x1)(d2 − x2) = 16/3 > 4 so that

−d /∈ σ0(V ).

6 On the Logical Independence of the Remaining Axioms

Throughout this section, let N be a finite set such that |N | > 2. Let Γ ⊆ ΓN be a feasible domain. We

are now going to define, for i = 1, . . . , 5, a solution σi on Γ that exclusively violates Axiom i in Theorem

A as well as in Theorem B, even if “maximum” is replaced by “unique maximal”1.

In order to define σ1, note that, as mentioned in Section 2, any TU game v on N is a linear combination

of unanimity games, that is, there exist unique cT (v) = cT , ∅ 6= T ⊆ N, such that v =
∑
∅6=T⊆N cTuT .

As |N | > 2, there exist 2|N | − 1 > 3 coalitions. Select any two distinct coalitions T 1 and T 2 and define

γ+
N = {v ∈ γN | cT 1(v), cT 2(v) > 0} and γ++

N = {v ∈ γN | cT 1(v), cT 2(v) > 0}. For any V ∈ Γ define

σ1(V ) = {x ∈ ∂(V ) | vVx ∈ γ++
N } ∪ {x ∈ Φ(V ) | vVx ∈ γ+

N}. (6.1)

Clearly, σ1 satisfies EFF, SCOV, and IIA. As any unanimity TU game is an element of γ+
N \ γ

++
N , σ1

satisfies UNA. CADD follows from (2.4). As σ1 (V−uN
) = ∅, σ1 6= Φ. Regarding the aforementioned

modification of Theorem B, it remains to show that σ1 is a maximal solution that satisfies the remaining

axioms, i.e., Axioms 2 through 5. Assume, on the contrary, there exists a solution σ that satisfies

EFF, CADD, UNA, SCOV, and contains σ1 as a proper subsolution. Let V ∈ Γ such that there exists

x ∈ σ(V ) \ σ1(V ). By EFF, x ∈ ∂V (N). Let v = vVx , λ = λV,x, λ̂ = (1/λi)i∈N , and cT = cT (v) for

T ∈ 2N \ {∅}. Let W be the NTU game associated with

w =
∑

R∈2N\{∅,T 2}

(−cR)uR + (1 + |cT 2 |)uT 2 .

Two cases may occur:

1A solution σ is the unique maximal solution that satisfies certain axioms, if (a) σ satisfies the axioms, (b) σ is maximal
under (a) (i.e., any solution that satisfies the axioms and contains σ coincides with σ), and (c) there exists no further
maximal solution that satisfies the axioms.
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(1) cT 1 < 0 or cT 2 < 0, say cT 1 < 0. Then w ∈ γ++
N so that ∂(λ̂ ∗W )(N) = σ1(λ̂ ∗W ) ⊆ σ(λ̂ ∗W ).

Now, V + λ̂ ∗W = λ̂ ∗ (1 + |cT 2 |)UT 2 so that, by SCOV, σ(V + λ̂ ∗W ) is a singleton. On the other

hand, by CADD, ∂(V + λ̂ ∗W )(N) ⊆ σ(V + λ̂ ∗W ) so that the desired contradiction has been

obtained.

(2) cT 1 , cT 2 > 0, cT 1cT 2 = 0, and λ ∗ x 6= φ(v), say cT 1 = 0. Then V + λ̂ ∗W = λ̂ ∗ (1 + cT 2)UT 2

so that, By SCOV and UNA, σ(V + λ̂ ∗ W ) = Φ(V + λ̂ ∗ W ). As w ∈ γ+
N \ γ

++
N in this case,

σ(λ̂ ∗W ) = Φ(λ̂ ∗W ) so that CADD, applied to x and the unique element of σ(λ̂ ∗W ) yields the

desired contradiction.

In order to define the solution σ2 that exclusively violates EFF and contains Φ as a subsolution, we

distinguish two cases: If |N | > 2, then let σ2 be the solution defined by Peleg and Sudhölter (2007,

Section 13.3, page 242), denoted by σ2. If |N | = 2, then define

σ2(V ) =

 Φ(V ) , if d(V ) /∈ V (N) or d(V ) = 0,

Φ(V ) ∪ {d(V )} , otherwise.
(6.2)

Clearly, σ2 satisfies NE and SCOV, and it violates EFF. By (2.4), σ2 inherits CADD from Φ. Moreover,

UNA and IIA are easily deduced using Remark 4.1.

The straightforward proofs that, for an arbitrary |N | > 2, the following solutions satisfy the desired

properties, are left to the reader.

σ3(V ) = Φ(V ) ∪ {x ∈ ∂V (N) | x� d(V )};

σ4(V ) = ∂V (N);

σ5(V ) = Φ(V ) ∪
{
x ∈ ∂V (N)

∣∣∣∣λV,x 6= χN

|N |

}
.
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