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Abstract 

 

The standard statistical method for analyzing count data is the Poisson regression model, 

which is usually estimated using maximum likelihood (ML). The ML method is very 

sensitive to multicollinearity. Therefore, we present a new Poisson ridge regression estimator 

(PRR) as a remedy to the problem of instability of the traditional ML method. To investigate 

the performance of the PRR and the traditional ML approaches for estimating the parameters 

of the Poisson regression model, we calculate the mean squared error (MSE) using Monte 

Carlo simulations. The result from the simulation study shows that the PRR method 

outperforms the traditional ML estimator in all of the different situations evaluated in this 

paper.  

 

Keywords: Poisson regression; maximum likelihood; ridge regression; MSE; Monte Carlo 

simulations; Multicollinearity 

 

 

Mathematics Subject Classification: Primary 62J07; Secondary 62J02 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6656887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

 

1.  Introduction 

In multiple regression analysis, it is usually impossible to interpret the estimates of the 

individual coefficients if the explanatory variables are highly inter-correlated. Such a problem 

is often referred to as the multicollinearity problem. In the literature there exist several ways 

to “solve” this problem. One such way is the ridge regression, about which a great number of 

studies are conducted. Most of the efforts in these studies concentrate on estimating the 

shrinkage ridge parameter ( k ) in different ways and compare it to the least squares estimator 

(LSE). This parameter was originally introduced by Hoerl and Kennard (1970a), who used 

ridge regression estimators to tackle the multicollinearity problem. They suggested a small 

positive number ( 0≥k ) to be added to the diagonal elements of the X X′  matrix from the 

multiple regression, and the resulting estimators are obtained as  

   

    ( )
1ˆ

RR p
X X kI X yβ

−
′ ′= + ,     0≥k ,     (1.2) 

 

which is known as a ridge regression RR estimator. Where, Χ  is an ( )1n p× +  observed 

matrix of the regressors, β  is an ( )1 1p + ×  vector of unknown parameters. For a positive 

value of k, this estimator provides a smaller mean squared error (MSE) compared to LSE. 

 

Most of the later efforts in this area have concentrated on estimating the value of the ridge 

parameter k . Many different techniques for estimating k  have been proposed or suggested 

by different researchers. To mention a few, Hoerl and Kennard (1970a,b), Hoerl et al. (1975), 

McDonald and Galarneau (1975), Lawless and Wang (1976), Dempster et al. (1977), 

Gibbons (1981), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi et al. (2006), 

Alkhamisi and Shukur (2008) and Muniz and Kibria (2009). In these and other research, the 

performance of the ridge estimators was mainly compared based on simulation studies. Most 

of the researchers have generated data from normal or non-normal populations, with a given 

number of regressors and used MSE as a performance criterion. 

 

In almost all situations where regression analysis is done the observations are assumed to be 

identically and independently distributed (iid). However, we also know that in the real-life 

context the iid assumption is too strong. As an example, the mean rate of occurrence of an 



 3

event vary from case to case might depend on some variables. Count data regression is more 

proper than the OLS in studying the occurrence rate per unit of time conditional on some 

covariates. Examples of such situations include number of patents, takeover bids, bank 

failures, accident insurance, and criminal careers. Unless the mean of the counts is high (in 

which case the normal approximation and the OLS method may be satisfactory), using the 

OLS can lead to significant deficiencies. In such situations, the benchmark model for count 

data is the Poisson regression model.  

 

The purpose of this study is to adopt and modify the new approaches mentioned in Kibria 

(2003), Khalaf and Shukur (2005), Alkhamisi et al. (2006), Alkhamisi and Shukur (2008) and 

very recently Muniz and Kibria (2009) to be applicable in Poisson regressions for count data, 

i.e. Poisson ridge regression (PRR). The performance of these parameters will then be 

compared with the traditional ML estimation method in term of MSE. This will mainly be 

done by means of Monte Carlo simulations under conditions where the sample size and the 

strength of correlations between the explanatory variables are varied.  

 

The paper is organised as follows: in Section 2, we present the methodology of the different 

methods for estimating PRR. In Section 3, we illustrate the Monte Carlo design we use in this 

study. The results of the study are discussed in Section 4. In Section 5 we give a brief 

summary and conclusions.  

 

2. Methodology 

This section starts by defining the Poisson regression model and the traditional ML 

estimation method. Then the PRR estimator is derived using the same approach as in Hoerl 

and Kennard (1970a,b) and Schaeffer et al. (1984). Finally we generalize different methods 

of estimating the ridge parameter k that have been proposed in papers by Hoerl and Kennard 

(1970a,b), Kibria (2003), Alkhamisi et al. (2006) and Muniz and Kibria (2009).  

 

2.1   Poisson regression 

The standard statistical method for analyzing count data is the Poisson regression model. This 

model has found a widespread use in microeconometrics when the dependent variable, 
iy , of 

the regression model is ( )µiPo
 
distributed where ( )exp ix βiµ = , ix  is the ith row of X  which 
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is an ( )1n p× +  data matrix with p explanatory variables and β  is a ( )1 1p + ×  vector of 

coefficients. The log likelihood of this model may be written as: 

  

( ) ( )

( ) ( )( )

1 1 1

1 1 1

; log log !

exp log exp log !i i

µ y =

x β x β

nn n

i i i i

i i i

nn n

i i

i i i

l y y

y y

µ µ
= = =

= = =

 
+ + = 

 

 
+ +  

 

∑ ∑ ∏

∑ ∑ ∏
.    

(2.1) 

 

The commonly applied estimation method for the Poisson regression model is ML. The 

parameters using this method are estimated by solving the following equation: 
 

 

( )
( )

( )( )
1

;
exp 0

n

i

i

l
S y

=

∂
= − =

∂
∑ i i

µ y
β = x β x

β
.     (2.2)  

 

Since equation (2.2) is nonlinear in β  the solution of ( )S β
 
equalling zero is found using the 

following iterative weighted least square (IWLS) algorithm: 

 

          
( ) ( )

-1
ˆ ˆ ˆ' '

ML
β = X WX X Wz ,

    
(2.3) 

 

where [ ]ˆ ˆW idiag µ=  and ẑ is a vector where the ith element equals ( )
ˆ

ˆˆ log
ˆ

i i
i i

i

y
z

µ
µ

µ

−
= + . 

The ML estimator is asymptotically normally distributed with a covariance matrix that 

corresponds to the inverse of the matrix of the second derivatives: 

 

( )
( )

( )

1
2

-1

'

;
'ML

l
Cov E

−
  ∂

− =   ∂ ∂   

X β
β = X WX

β β  
.
    

(2.4) 

 

Furthermore, the asymptotic MSE equals:  

 

( ) ( ) ( ) ( )
-12

1

1
' '

J

ML ML ML

j j

E L E tr
λ=

= − − =∑β β β β = X WX ,

   

(2.5) 
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where λ j
is the jth eigenvalue of the 'X WX  matrix. When the explanatory variables are 

highly correlated the weighted matrix of cross-products, X'WX , is ill-conditioned which 

leads to instability and high variance of the ML estimator. In that situation, it is very hard to 

interpret the estimated parameters since the vector of estimated coefficients is on average too 

long. 

 

2.2 The Poisson Ridge Regression Estimator 

As a remedy to the problem caused by multicollinearity we propose the PRR method applied 

to count data. The derivation of this new method starts by noting that the ML method 

approximately minimizes the weighted sum of squared error (WSSE). Hence, 
ML
β

 
can be 

seen as the optimal estimator in a WSSE sense. If we choose another estimator, B̂ , of the 

parameter vector β  we can write the WSSE of this estimator as 

 

( ) ( ) ( ) ( ) ( ) ( )
( )min

ˆ ˆ ˆ ˆ ˆ' ' '

ˆ

ML ML ML MLφ

φ φ

= − − = − − + − − =

+

y B y B y Xβ y Xβ B β X'WX B β

B
,
 

(2.6) 

 

where ( )B̂φ
 
is the increase of the WSSE when βML  

is replaced by B̂ . To find the PRR 

estimator the length of ˆ ˆ'B B  should be minimized subject to the constraint ( ) 0
ˆφ φ=B . As a 

Lagrangian problem this may be stated as: 

 

 ( )( ) ( )0
ˆ ˆ ˆ ˆ ˆMinimize ' 1 'ML MLF k φ= + − − −B B B β X'WX B β ,   (2.8) 

 

where ( )1 k is the Lagrange multiplier. Differentiating the above expression with respect to 

B̂  and setting the result equal to zero yields: 

 

( )( )ˆ ˆ ˆ ˆ2 1 2 2 0
ˆ ML

F
k

δ

δ
= + − =B X'WXB X'WXβ

B
. 

 

By solving the above equation with respect to B̂  we obtain the PRR estimator: 
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 ( ) ( )
-1

ˆ ˆT T

RR ML MLk+ =β = X WX I X WXβ Zβ .     (2.8) 

 

The asymptotic MSE of this new estimator equals:   

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( )

2

-1 -1

2
1

-2

1 22
1

' ' '

ˆ ˆ ˆ ˆ' ' ' ' ' '

ˆ' '

RR RR RR ML ML

J
j

j
j

J
j

j
j

E L E E

k k
k

k k k k
k

λ

λ

λ
γ γ

λ

=

=

 = − − = − − + − − = 

+ + − + − =
+

+ + = +
+

∑

∑

β β β β β β Z'Z β β Zβ β Zβ β

β X WX I X WX I X WX I X WX I β

β X WX I β

, (2.9) 

 

where ( )1 kγ
 
is the asymptotic variance and ( )2 kγ

 
is the squared bias. The PRR estimation 

method is attractive for two reasons. Firstly, it is a very simple method since it does not 

require any changes of the existing Poisson regression software. Secondly, it has a lower 

MSE than the ML estimate if we find a value of k such that the reduction in the variance term 

is greater than the increase of the squared bias.  

 

2.3 The MSE properties of the PRR Estimator 

Hoerl and Kennard (1970a,b) showed that there exists a k greater than zero such that the MSE 

is always lower for RR than OLS. Here, it will be shown that there also exists such a k for 

which the MSE of the PRR is lower than the MSE of ML. In order to show this we first note 

that ( )1 kγ
 
is a monotonic decreasing function of k. Then it has to be shown that ( )2 kγ  is a 

monotonic increasing function of k which may be easily seen in the following equation: 

 

( ) ( )
( )

2
-22 2

2 2
1

' '
J

i

i i

k k k k
k

α
γ

λ=

= + =
+

∑β X WX I β ,    (2.9) 

where 2

iα
 
equals 

MLγβ  and γ is the eigenvector of X'WX . Since, by definition, 0k ≥  and 

0iλ >
 
for all i we may conclude that ( )2 kγ  is a monotonic increasing function of k. Now in 

order to show that ( ) ( )2 2

RR ML
E L E L<

 
we have to take the first derivative of the ( )2

RR
E L  with 

respect to k: 
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( ) ( ) ( )

( ) ( )

2 2
1 2

3 3
1 1

2 2
l l

RR i i i

i ii i

E L k k
k

k k k k k

δ δγ δγ λ λ α

δ δ δ λ λ= =

= + = − +
+ +

∑ ∑ .  (2.10) 

 

It has already been shown that ( )1 kγ
 
and ( )2 kγ

 
are monotonically increasing and decreasing 

functions of k, respectively. Furthermore, it has also been shown that their first derivatives 

are always non-positive and non-negative, respectively. Hence, it is only necessary to show 

that there always exists a k greater than zero such that 
( )2

0
RRE L

k

δ

δ
<  to show that 

( ) ( )2 2

RR ML
E L E L< . The condition for this is shown in (2.10) to be: 

 

2

max

1
k

α
< ,         (2.11) 

where 2
maxα   is defined as the maximum element of 2

iα . 

 

2.4 Proposed Ridge Parameter Estimators 

To estimate the ridge parameter k we apply several different methods. The most classical RR 

is the following:  

2

1 2
max

ˆ1
ˆ

HK

s
K k

α
= = , 

proposed by Hoerl and Kennard (1970a,b), where 

( )
2

2 1

ˆ

1

n

i i

is
n p

µ
=

−

=
− −

∑ y

. A modified version of 

this estimator is proposed as: 

 

2
max

1ˆ2
ˆ

HKMK k
α

= = , 

since the corresponding version of the existence theorem for linear regression in Hoerl and 

Kennard (1970a) for Poisson regression shows that the optimal value of k equals 
2

max

1

α
 

instead of 
2

2

max

σ

α
. However, since these estimators have been shown in many studies (e.g. 
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Schaeffer (1986), Kibria (2003) and Alkhamisi and Shukur (2008)) to underestimate the 

optimal value of k, we include the following two estimators from Kibria (2003): 

 

2

1

2

1

ˆ3

ˆ

GM

p p

i

i

s
K k

α
=

= =

 
  
 
∏

 and { }2ˆ4 ,MED iK k Median m= =       

where 
2

2

ˆ

ˆ
i

i

m
σ

α
= . Another estimator of k is the following: 

 

( )max
ˆ5 maxKS

iK k s= = ,   

first proposed by Alkhamisi et al. (2006) where 
2

2 2

ˆ

ˆˆ( )

i
i

i i

t
s

n p t

σ

σ α
=

− +
 and i

t  is the eigenvalues 

of the X'X  matrix. The ridge parameter estimators proposed by Hoerl and Kennard 

(1970a,b) and Kibria (2003) share the same characteristic that their estimated values decrease 

as the degree of correlation (ρ) increases since the estimated vector of coefficients becomes 

on average longer. This characteristic is unattractive because larger values of k are needed to 

solve the problem of near singularity of the X'WX  matrix as ρ increases. Based on the 

previous estimators and the idea of square root transformations taken from Alkhamisi and 

Shukur (2008) the following estimators were suggested by Muniz and Kibria (2009): 

 

2

1ˆ6 maxKM

i

K k
m

 
= =  

 
,

1

4

1

1ˆ7
p p

KM

ii

K k
m=

 
= =   

 
∏ , 6

1ˆ8 KM

i

K k median
m

 
= =  

 
.  

 

These estimators are based on the inverse of 
im  so they actually increase as ρ becomes larger. 

As a result, these estimators are assumed to be the most robust to multicollinearity. 

 

3. The Monte Carlo simulation 

 

This section consists of a brief description of how the data is generated together with a 

discussion about the different factors varied in the simulation study. Then the criteria for 

judging the performance of the different estimation methods are presented.  
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3.1 The Design of the Experiment 

The dependent variable of the Poisson regression model is generated using pseudo-random 

numbers from the ( )iPo µ
 
where 

 

( )0 1 1expi i p ipx xµ β β β= + + +L ,    ni ,...2,1= , 1, 2,...j p= .  (3.1)  

The parameter values in equation (3.1) are chosen so that 2

1

1
p

j

j

β
=

=∑
 

and 1 pβ β= =L , which 

are common restrictions in many simulation studies (e.g. Kibria (2003)). The first factor we 

choose to vary in the design of the experiment is ρ, which is the main interest of this paper. In 

the design of the experiment four different values of ρ corresponding to 0.85, 0.90, 0.95 and 

0.99 are considered. To be able to generate data with different degrees of correlation we use 

the following formula: 

 

( )
( )1/2

21 ρ ρ= − +ij ij ipx z z ,
  

ni ,...2,1= , 1, 2,...j p=   (3.2) 

 

where ijz  are pseudo-random numbers generated using the standard normal distribution. To 

reduce eventual start-up value effects we discard the first 200 observations. Another factor 

we choose to vary is the sample size since previous studies (e.g. Muniz and Kibria (2009) and 

Månsson and Shukur (2010)) indicate that the gain of applying PRR is larger when n is small. 

However, the asymptotic MSE shows that there may be a substantial gain of using PRR even 

in large samples. We therefore evaluate the performance of the different estimation methods 

in both small and large sample sizes. However, since we investigate models with different 

numbers of explanatory variables we choose to fix the number of degrees of freedoms 

( 1n p∆ = − − ) instead of the number of observations. The value of the intercept ( 0β ) is also a 

factor we choose to vary. Decreasing this factor leads to a lower average value of 
iµ  which 

leads to less variation (i.e. more values equal to zero) in the sample. When decreasing this 

factor, we need larger sample sizes since otherwise the sample will often consists of only 

zeros which leads to a non-convergence of the Iterative WLS (IWLS) algorithm. In Table 1, 

the different combinations of values of the intercept and the sample size can be found. A final 

factor we consider is the number of explanatory variables (p) since it is of interest to find 

which ridge parameter is best for different number of p. We chose to generate models with 2 

and 4 explanatory variables. 
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Table 1: The different combinations of intercept and sample sizes 

 Degree of freedom 

Intercept 10 15 20 30 50 75 100 150 

1 * * * * *    

0  * * * * *   

-1    * * * * * 

 

 

3.2 Judging the performance of the estimators 

To investigate the performance of the PRR and ML method, we calculate the MSE using the 

following equation: 

 

  
( ) ( )

1 1

ˆ ˆ'

MSE

R R

i
i i

i i

SE

R R

= =

− −

= =
∑ ∑ β β β β

,    (3.3) 

 

where β̂  is the estimator of β  obtained from ML or PRR, and R  equals 2000 which 

corresponds to the number of replicates used in the Monte Carlo simulation. When the MSE 

is calculated we only use the slope parameters. Furthermore, the proportion of replication 

(out of 2000) for which the slope parameters of the ML estimator has a smaller squared error 

(SE) than the other estimators is also calculated.  

 

4. Results 

 

In this section the results from our Monte Carlo study are presented. The MSE for the 

different estimation methods can be found in Tables 2-4, and in what follows the effects of 

varying different factors on the performance of both the ML and the PRR methods are 

discussed.  

 

4.1 The performance as a function of ρρρρ  

Our main interest of this paper is to investigate the effect of increasing the degree of 

correlation on the performance of the different estimation methods. From the results of the 

simulation study it becomes clear that increasing ρ has a negative impact on both ML and 

PRR. However, even though the MSE increases for both estimation methods there is still a 
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substantial difference of how much it increases among the different estimation methods. At 

this stage it is important to mention that the least robust method of estimating the parameters 

of the Poisson regression model is ML. This can be seen both by looking at the immense 

increase of the MSE and the decrease of the proportion for which ML outperforms the 

different ridge estimators. Among the different estimators of k there is also a big variation in 

the robustness even though all of them are better than ML. In the methodology section we 

noted that calculating the ridge parameter using the inverse of 
im  should be considered as the 

most robust method of estimating k. The results from our simulation study confirm this 

observation; especially the K6 which estimates k using the maximum value of the inverse of 

im  has shown to be very robust. This estimator is the best option when we have high degree 

of correlation, i.e. when ρ equals 0.95 or 0.99. When ρ is less than 0.95, and when we only 

have two explanatory variables, the differences are not huge between the different ridge 

estimators. When we have four explanatory variables and a low degree of correlation, we find 

the K3, K4, K6, K7 and K8 to be the best options. Hence, the K6 estimator is the best option 

or very close to the best for all the evaluated situations.  

 

4.2 The performance as a function of  0β
 

Decreasing the value of the intercept leads to less variation (i.e. more values that equal zero) 

in the sample. For given ρ,  p  and ∆  this leads to an immense increase in the MSE of the ML 

estimator and the K1 to K5 estimators, while the estimators based on the inverse of 
im  are 

basically unaffected. The proportion of times the ML has a lower SE than the PRR decreases 

for all of the different ridge estimators as the intercept decreases. Hence, we may conclude 

that the gain of using PRR increases as the value of the intercept decreases both by looking at 

the MSE and the proportion of times ML outperforms PRR.  

 

4.3 The performance as a function of ∆  and p 

A desirable property of any statistical estimator is the convergence to the true value of the 

parameter as the sample size increases. This property holds for the ML estimator and most of 

the different estimators of the ridge parameter k since the MSE decreases with the sample 

size. When looking at the proportion of replication for which ML produces a smaller MSE 

than PRR, we can see that the proportion either increases or stay the same as n becomes 

larger. Hence, the benefit of using the PRR method is greater when the sample size is small. 

The effect of increasing the number of explanatory variables for a given ρ , ∆  and 0β
 
leads 
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to an increase of the MSE. Furthermore, we can also see that the proportion for which the ML 

outperforms the PRR decreases. Thus, we may conclude that there is a greater gain of using 

PRR instead of the ML when we have many explanatory variables.  

 

5. Conclusions 

 

In this paper, a PRR estimator is proposed. By means of Monte Carlo simulations we 

evaluate the traditional ML estimator and this new method using different estimators of the 

ridge parameter k. The results from the simulation study show that the sample size, the value 

of the intercept, the number of independent variables and the correlation between the 

independent variables are important factors for the performance of the different estimation 

methods. In most of the cases, the MSE decreases when the first two factors increases and 

becomes higher as the other factors increases. The result also shows that the proposed PRR 

method, regardless which ridge estimator used, has a lower MSE than the ML method for all 

different situations that has been evaluated. Hence, the main conclusion from this paper is 

that ML should not be used when the data is collinear since the vector of estimated 

parameters becomes too long. The PRR should always be preferred. The estimator introduced 

by Hoerl and Kennard (1970a,b) offers some reduction of the MSE but it underestimates the 

optimal k. The best option is to use the K6 estimator since it reduces the MSE substantially in 

all of the different situations investigated in this paper. 
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Table 2: Estimated MSE when 0β =1 

 

Estimated MSE with p=2. Estimated MSE with p=4. 

 ML K1 K2 K3 K4 K5 K6 K7 K8 ML K1 K2 K3 K4 K5 K6 K7 K8 

ρ=0.85                   

10 
0.192 0.122 0.089 0.082 0.136 0.185 0.140 0.157 0.151 0.675 0.438 0.480 0.204 0.221 0.606 0.261 0.367 0.342 

 
 (20) (23) (31) (38) (19) (19) (19) (19)  (8.1) (7.9) (9.3) (9.2) (7.4) (8.1) (7.9) (7.8) 

15 
0.103 0.077 0.057 0.049 0.090 0.101 0.088 0.095 0.092 0.291 0.227 0.242 0.127 0.131 0.279 0.189 0.231 0.225 

 
 (24) (28) (36) (43) (24) (24) (24) (24)  (11) (10) (13) (13) 9.9 (11) (10) (10) 

20 
0.063 0.055 0.042 0.039 0.070 0.062 0.059 0.061 0.060 0.158 0.134 0.141 0.084 0.086 0.154 0.125 0.142 0.140 

 
 (28) (31) (37) (43) (27) (28) (28) (28)  (15) (14) (17) (17) (14) (15) (14) (14) 

30 
0.034 0.031 0.026 0.026 0.059 0.034 0.033 0.033 0.033 0.085 0.078 0.081 0.058 0.058 0.084 0.077 0.081 0.081 

 
 (30) (33) (43) (49) (29) (30) (30) (30)  (21) (21) (25) (25) (20) (21) (21) (21) 

50 
0.049 0.038 0.030 0.030 0.040 0.048 0.047 0.047 0.047 0.038 0.037 0.037 0.031 0.032 0.038 0.036 0.037 0.037 

 
 (27) (32) (38) (41) (25) (26) (25) (25)  (26) (26) (30) (31) (26) (26) (26) (26) 

ρ=0.90 
                  

10 
0.266 0.167 0.111 0.081 0.125 0.254 0.176 0.204 0.194 0.922 0.551 0.621 0.239 0.253 0.804 0.294 0.441 0.409 

 
 (17) (19) (25) (32) (15) (16) (15) (15)  (3.9) (3.7) (5.1) (5.3) (3.5) (4.0) (3.8) (3.8) 

15 
0.149 0.113 0.078 0.061 0.106 0.145 0.121 0.132 0.129 0.409 0.293 0.322 0.138 0.144 0.385 0.230 0.303 0.292 

 
 (18) (21) (29) (36) (17) (18) (18) (18)  (5.8) (5.8) (7.7) (8.3) (5.5) (6.0) (5.7) (5.9) 

20 
0.091 0.075 0.052 0.042 0.079 0.089 0.081 0.086 0.084 0.238 0.192 0.204 0.106 0.107 0.229 0.169 0.202 0.197 

 
 (21) (24) (30) (37) (20) (21) (21) (21)  (8.5) (8.3) (10) (11) (8.1) (8.5) (8.3) (8.2) 

30 
0.050 0.045 0.034 0.028 0.060 0.049 0.047 0.048 0.048 0.119 0.107 0.111 0.070 0.071 0.117 0.103 0.112 0.111 

 
 (26) (29) (36) (43) (25) (26) (25) (26)  (12) (12) (14) (14) (12) (12) (12) (12) 

50 
0.027 0.025 0.021 0.018 0.043 0.026 0.026 0.026 0.026 0.056 0.053 0.054 0.041 0.041 0.055 0.052 0.054 0.054 

 
 (31) (34) (41) (48) (31) (31) (31) (31)  (18) (18) (22) (22) (18) (19) (18) (18) 

ρ=0.95 
                  

10 
0.622 0.344 0.216 0.125 0.166 0.560 0.263 0.340 0.308 1.729 0.934 1.064 0.323 0.348 1.386 0.324 0.566 0.516 

 
 (9.2) (11) (15) (22) (8.3) (8.7) (8.5) (8.6)  (1.1) (1.1) (1.5) (1.7) (1.0) (1.1) (1.0) (1.1) 

15 
0.284 0.173 0.097 0.057 0.105 0.267 0.194 0.228 0.215 0.825 0.512 0.584 0.203 0.221 0.735 0.301 0.450 0.421 

 
 (11) (13) (17) (26) (10) (11) (10) (10)  (1.8) (1.8) (2.2) (2.5) (1.5) (1.8) (1.7) (1.7) 

20 
0.179 0.120 0.069 0.042 0.084 0.171 0.143 0.159 0.153 0.539 0.372 0.417 0.163 0.169 0.492 0.265 0.364 0.348 

 
 (12) (14) (20) (28) (12) (12) (12) (12)  (2.5) (2.5) (3.1) (3.1) (2.3) (2.6) (2.4) (2.4) 

30 
0.108 0.084 0.050 0.029 0.059 0.104 0.096 0.102 0.100 0.245 0.200 0.213 0.103 0.103 0.234 0.177 0.212 0.208 

 
 (15) (18) (23) (30) (15) (15) (15) (15)  (4.0) (3.8) (5.5) (5.7) (3.7) (4.0) (3.7) (3.8) 

50 
0.053 0.048 0.034 0.021 0.043 0.052 0.050 0.052 0.051 0.112 0.101 0.104 0.063 0.063 0.109 0.097 0.106 0.105 

 
 (20) (22) (29) (35) (19) (20) (19) (20)  (6.6) (6.6) (8.8) (9.5) (6.4) (6.7) (6.5) (6.6) 

ρ=0.99 
                  

10 
3.103 1.159 0.521 0.214 0.211 2.112 0.299 0.517 0.415 9.648 4.171 5.055 1.263 1.461 5.213 0.267 0.658 0.552 

 
 (2.4) (2.9) (5.4) (10.1) (1.9) (2.2) (2.1) (2.1)  (0.1) (0.1) (0.1) (0.1) (0.0) (0.1) (0.1) (0.1) 

15 
1.499 0.617 0.244 0.082 0.108 1.146 0.334 0.519 0.442 4.285 2.036 2.468 0.632 0.780 2.866 0.332 0.722 0.630 

 
 (3.2) (4.1) (6.3) (12.4) (2.4) (3.0) (2.5) (2.8)  (0.1) (0.1) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1) 

20 
1.015 0.450 0.161 0.058 0.104 0.805 0.353 0.511 0.446 2.641 1.330 1.632 0.418 0.474 1.903 0.368 0.733 0.663 

 
 (3.4) (4.2) (7.3) (14.4) (2.9) (3.2) (2.9) (3.1)  (0.1) (0.1) (0.0) (0.1) (0.1) (0.1) (0.1) (0.1) 

30 
0.570 0.296 0.098 0.030 0.077 0.480 0.313 0.398 0.367 1.397 0.801 0.959 0.295 0.325 1.107 0.367 0.615 0.569 

 
 (4.7) (5.8) (8.1) (16.0) (4.3) (4.6) (4.3) (4.4)  (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

50 
0.295 0.196 0.071 0.019 0.054 0.259 0.216 0.250 0.238 0.625 0.429 0.490 0.179 0.177 0.543 0.314 0.434 0.420 

 
 (5.2) (6.7) (9.4) (15.3) (4.9) (5.0) (4.9) (4.9)  (0.1) (0.1) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1) 
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Table 3: Estimated MSE when 0β =0 

  

Estimated MSE with p=2. Estimated MSE with p=4. 

 ML K1 K2 K3 K4 K5 K6 K7 K8 ML K1 K2 K3 K4 K5 K6 K7 K8 

ρ=0.85                   

15 
0.288 0.137 0.153 0.137 0.184 0.268 0.171 0.192 0.185 0.791 0.497 0.452 0.188 0.203 0.690 0.298 0.428 0.397 

 
 (24) (21) (33) (39) (17) (18) (18) (18)  (2.9) (3.3) (6.0) (6.0) (2.2) (2.6) (2.5) (2.5) 

20 
0.187 0.091 0.107 0.096 0.135 0.178 0.136 0.147 0.144 0.470 0.333 0.302 0.139 0.150 0.433 0.257 0.333 0.316 

 
 (28) (23) (35) (42) (19) (20) (20) (20)  (4.5) (4.7) (7.1) (7.4) (3.7) (4.0) (3.9) (3.9) 

30 
0.094 0.050 0.061 0.054 0.078 0.091 0.082 0.086 0.085 0.228 0.183 0.169 0.090 0.096 0.218 0.172 0.200 0.195 

 
 (27) (23) (35) (40) (20) (20) (20) (20)  (7.5) (8.0) (11.5) (11.8) (6.8) (7.0) (7.0) (7.0) 

50 
0.051 0.031 0.039 0.032 0.044 0.049 0.048 0.049 0.049 0.100 0.089 0.084 0.056 0.058 0.097 0.091 0.096 0.095 

 
 (35) (29) (39) (42) (27) (27) (27) (27)  (11.3) (11.8) (16.1) (16.1) (10.5) (10.8) (10.5) (10.6) 

80 
0.029 0.020 0.025 0.019 0.023 0.029 0.029 0.029 0.029 0.055 0.052 0.050 0.038 0.040 0.054 0.053 0.054 0.054 

 
 (37) (33) (40) (42) (32) (32) (32) (32)  (17.8) (18.3) (22.3) (23.1) (17.5) (17.5) (17.4) (17.4) 

ρ=0.90 
                  

15 
0.439 0.181 0.201 0.169 0.207 0.397 0.214 0.246 0.236 1.243 0.742 0.678 0.256 0.287 1.025 0.334 0.517 0.466 

 
 (17) (14) (25) (30) (10) (11) (11) (11)  (2.0) (2.2) (3.4) (3.6) (1.4) (1.8) (1.6) (1.6) 

20 
0.276 0.118 0.142 0.116 0.150 0.256 0.177 0.196 0.190 0.698 0.417 0.466 0.169 0.185 0.621 0.310 0.431 0.403 

 
 (20) (16) (27) (32) (13) (14) (14) (14)  (3.3) (3.1) (4.7) (4.9) (2.7) (2.8) (2.7) (2.7) 

30 
0.133 0.062 0.079 0.064 0.084 0.127 0.113 0.118 0.117 0.342 0.257 0.232 0.112 0.120 0.319 0.226 0.275 0.265 

 
 (23) (20) (30) (33) (17) (17) (17) (17)  (3.7) (3.9) (6.0) (5.7) (3.4) (3.6) (3.5) (3.5) 

50 
0.069 0.037 0.048 0.036 0.044 0.067 0.063 0.065 0.064 0.152 0.129 0.120 0.068 0.073 0.146 0.131 0.142 0.140 

 
 (25) (21) (30) (32) (19) (19) (19) (19)  (7.0) (7.2) (9.3) (9.5) (6.7) (6.9) (6.7) (6.8) 

80 
0.043 0.025 0.034 0.023 0.026 0.042 0.042 0.042 0.042 0.085 0.077 0.073 0.050 0.052 0.083 0.079 0.083 0.082 

 
 (30) (26) (34) (36) (25) (25) (25) (25)  (10.6) (11.1) (13.7) (14.1) (10.2) (10.3) (10.3) (10.3) 

ρ=0.95 
                  

15 
0.813 0.250 0.293 0.214 0.244 0.684 0.282 0.339 0.318 2.577 1.433 1.296 0.424 0.478 1.857 0.367 0.649 0.565 

 
 (13) (10) (18) (24) (7.1) (7.6) (7.3) (7.4)  (0.3) (0.3) (0.5) (0.7) (0.2) (0.3) (0.2) (0.3) 

20 
0.560 0.171 0.228 0.159 0.195 0.485 0.263 0.306 0.291 1.400 0.835 0.734 0.246 0.276 1.139 0.375 0.610 0.541 

 
 (13) (10) (19) (23) (6.8) (7.7) (7.4) (7.4)  (0.2) (0.2) (0.5) (0.7) (0.1) (0.2) (0.2) (0.2) 

30 
0.304 0.093 0.134 0.097 0.128 0.276 0.216 0.232 0.228 0.712 0.418 0.479 0.159 0.173 0.627 0.338 0.468 0.439 

 
 (15) (12) (20) (24) (10) (10) (10) (10)   (0.8) (0.8) (1.1) (1.3) (0.7) (0.8) (0.7) 

50 
0.145 0.050 0.074 0.052 0.069 0.135 0.127 0.131 0.130 0.311 0.239 0.215 0.096 0.105 0.288 0.225 0.266 0.257 

 
 (18) (15) (22) (25) (13) (13) (13) (13)  (1.9) (2.1) (2.5) (2.7) (1.8) (1.9) (1.8) (1.8) 

80 
0.094 0.039 0.059 0.035 0.040 0.089 0.088 0.089 0.089 0.175 0.147 0.135 0.069 0.073 0.166 0.149 0.163 0.160 

 
 (20) (17) (22) (24) (15) (15) (15) (15)  (3.4) (3.5) (4.2) (4.4) (3.2) (3.2) (3.2) (3.2) 

ρ=0.99 
                  

15 
5.083 1.317 1.653 0.807 0.738 2.916 0.224 0.351 0.290 14.359 6.996 6.136 1.835 1.964 5.856 0.239 0.587 0.452 

 
 (3.1) (2.3) (6.3) (9.0) (1.2) (1.5) (1.5) (1.5)  (0.0) (0.0) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0) 

20 
3.000 0.689 1.010 0.411 0.400 1.881 0.293 0.428 0.367 7.701 3.919 3.341 0.959 1.121 3.982 0.284 0.664 0.521 

 
 (4.7) (3.4) (7.4) (10.3) (1.7) (2.2) (2.0) (2.0)  (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

30 
1.658 0.331 0.546 0.234 0.257 1.108 0.355 0.469 0.422 3.684 2.004 1.643 0.478 0.524 2.228 0.385 0.778 0.644 

 
 (5.1) (3.8) (7.0) (10.2) (2.4) (2.8) (2.6) (2.6)  (0.0) (0.0) (0.0) (0.2) (0.0) (0.0) (0.0) (0.0) 

50 
0.849 0.150 0.294 0.136 0.160 0.613 0.387 0.446 0.427 1.743 1.053 0.883 0.287 0.311 1.248 0.439 0.738 0.653 

 
 (4.7) (3.5) (6.0) (8.6) (2.6) (2.6) (2.7) (2.7)  (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

80 
0.518 0.095 0.184 0.096 0.116 0.394 0.331 0.358 0.351 0.968 0.634 0.540 0.188 0.203 0.756 0.413 0.599 0.553 

 
 (5.5) (4.1) (6.7) (8.3) (3.4) (3.4) (3.4) (3.4)  (0.1) (0.2) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1) 
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 Table 4: Estimated MSE when 0β =-1 

  

Estimated MSE with p=2. Estimated MSE with p=4. 

 ML K1 K2 K3 K4 K5 K6 K7 K8 ML K1 K2 K3 K4 K5 K6 K7 K8 

ρ=0.85                   

30 
0.280 0.204 0.193 0.180 0.258 0.248 0.124 0.151 0.138 0.707 0.533 0.532 0.240 0.252 0.603 0.238 0.375 0.351 

 
 (23) (23) (39) (50) (20) (26) (22) (24)  (6.1) (5.8) (11) (12) (5.5) (6.8) (5.9) (5.9) 

50 
0.134 0.110 0.109 0.116 0.216 0.124 0.084 0.101 0.094 0.286 0.242 0.247 0.144 0.151 0.266 0.178 0.229 0.220 

 
 (25) (25) (45) (60) (23) (28) (24) (26)  (10) (9.9) (17) (18) (9.4) (11) (9.7) (9.8) 

80 
0.078 0.069 0.069 0.081 0.189 0.074 0.060 0.068 0.065 0.159 0.143 0.146 0.100 0.103 0.151 0.122 0.142 0.138 

 
 (29) (29) (49) (64) (28) (30) (28) (29)  (14) (14) (22) (23) (13) (15) (14) (14) 

100 
0.054 0.049 0.050 0.065 0.189 0.052 0.045 0.050 0.048 0.108 0.100 0.101 0.076 0.079 0.103 0.091 0.100 0.098 

 
 (31) (31) (53) (71) (29) (32) (30) (30)  (15) (15) (22) (25) (15) (16) (15) (15) 

150 
0.034 0.032 0.032 0.047 0.177 0.033 0.030 0.032 0.032 0.062 0.059 0.060 0.051 0.053 0.060 0.057 0.060 0.059 

 
 (34) (33) (58) (76) (32) (34) (33) (33)  (22) (22) (29) (32) (22) (22) (22) (22) 

ρ=0.90 
                  

30 
0.399 0.267 0.251 0.216 0.284 0.347 0.145 0.187 0.169 1.011 0.718 0.723 0.291 0.311 0.839 0.278 0.481 0.444 

 
 (17) (17) (33) (43) (15) (20) (16) (17)  (3.6) (3.5) (6.5) (6.9) (3.4) (4.0) (3.6) (3.6) 

50 
0.195 0.148 0.149 0.137 0.228 0.177 0.108 0.134 0.124 0.431 0.348 0.356 0.178 0.179 0.387 0.220 0.310 0.297 

 
 (21) (21) (39) (53) (19) (23) (19) (20)  (5.9) (5.8) (9.8) (11) (5.5) (6.3) (5.7) (5.7) 

80 
0.114 0.095 0.096 0.094 0.191 0.106 0.080 0.094 0.089 0.234 0.204 0.208 0.119 0.122 0.219 0.165 0.202 0.197 

 
 (22) (22) (40) (57) (20) (23) (20) (21)  (8.0) (7.9) (13) (15) (7.5) (8.7) (7.9) (8.0) 

100 
0.079 0.069 0.070 0.076 0.183 0.075 0.063 0.070 0.068 0.156 0.141 0.144 0.093 0.094 0.148 0.124 0.142 0.139 

 
 (25) (24) (46) (62) (23) (26) (23) (24)  (10) (10) (14) (17) (9.9) (10) (10) (10) 

150 
0.052 0.048 0.048 0.057 0.171 0.050 0.045 0.049 0.048 0.092 0.086 0.087 0.065 0.067 0.088 0.081 0.087 0.086 

 
 (26) (26) (47) (66) (25) (27) (25) (26)  (12) (12) (17) (19) (12) (12) (12) (12) 

ρ=0.95 
                  

30 
0.847 0.491 0.434 0.335 0.358 0.673 0.162 0.228 0.199 2.034 1.339 1.328 0.438 0.463 1.489 0.292 0.615 0.565 

 
 (10) (11) (22) (31) (8.5) (12) (9.2) (10.4)  (1.2) (1.2) (2.2) (2.2) (1.1) (1.4) (1.2) (1.2) 

50 
0.413 0.261 0.258 0.195 0.259 0.345 0.146 0.197 0.177 0.844 0.617 0.632 0.230 0.238 0.699 0.283 0.489 0.460 

 
 (12) (12) (27) (40) (10) (13) (11) (12)  (2.2) (2.2) (4.0) (4.7) (2.1) (2.3) (2.3) (2.2) 

80 
0.254 0.183 0.187 0.134 0.198 0.221 0.134 0.171 0.159 0.446 0.358 0.367 0.157 0.159 0.392 0.234 0.337 0.326 

 
 (14) (13) (27) (41) (13) (14) (13) (13)  (2.8) (2.7) (4.7) (5.7) (2.5) (2.8) (2.5) (2.7) 

100 
0.167 0.126 0.130 0.098 0.180 0.148 0.108 0.130 0.123 0.320 0.270 0.276 0.134 0.133 0.290 0.206 0.267 0.260 

 
 (14) (15) (30) (46) (13) (16) (13) (14)  (3.1) (3.1) (4.3) (5.5) (2.9) (3.2) (3.0) (2.9) 

150 
0.105 0.088 0.090 0.071 0.153 0.096 0.081 0.092 0.088 0.177 0.158 0.161 0.096 0.096 0.165 0.139 0.160 0.158 

 
 (16) (16) (32) (52) (15) (16) (15) (15)  (5.1) (5.0) (7.6) (9.0) (4.9) (5.2) (4.9) (5.1) 

ρ=0.99 
                  

30 
5.008 2.165 1.694 1.171 1.021 2.611 0.113 0.220 0.147 11.235 5.681 5.866 1.661 1.905 4.878 0.173 0.547 0.454 

 
 (2.2) (2.3) (7.4) (12.5) (1.4) (3.0) (2.0) (2.1)  (0.1) (0.0) (0.1) (0.1) (0.0) (0.1) (0.0) (0.0) 

50 
2.524 1.083 0.970 0.575 0.521 1.411 0.131 0.277 0.196 4.749 2.712 2.823 0.735 0.832 2.533 0.258 0.731 0.638 

 
 (2.8) (2.9) (8.6) (15.9) (2.0) (3.5) (2.5) (2.8)  (0.0) (0.0) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0) 

80 
1.384 0.598 0.586 0.322 0.308 0.818 0.163 0.293 0.235 2.609 1.596 1.671 0.474 0.510 1.573 0.328 0.790 0.715 

 
 (3.8) (3.9) (9.9) (17.8) (3.0) (4.1) (3.1) (3.3)  (0.1) (0.1) (0.1) (0.4) (0.1) (0.1) (0.1) (0.1) 

100 
1.012 0.483 0.484 0.253 0.240 0.627 0.178 0.295 0.247 1.753 1.156 1.211 0.355 0.377 1.156 0.346 0.732 0.677 

 
 (3.7) (3.7) (9.7) (20.5) (3.3) (4.1) (3.4) (3.7)  (0.0) (0.0) (0.1) (0.3) (0.0) (0.0) (0.0) (0.0) 

150 
0.641 0.330 0.353 0.184 0.186 0.424 0.192 0.276 0.247 1.021 0.742 0.764 0.242 0.236 0.745 0.337 0.616 0.589 

 
 (3.5) (3.5) (10.1) (22.0) (3.2) (3.8) (3.1) (3.4)  (0.1) (0.1) (0.3) (0.6) (0.0) (0.1) (0.0) (0.0) 
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