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Abstract 

 

This paper analyzes and compares the properties of the most commonly applied versions of 

the Granger causality (GC) test to a new ridge regression GC test (RRGC), in the presence of 

multicollinearity. The investigation has been carried out using Monte Carlo simulations. A 

large number of models have been investigated where the number of observations, strength of 

collinearity, and data generating processes have been varied. For each model we have 

performed 10000 replications and studied seven different versions of the test. The main 

conclusion from our study is that the traditional OLS version of the GC test over-rejects the 

true null hypothesis when there are relatively high (but empirically common levels of) 

multicollinearity, while it is established that the new RRGC test will remedy or substantially 

decrease this problem. 
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1. Introduction 

The purpose of this paper is to evaluate the effect of multicollinearity on the most commonly 

applied tests for causality in the sense of Granger (1969). The dynamic nature of the Granger 

causality (GC) test implies that it, by pure definition, generally suffers from considerably 

high degrees of multicollinearity problems, primarily induced by its extensive lag structure. 

By means of Monte-Carlo simulations, it is demonstrated that multicollinearity causes over-

rejections of the true null hypotheses for the traditional GC tests. As a remedy to this 

problem, a new ridge regression Granger causality (RRGC) test is proposed where ridge 

regression is used instead of ordinary least squares (OLS) to estimate the parameters in the 

dynamic regression model. In comparison to the traditional versions of the GC test, our newly 

proposed RRGC test exhibits superior size properties, which therefore may be considered as 

the main original contribution of this paper. 

 

The concept of multicollinearity was first introduced by Frisch (1934) in order to denote a 

situation where the independent variables in the regression model are correlated. Despite the 

fact that high levels of multicollinearity is a very common problem when estimating dynamic 

models, no one (at least to the author’s knowledge) has yet studied the effects of 

multicollinearity on the GC test. The main problem associated to multicollinearity is that it 

leads to instability and large variance of the OLS estimator. This may induce two different 

effects on the GC test which is also illustrated in the simulation section of this paper. Firstly, 

it might lead to a slower convergence rate of the tests based on asymptotic results since larger 

samples are required to obtain stable OLS estimates of the parameters. Secondly, it may 

cause over-rejections of the true null hypotheses in small and moderately sized samples 

regardless whether the tests are based on asymptotic distribution or not. Hence, if we apply 

the traditional GC tests in the presence of multicollinearity we need to obtain very large 

sample sizes, which often is not available in many areas of economics.  

 

The method of ridge regression first introduced by Hoerl and Kennard, (1970a,b) is 

nowadays established as an effective and efficient remedial method to deal with the general 

problems caused by multicollinearity. The main advantage of the ridge regression method is 

to reduce the variance term of the slope parameters which is demonstrated in some recent 

papers (see Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi and Shukur, 2007 and Muniz 

and Kibria 2009). In view of the fact that the simulation results in this paper identified that 
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multicollinearity causes severe problems for the traditional GC tests (for empirically relevant 

sample sizes) a new RRGC test is proposed. This method reduces the parameter instability 

and the new versions of the test exhibit superior statistical size properties in comparison to 

the commonly applied GC tests.  

 

The paper is organized as follows: In section 2, we describe the GC test and define the 

generalized ridge regression estimator. Subsequently, in section 3, the Monte Carlo design is 

formalized, while in Section 4 we analyze the results obtained from the simulation study. 

Finally, in Section 5 the conclusions of the paper are summarized. 

 

2. Methodology 

This section describes the testing and estimation methodology. 

 

2.1 Granger causality test 

The central idea that is exploited by the GC test is the simple fact that events in the past can 

cause events to happen today while future events cannot, thus, we utilize the fundamental 

truth that cause must precedes effect. The GC test for two variables yt and xt can be defined 

as follows. xt does not Granger cause yt, if and only if, prediction of yt based on the universe 

U of predictors is no better than prediction based on U−{xt}, i.e. on the universe with xt 

omitted. According to Granger and Newbold (1986) one can test for Granger causality by 

evaluating a zero restriction in each of the single linear equations in the VAR-model. This 

basic method is a very common method of testing for Granger causality in empirical works 

(see e.g. Almasri and Shukur, (2003); and Ramsey and Lampart, 1998) and can be explained 

by considering the following linear regression model: 

 

y = Xβ+u ,         (1) 

where y  is a 1T  vector of observations, X  is a 2 1T p
 
matrix of observations of the 

independent variables, β  is a 2 1 1p
 
vector of coefficients, p is the number of the lagged 

variables in the VAR(p) model and u  is a 1T  vector of residuals. The coefficient vector in 

expression (1) can be estimated using ordinary least squares (OLS): 

-1
β̂ = X'X X'y .        (2) 
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In order to test for Granger causality the following linear restrictions should be tested: 

 

0 :H Rβ r  vs. 1 :H Rβ r .      (3) 

 

where R is a fixed 2 1q p  matrix and r is a fixed 1q  vector of restrictions. To test the 

restrictions of expression (3) the following Wald (W), Likelihood Ratio (LR), Lagrange 

Multiplier (LM) and the F-test will be used: 

1ˆ ˆ

u

T
W

s

Rβ - r RXXR Rβ -r
       (4) 

log 1
W

LR T
T

         (5) 

1ˆ ˆ

r

T
LM

s

Rβ - r RXXR Rβ -r
      (6) 

1ˆ ˆ

u

F
qs

Rβ -r RXXR Rβ -r
       (7) 

where ˆ ˆ
u u us u u  and ˆ ˆ

r r rs u u
 
are the matrices of cross-products of residuals from the 

unrestricted regression and restricted regression (when 0H  is imposed), respectively. The 

first three tests are all asymptotically 
2 q

 
distributed while the fourth test is distributed as 

an ,F q , where 2 1T p . Moreover, a small sample correction of the W, LR and 

LM (WC, LRC and LMC) tests is made to the first three tests where T is replaced by .  

 

2.2 Ridge regression 

The effect of multicollinearity between the explanatory variables is that the matrix of cross-

products X'X  is ill-conditioned which leads to instability and large variance of the OLS 

estimates. If this instability is not reflected by an increase in the covariance matrix then the 

traditional GC tests is biased. As a substitute and a remedy to the multicollinearity problems 

induced by the OLS estimator, Hoerl and Kennard (1970a,b) proposed the following ridge 

regression estimator. 

-1ˆ kβ = X'X I X'y ,       (8) 
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where (k ≥ 0) is the so called ridge parameter. In order to estimate k,  Hoerl and Kennard 

(1970a) suggested the following expression: 

 

2

2

max

ˆ
ˆ

HK

S
k ,          

 

where 2 ˆ ˆ' 2 1S n py Xβ y Xβ  and 2
max

ˆ
  is defined as the maximum element of 

ˆγβ   where γ is the eigenvector of X'X . However, in Alkhamisi and Shukur (2007) it is 

illustrated that there are many other superior ways of estimating k. The authors found that the 

following two ridge estimators work particularly well: 

 

2

2
1

1 1ˆ
ˆ

p

ARITHM

i i i

S
k

p t
 

and 
2

2

1ˆ max
ˆ

NAS

i i

S
k

t
,

       

where 2
max

ˆ
  is defined as the ith element of ˆγβ . Other alternative potentially successful ridge 

regression estimators are proposed by Kibria and Muniz (2009):

  

1

4
2

1

2

max

1ˆ

ˆ

p

p

KM

i

k
s

, 

1

2

5 2
1 max

ˆ
ˆ

pp

KM

i

s
k  and  
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2

2

max

1ˆ

ˆ

KMk median
s

.  

   

 

Now, the new RRGC test will be applied using the RR estimators instead of the OLS 

estimator of β . 

 

3. The Monte-Carlo simulation 

3.1 The design of the experiment for size calculations 

The data used for the Monte Carlo simulation experiment are replicated according to the 

following data generating processes when the lag length equals two: 
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1 2 1 1 1

1 2

0.03 0.1 0.08

0.02                                                        

t t t t p t p t

t t t

y y y x x

x x
 

 

and the following when the lag length equals four:  

 

1 2 3 4 1 1 1

1 2

0.03 0.1 0.08 0.06 0.04

0.02                                                                                      

t t t t t t p t p t

t t t

y y y y y x x

x x
. 

 

The focus of this paper is to study the effect of the degree of multicollinearity between lags of 

the x  variables of the GC test. As a first step, in order to evaluate whether the degree of 

multicollinearity has a direct impact on the statistical size of the GC test, and to test whether 

ridge regression is a remedy to this potential problem, we use the following DGPs: 

 

DGP 1: 0
                                    

DGP 2: 0.8
 

 

DGP 3:
 

0.95                                DGP 4:
 

0.99
 

 

It should be stressed that the parameter values are empirically very likely cases in real-world 

economics and they are encountered in many studies (e.g. Almasri and Shukur (2003) and 

Hacker et al. (2010)). Another factor that may have an impact on the GC test is the 

distribution of the error term. In previous research, this is illustrated by for instance Kibria 

(2003) and Alkhamisi and Shukur (2007) who demonstrated that increase in the variance of a 

normally distributed error term will enlarge the problem of multicollinearity. The sample size 

is another relevant factor that is expected to affect the performance of the GC test since the 

Wald, LR and LM tests are based on an asymptotic distribution that often leads to poor 

properties in empirically relevant sample sizes. Another important factor in this context is the 

lag-length specification. It can be expected that estimating more parameters leads to a higher 

probability of rejecting a true null hypothesis. To demonstrate the effects of increasing the lag 

lengths we vary the degrees of freedom (net observations after each regression) instead of the 

numbers of observations since it is well-known that it is the degrees of freedom and not the 

absolute sample size that matters on the performance of the tests. In Table 1, the fixed and 

varying factors that constitute the actual Monte Carlo experiment are summarized. 
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Table 1. Values of factors in the experiment 

Factor Symbol Design 

Number of replicates N 10 000 

Degrees of freedom df 15, 25, 50, 100 

Nominal size 
0  5% 

Lag length  p 2, 4 

The distribution of the error term  0,1N , 0,10N  

 

The size of the Granger causality test is examined by observing the rejection frequency when 

x  does not Granger cause y . Therefore, the  parameters of the linear regression models are 

set to zero when the statistical sizes of the tests are evaluated. In order to evaluate the 

empirical statistical size of the tests the following confidence interval is calculated: 

0 0

0

1
2

N
.       (9)

   

If, based on our simulation experiment, the actual statistical size is within the bounds of this 

interval the evaluated test is considered as unbiased (at a specified significance level). 

Throughout this paper we consistently defines biasedness at the 5% level of significance. 

 

3.2  The design of the experiment to calculate the power 

When the power is calculated the  parameters in the linear regression models should not 

equal zero since the time series xt should actually Granger cause yt. The number of replicates 

when calculating the power of the tests equals 1,000 and the chosen parameter values of  

are defined in following Table 2: 

 

Table 2: Values of parameter combinations for the power calculation 

 1  2  3  4  

p = 2 
    

1. very weak causality 0.1 0.05 - - 

2. weak causality 0.2 0.1 - - 

3. strong causality 0.3 0.15 - - 

p = 4     

1. very weak causality 0.1 0.05 0.025 0.025 

2. weak causality 0.15 0.1 0.05 0.025 

3. strong causality 0.25 0.15 0.075 0.05 
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4. Results 

In this section the results from the Monte Carlo experiment are presented. All the factors that 

are varied in the design of the Monte Carlo simulation are expected to have an impact on the 

performance of the tests. We will especially focus on discussing whether ridge regression can 

serve as a small-sample correction of the tests based on asymptotic results and to determine 

whether the new RRGC test is robust to multicollinearity. 

 

The simulation study indicates that applying the RRGC test using the ˆ
ARITHMk , ˆ

NASk  and 
5

ˆ
KMk  

as ridge estimator leads to an immense underestimation of the nominal size. Since it is of no 

use to present several tables consisting of almost only zeros the result from the statistical size 

calculation from these estimators are excluded from this paper. Furthermore, none of the 

traditionally applied GC tests and most of the tests when using ridge regression performs well 

when the data are collinear. The results from these tests are therefore only presented when 

analyzing the statistical size of the tests. When we calculate the tests’s statistical power, only 

the F-test when using 
6

ˆ
KMk  will be presented since the other tests have extensively biased 

sizes. Finally there is no effect on the statistical size when the variance of the normal 

distribution is increased. Therefore, we only present the size when the error term follows a 

standard normal distribution. However, full results are available from the authors upon 

request.  

 

4.1 Analysis of the statistical size of the Granger causality test 

This section presents the actual sizes of the different Granger causality tests for the different 

DGPs. The actual sizes of the tests are presented in tables 3-6. The confidence interval in 

equation (9) is doubled in magnitude in order to emphasize the pattern of well-performing 

tests more clearly. Therefore, if the actual size of a test exhibits a rejection frequency 

between 0.0413 and 0.0587 it is considered as unbiased, which is marked out as shaded cells 

in the following tables. 

 

The multicollinearity effect  

The effect of increasing the degree of multicollinearity in the linear regression model is that 

the actual size of the tests also increases. For example in Table 3 when using the OLS 

estimation method then the F-test is has unbiased size in the absence of multicollinearity 
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(DGP 1). However, for the other DGPs the F-test tends to over-reject the null hypotheses. 

The other tests that are based on asymptotic distributions are often biased even for DGP 1 and 

this bias increases by the degree of multicollinearity. This increase in bias leads to a slower 

convergence rate towards the nominal size. For example, the LM test is unbiased for DGP 1 

when the sample size equals 50 but when we include multicollinearity in the model the test is 

not unbiased even when the degrees of freedom increase to 100. Thus, when the data is 

collinear we need to have very large sample sizes in order to obtain unbiased test statistics if 

we want to use the OLS to estimate the model. This is true not only for the tests based on 

asymptotic distributions but also for the F-test. On the other hand, when ridge regression 

method is applied the effects of increasing the multicollinearity decreases, especially for 

4
ˆ
KMk  and 

6
ˆ
KMk . For these estimators the bias of the tests based on asymptotic distributions 

actually decreases as the degree of multicollinearity increases. However, these tests are still 

severely biased and should, therefore, not be used. Instead, when the explanatory variables 

are highly correlated we recommend the F-test based on 
6

ˆ
KMk  as ridge estimator to test for 

the Granger causality. For DGP 2, DGP3, and DGP 4 this test is almost always unbiased. 

 

The lag-length effect  

As previously mentioned, instead of considering the sample size, the tests’ statistical sizes are 

evaluated with regards to the degrees of freedom for different models with various lag 

lengths. In this context, using OLS as estimation method, increasing the lag length does not 

cause any problems for DGP 1 for the F-test. However, the bias increases for all DGPs for the 

tests based on asymptotic distributions. This is also the case for the small-sample corrected of 

W, LR and LM tests. For the W test, the over-rejection increases while for the LR and LM 

tests the under-rejection of the nominal size increases. In addition to the above effects, there 

is also an interaction effect between increasing the lag length and the degree of 

multicollinearity. The problem caused by multicollinearity increases as the lag length 

increases for all estimation methods.  

 

The degrees of freedom effect  

When increasing the degrees of freedom, the actual size becomes substantially closer to the 

nominal size, which is especially true for the tests based on asymptotic distributions. 

However, even for DGP 1 when using small sample corrections of the W and LM tests the 
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actual size is always biased when we have access to less than 50 degrees of freedom. The 

LRC and LRE are then superior options. However, when xt is purely random then it is better 

to use the F-test than the tests based on the asymptotic distribution. For all DGPs when the 

new RRGC test is used, the bias of the tests based on asymptotic distribution slightly 

decreases but it is still non-ignorable.  
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Table 3: OLS 

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1481 0.1080 0.0681 0.0807 0.0473 0.0172 0.0464 

25 0.1090 0.0874 0.0651 0.0718 0.0501 0.0297 0.0504 

50 0.0771 0.0656 0.0556 0.0584 0.0491 0.0394 0.0480 

100 0.0632 0.0595 0.0546 0.0560 0.0508 0.0458 0.0487 

DGP 2
 

       

15 0.1858 0.1419 0.0952 0.1090 0.0691 0.0255 0.0677 

25 0.1265 0.1027 0.0769 0.0840 0.0633 0.0399 0.0656 

50 0.0874 0.0767 0.0663 0.0690 0.0586 0.0488 0.0654 

100 0.0711 0.0656 0.0609 0.0626 0.0575 0.053 0.0640 

DGP 3
 

       

15 0.1988 0.1524 0.0963 0.1134 0.0697 0.0274 0.0697 

25 0.1385 0.1117 0.0848 0.0932 0.0706 0.0502 0.0706 

50 0.0969 0.0861 0.0755 0.0789 0.0684 0.0555 0.0684 

100 0.0743 0.0699 0.0637 0.0656 0.0602 0.0552 0.0602 

DGP 4
 

       

15 0.1995 0.1538 0.1020 0.1160 0.0716 0.0281 0.0708 

25 0.1365 0.1102 0.0831 0.0912 0.0679 0.0447 0.0694 

50 0.0966 0.0831 0.0732 0.0764 0.0659 0.0548 0.0697 

100 0.0726 0.0681 0.0633 0.0640 0.0598 0.0555 0.0613 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3202 0.2168 0.1011 0.1088 0.0355 0.0002 0.0487 

25 0.1977 0.1366 0.0783 0.0833 0.0411 0.0111 0.0492 

50 0.1046 0.0818 0.0596 0.0615 0.0442 0.028 0.0471 

100 0.0767 0.0667 0.0577 0.0583 0.0484 0.0394 0.0505 

DGP 2
 

       

15 0.3733 0.2681 0.1278 0.1404 0.0507 0.0026 0.0655 

25 0.2338 0.1654 0.0950 0.1021 0.0536 0.0158 0.0625 

50 0.1293 0.1033 0.0765 0.0792 0.0549 0.0346 0.0595 

100 0.0891 0.0744 0.0613 0.0628 0.0532 0.0442 0.0551 

DGP 3
 

       

15 0.3992 0.2909 0.1467 0.1611 0.0615 0.0072 0.0710 

25 0.2528 0.1881 0.1149 0.1220 0.0681 0.0233 0.0779 

50 0.1451 0.1174 0.0910 0.0921 0.0679 0.0459 0.0745 

100 0.0900 0.0778 0.0667 0.0673 0.0590 0.0477 0.0611 

DGP 4        

15 0.3935 0.2861 0.1398 0.1527 0.0521 0.0041 0.0708 

25 0.2527 0.1881 0.1175 0.1245 0.0691 0.0194 0.0803 

50 0.1378 0.1101 0.0812 0.0838 0.0648 0.0396 0.0701 

100 0.0880 0.0758 0.0643 0.0651 0.0573 0.0475 0.0587 

Shaded cells indicate unbiased results. 
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Table 4: Ridge parameter estimated using ˆ
HK

k  

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.0954 0.0697 0.0348 0.0513 0.0300 0.0083 0.0464 

25 0.0587 0.0450 0.0270 0.0356 0.0252 0.0145 0.0454 

50 0.0372 0.0317 0.0248 0.0281 0.0246 0.0177 0.0437 

100 0.0263 0.0244 0.0216 0.0233 0.0213 0.0183 0.0437 

DGP 2
 

       

15 0.1516 0.1138 0.0664 0.0861 0.0510 0.0170 0.0643 

25 0.0969 0.0776 0.0545 0.0633 0.0473 0.0270 0.0651 

50 0.0602 0.0517 0.0430 0.0464 0.0406 0.0318 0.0580 

100 0.0415 0.0376 0.0333 0.0351 0.0326 0.0287 0.0326 

DGP 3
 

       

15 0.1819 0.1397 0.0848 0.1036 0.0599 0.0201 0.0599 

25 0.1151 0.0947 0.0695 0.0791 0.0573 0.0344 0.0573 

50 0.0790 0.0704 0.0601 0.0647 0.0536 0.0438 0.0536 

100 0.0629 0.0588 0.0535 0.0551 0.0506 0.046 0.0506 

DGP 4
 

       

15 0.1838 0.1403 0.0896 0.1043 0.0660 0.0232 0.0744 

25 0.124 0.0982 0.0728 0.0815 0.0608 0.0383 0.0709 

50 0.0821 0.0712 0.0619 0.0648 0.0556 0.0477 0.0622 

100 0.0671 0.0622 0.0576 0.0591 0.0543 0.0495 0.0607 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.2441 0.1657 0.0634 0.0862 0.0281 0.0000 0.0374 

25 0.1247 0.0884 0.0406 0.0548 0.0258 0.0046 0.0313 

50 0.0554 0.0426 0.0278 0.0329 0.0229 0.0119 0.0252 

100 0.0326 0.0277 0.0195 0.0226 0.0184 0.0125 0.0190 

DGP 2
 

       

15 0.2809 0.2032 0.0769 0.1013 0.0321 0.0000 0.0441 

25 0.1892 0.1360 0.0743 0.0849 0.0420 0.0091 0.0510 

50 0.0997 0.0786 0.0535 0.0581 0.0420 0.0249 0.0459 

100 0.0595 0.0505 0.0412 0.0434 0.0366 0.0282 0.0380 

DGP 3
 

       

15 0.3568 0.2528 0.1190 0.1336 0.0459 0.0002 0.0640 

25 0.1982 0.1403 0.0816 0.0904 0.0469 0.0110 0.0548 

50 0.1115 0.0873 0.0625 0.0671 0.0487 0.0312 0.0525 

100 0.0722 0.0623 0.0521 0.0540 0.0454 0.0376 0.0472 

DGP 4
 

       

15 0.3800 0.2748 0.1311 0.1474 0.0473 0.0002 0.0643 

25 0.2421 0.1713 0.1040 0.1116 0.0588 0.0161 0.0686 

50 0.1362 0.1079 0.0818 0.0852 0.0608 0.0387 0.0655 

100 0.0871 0.0756 0.0655 0.0664 0.0543 0.0430 0.0572 

Shaded cells indicate unbiased results. 
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Table 5: Ridge parameter estimated using 
4

ˆ
KM

k  

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1450 0.1050 0.0640 0.077 0.045 0.0120 0.0465 

25 0.1061 0.0854 0.0624 0.0698 0.0486 0.0296 0.0500 

50 0.0775 0.0665 0.0565 0.0601 0.0519 0.0410 0.0530 

100 0.0651 0.0610 0.0561 0.0577 0.0528 0.0473 0.0501 

DGP 2
 

       

15 0.1724 0.1285 0.0743 0.0944 0.0544 0.0139 0.0583 

25 0.1239 0.0975 0.0706 0.0795 0.0585 0.0377 0.0569 

50 0.0815 0.0713 0.0610 0.0641 0.0540 0.0450 0.0559 

100 0.0693 0.0639 0.0587 0.0606 0.0557 0.0513 0.0575 

DGP 3
 

       

15 0.1653 0.1255 0.0690 0.0919 0.0516 0.0125 0.0516 

25 0.1248 0.0991 0.0735 0.0824 0.0630 0.0364 0.0630 

50 0.0910 0.0787 0.0669 0.0704 0.0603 0.0494 0.0603 

100 0.0700 0.0641 0.0596 0.0610 0.0558 0.0513 0.0558 

DGP 4
 

       

15 0.1360 0.1004 0.0514 0.0717 0.0415 0.0084 0.0369 

25 0.1169 0.0908 0.0646 0.0748 0.0526 0.0302 0.0561 

50 0.0854 0.0743 0.0631 0.0675 0.0577 0.0468 0.0592 

100 0.0655 0.0602 0.0550 0.0575 0.0519 0.0482 0.0576 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3073 0.2112 0.0832 0.1019 0.0284 0.0000 0.0406 

25 0.2039 0.1419 0.0760 0.0821 0.0414 0.0085 0.0491 

50 0.1117 0.0870 0.0642 0.0664 0.0437 0.0275 0.0485 

100 0.0786 0.0689 0.0584 0.0595 0.0494 0.0386 0.0518 

DGP 2
 

       

15 0.3483 0.2440 0.0950 0.1219 0.0349 0.0000 0.0481 

25 0.223 0.1591 0.0944 0.1010 0.0531 0.0120 0.0640 

50 0.1213 0.0961 0.0696 0.0721 0.0504 0.0325 0.0557 

100 0.0876 0.0770 0.0636 0.0654 0.0543 0.0444 0.0563 

DGP 3
 

       

15 0.3498 0.2413 0.0883 0.1206 0.0335 0.0000 0.0483 

25 0.2261 0.1595 0.0887 0.0968 0.0486 0.0108 0.0593 

50 0.1226 0.0963 0.0717 0.0744 0.0516 0.0309 0.0547 

100 0.0846 0.0744 0.0649 0.0663 0.0554 0.045 0.0574 

DGP 4
 

       

15 0.3175 0.2118 0.0646 0.0980 0.0263 0.0000 0.0383 

25 0.2256 0.1597 0.0869 0.0982 0.0490 0.0093 0.0575 

50 0.1354 0.1061 0.078 0.0814 0.0561 0.0342 0.0617 

100 0.0911 0.0779 0.0664 0.0678 0.0585 0.0478 0.0607 

Shaded cells indicate unbiased results. 
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Table 6: Ridge parameter estimated using 
6

ˆ
KM

k  

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1405 0.1048 0.0636 0.0783 0.0441 0.0127 0.0420 

25 0.1021 0.0800 0.0591 0.0671 0.0458 0.0264 0.0494 

50 0.0734 0.0651 0.0543 0.0582 0.0473 0.0365 0.0487 

100 0.0666 0.0622 0.0569 0.0590 0.0536 0.0487 0.0491 

DGP 2
 

       

15 0.1791 0.1336 0.0783 0.0974 0.0554 0.0169 0.0584 

25 0.1219 0.0978 0.0703 0.0794 0.0557 0.0342 0.0573 

50 0.0879 0.0780 0.0680 0.0711 0.0599 0.0486 0.0568 

100 0.0677 0.0624 0.0573 0.0592 0.0546 0.0499 0.0519 

DGP 3
 

       

15 0.1596 0.1171 0.0622 0.0852 0.0482 0.0125 0.0482 

25 0.1249 0.1017 0.0739 0.0848 0.0602 0.0368 0.0572 

50 0.0868 0.0765 0.064 0.0683 0.0559 0.0462 0.0559 

100 0.0720 0.0669 0.0621 0.0639 0.0594 0.0537 0.0594 

DGP 4
 

       

15 0.1349 0.0916 0.0424 0.0644 0.0350 0.0056 0.0389 

25 0.1133 0.0897 0.0619 0.0736 0.0525 0.0289 0.0548 

50 0.0885 0.0777 0.0664 0.0697 0.0584 0.0467 0.0585 

100 0.0742 0.0699 0.0655 0.0666 0.0621 0.0565 0.0567 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3061 0.2086 0.073 0.0955 0.0242 0.0000 0.0456 

25 0.1909 0.1310 0.0758 0.0819 0.0408 0.0088 0.0483 

50 0.1172 0.0904 0.0635 0.0647 0.0437 0.0265 0.0477 

100 0.0764 0.0662 0.0551 0.0565 0.0461 0.0392 0.0478 

DGP 2
 

       

15 0.3416 0.2339 0.0818 0.1121 0.0337 0.0001 0.0459 

25 0.224 0.1609 0.0900 0.0977 0.0481 0.0122 0.0570 

50 0.1249 0.0991 0.0716 0.0748 0.0525 0.0317 0.0576 

100 0.0811 0.0702 0.0604 0.0613 0.0518 0.0420 0.0548 

DGP 3
 

       

15 0.338 0.2272 0.0690 0.1081 0.0270 0.0000 0.0446 

25 0.2182 0.1509 0.0815 0.0911 0.0422 0.0092 0.0512 

50 0.1179 0.0910 0.0684 0.0708 0.0501 0.0320 0.0543 

100 0.0889 0.0760 0.0651 0.0663 0.0551 0.0447 0.0574 

DGP 4
 

       

15 0.3018 0.1964 0.0517 0.0908 0.0220 0.0000 0.0329 

25 0.2352 0.1677 0.0908 0.1048 0.0518 0.0093 0.0572 

50 0.1354 0.1062 0.0784 0.0814 0.0564 0.0349 0.0587 

100 0.0871 0.0773 0.0651 0.0664 0.0551 0.0467 0.0579 

Shaded cells indicate unbiased results. 
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4.2  Analysis of the statistical power of the Granger causality test 

The analysis of the power of the test is of central importance since a test will be of little use if 

it does not have enough power to reject a false null hypothesis. However, in the simulation 

part of this study it is detected that most applied tests in previous research suffer from serious 

size distortions for DGP 2 to DGP 4. Since it is meaningless to compare the power of biased 

test to power of unbiased tests, the power functions are only illustrated for tests that generally 

are unbiased in most of the cases. Thus, the power is only calculated when the parameters of 

the regression model is estimated using KM6 as ridge estimator together with the F test. In 

Figure 1 the power of the test when the lag length equals to two is showed and in Figure 2 we 

display the power when the lag length equals four. The most important factors for the power 

of the test are the degree of correlation, the sum of the causality parameters, the sample size 

and the lag length. All of those individual factors have positive impact on the power 

functions. Thus, the power becomes higher as any of these factors increases. The most 

remarkable positive effect has the degree of correlation. It is clear from the power functions 

that the new test is useful in the presence of multicolinearity. 

 

  

  

Figure 1: Power of the F test using KM6 as ridge estimator when the lag length equals 2. 
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 Figure 2: Power of the F test using KM6 as ridge estimator when the lag length equals 4. 

 

5. Conclusions 

This paper concludes that the traditional forms of the Granger causality test method over-

reject the true null hypothesis in the presence of multicollinearity. A new test named Ridge 

Regression Granger Causality (RRGC) test is suggested as a remedy to the problem. In order 

to compare the properties of all the Granger causality tests in this study a simulation 

experiment is conducted. The factors varied in the Monte Carlos simulation are the sample 

size, the lag length of the dynamic regression model and the degree of multicollinearity. For 

every applied DGP the performance of Wald (W), LR, LM, WC, LRC, LMC and the F-test 

are investigated when the regression model is estimated by OLS in comparison to ridge 

regression. The result of the analysis confirms that increasing the lag length or the degree of 

multicollinearity have a negative impact on the statistical size of the Granger causality test 

while increasing the sample size has a positive impact. The optimal method is to estimate the 

regression model by the use of KM6 as ridge estimator and by testing for Granger causality 

using the F-test. Thereafter, the power of the best test is calculated. The main factors that 

have an impact on the power of the test are the sum of the causality parameters, the sample 
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size the lag length, and the degree of multicollinearity. A high value for these factors leads to 

higher power of the test. The main conclusion and essentially unique contribution of this 

paper is that multicollinearity causes over-rejections of the true null hypotheses for the 

traditional GC test and that the RRGC test can be used instead of traditional GC methods to 

gain control of the over-rejection of the null hypotheses in the presence of multicollinearity.  
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