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Abstract 
 
This paper extends the classical exhaustible-resource/stock-pollution model with 
irreversibility of pollution decay, meaning that after reaching some threshold there is no decay 
of the pollution stock. Within this framework, we answer the question how the potential 
irreversibility of pollution affects the extraction path. We investigate the conditions under 
which the economy will optimally adopt a reversible policy, and when it is optimal to enter 
the irreversible region. In the case of irreversibility it may be optimal to leave a positive 
amount of resource in the ground forever. As far as the optimal extraction/emission policy is 
concerned, several types of solutions may arise, including solutions where the economy stays 
at the threshold for a while. Given that different programs may satisfy the first order 
conditions for optimality, we further investigate when each of these is optimal. The analysis is 
illustrated by means of a calibrated example. To sum up, for any pollution level, we can 
identify a critical resource stock such that there exist multiple optima i.e. a reversible and an 
irreversible policy that yield exactly the same present value. For any resource stock below this 
critical value, the optimal policy is reversible whereas with large enough resources, 
irreversible policies outperform reversible programs. Finally, the comparison between 
irreversible policies reveals that it is never optimal for the economy to stay at the threshold for 
a while before entering the irreversible region. 
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1 Introduction

In the design of optimal climate policy it should be taken into account that most emissions
of CO2 result from burning fossil fuels, which originate from non-renewable resources. It
is forcefully argued by e.g., D’Arge and Kogiku (1973) that “the ’pure’ mining problem
must be coupled with the ’pure’ pollution problem”. Although not really applicable to
the climate change problem they also state that questions like these become relevant:
which should we run out first, air to breathe or fossil fuels to pollute the air we breathe?
These questions have attracted environmental and resources economists’ attention for a
long time. An early prototype model can be found in Withagen (1994) where utility is
derived from consumption of fossil fuel from a non-renewable resource and where the use
of the fossil fuel also contributes to the accumulation of CO2. The accumulated stock
of CO2 causes damage, represented by a convex damage function. One of the findings
is that the optimal extraction path of the fossil fuel becomes flatter than in the absence
of environmental damage. In a similar model Sinclair (1994) and Ulph and Ulph (1994)
derive the optimal carbon tax needed to implement the first-best optimum. Still focusing
on the exhaustible-resource/stock-pollution model, Tahvonen (1997) fully characterizes
the properties of the optimal extraction/emission policy in the case of exponential decay
of pollution. He notably shows that, since extraction and pollution necessarily converge
toward zero, in the long run, the pollution problem does not have an influence on the total
amount of the resource extracted over the planning period. In that sense, the pollution
and the resource management problems are independent of each other.

A widely used alternative to capturing environmental damage by a damage function is
to impose a ceiling on the total accumulated stock of CO2. Examples of this approach are
Chakravorty et al. (2006, 2008). This is usually motivated in the following ways. First
one could argue that a ceiling is a political reality. International negotiations are indeed
aiming at keeping the temperature rise below 2 degrees 0C and it is widely accepted
that in order to accomplish this the CO2 concentration should be no more than 450
ppmv. Second, and related to the first argument, taking a damage function rather than a
ceiling, may lead to highly undesirable outcomes because there is substantial uncertainty
surrounding the effects of climate change and catastrophes may occur (see e.g., Tsur and
Zemel, 2008). With a ceiling, one considers that there is no pollution damage as long
as the pollution stock remains below or equal to this critical level whereas the damage
occurs, with potentially huge repercussions on the economy, once the ceiling is exceeded.
As a consequence, it is never optimal to let pollution accumulate beyond the ceiling in
this framework. In our model, we also have an irreversible event related to the crossing
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of a critical pollution stock. But this event cannot be qualified as a catastrophe from the
point of view of the economy since it only affects the natural regeneration of ecosystems.

It is well known that the climate system1 is extremely complex and that economists’
modelling of it is rather rudimentary. The focus of the present contribution is on irre-
versibility beyond a certain pollution level, but in a different sense. Usually the decay of
pollution is modeled as linear, meaning that a constant percentage of the existing stock
is diluted per unit of time. This approach has been criticized by many authors including
Dasgupta (1982), Fiedler (1992), and Pethig (1993). Representing decay as a constant
fraction of the existing stock is far too simplistic and with a large stock of CO2 the ab-
sorption capacity of oceans and forests may be reduced considerably. This is what we want
to capture by introducing the ceiling or irreversibility threshold. Indeed, experts of the
second working group of the IPCC (2007) have identified positive climate feedbacks due
to emissions of greenhouse gases (GHG). There is more and more evidence that increasing
emission levels and concentrations of GHG disturb the regeneration capacity of natural
ecosystems. Oceans, that form the most important carbon sink, display a buffering capac-
ity that begins to get saturated. At the same time, the assimilation capacity of terrestrial
ecosystems (lands and forests form the other important carbon sink) will likely peak by
mid-century and then decline to become a net source of carbon by the end of the present
century. Therefore, the irreversible degradation of the assimilative capacity of Nature does
not seem so distant from today.

In economics alternative specifications have been proposed by e.g., Forster (1975).
They usually allow for inverted-U shaped decay with the important feature that there
exists a critical threshold of pollution above which the assimilation capacity of Nature
becomes permanently exhausted, thereby implying an irreversible concentration of pollu-
tion. In this way a ceiling is introduced, not on the allowed stock of pollutants but on
the stock of pollutants that allows for decay. The decision maker is then faced with the
problem whether it is optimal to stay below the ceiling and benefit from decay or going
beyond it, because of higher consumption, and then stay in the irreversible region.

Forster (1975) is the very first one who breaks with the assumption of a constant decay
rate. He claims that the inverted-U shaped decay may give rise to a multiplicity of solutions
but does not deal with the technical issue of non-convexity. This is done by Tahvonen and
Withagen (1996) who provide a detailed analysis of the impact of irreversibility of decay
on the optimal control of pollution. The inverted-U shaped decay function introduces

1We focus on climate change, but one could argue that all ecosystems are complex and fragile. Cropper
(1976) has been one of the first contributions in economics to consider the consequences. See Polasky et
al. (2011) for a more recent account.
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a non-convexity and they show that this may result in the existence of multiple paths
satisfying the necessary conditions, starting from the same initial stock values.

The present paper adds to the contribution by Tahvonen and Withagen by introduc-
ing the irreversibility of decay in the classical exhaustible-resource/stock-pollution model,
without extraction costs and backstop technology. In contrast with Tahvonen and Witha-
gen we take exhaustibility explicitly into account. We also build on Tahvonen (1997) who
deals with exhaustibility, but has linear decay. Our approach to modelling irreversibility
is to assume that the decay rate is linear for levels of pollution up to some critical level,
after which decay is zero and remains zero. This way of modeling decay differs from the
quadratic approach adopted by Tahvonen and Withagen (1996). We do so in order to cap-
ture the fact that the regenerative capacity may vanish abruptly, and not in a smooth way.
Within this framework, the first question is how the potential irreversibility of pollution
affects the extraction path. Our aim is also to emphasize the conditions under which the
economy will optimally adopt an irreversible or a reversible policy. Our work is also re-
lated to a recent contribution by Amigues and Moreaux (2012) who consider a less drastic
case, where decay doesn’t become zero after a certain threshold, but the decay rate stays
positive, but at a lower level. Amigues and Moreaux, however, don’t take exhaustibility
into account.

Once the situation has turned irreversible, we show that the pollution problem does
affect the total amount of resource extracted. In particular, it may be optimal to leave a
positive amount of resource in the ground forever. As far the optimal extraction/emission
policy is concerned, several types of solutions may arise. We derive a simple condition
that guarantees that it is optimal to stay in what is called the reversible region. When this
condition does not hold, it is difficult to conclude whether the optimal policy is reversible
or irreversible. But we are able to characterize all programs that satisfy the necessary
conditions. Moreover we provide some intuition for the optimal choice to be made. We
also have a rudimentary non-convexity and it is one of the aims of the present paper to
investigate the occurrence of multiplicity in our model. We illustrate our findings using a
numerical and calibrated example.

With our numerical example we are able to divide the set of initial conditions, for
pollution and the resource stock, into several regions, each associated with one or more
optimality candidates. When the initial resource stock is low enough, the upper bound
set on the resource stock becoming lower as initial pollution increases, optimal solution is
reversible and may feature a period of time staying at the threshold. For larger resource
stocks, irreversible and reversible policies co-exist. We illustrate the existence of multiple
candidates for optimality. Computation of present values reveals that for any pollution

4



level, the reversible policy yields the highest value for low to medium resource stocks,
whereas it is optimal to follow an irreversible policy when the initial endowment of the
resource is high enough. In addition, among the irreversible policies, the ones immedi-
ately entering the irreversible region always dominate those that stay at the threshold
for a period of time. More importantly, for any initial pollution level, one can find the
corresponding resource stock such that reversible and irreversible policies yield exactly
the same present value. Therefore, we show the existence of multiple optima. This result
echoes Tahvonen and Withagen (1996)’s findings, in their model with a quadratic decay
and abundant resource. It also raises the question of how a policy maker should decide
between these two policy alternatives with so distinct features.

We will also pay attention to the type of decay function employed by Tahvonen and
Withagen (1996) in order to see what the effect is of exhaustibility in the context of their
model. Since we cannot have sustained extraction at a positive level, it should be clear
that, the results differ to a large extent. The crucial difference between the two approaches
is that close to the threshold there is large decay in our model, whereas in theirs decay
is vanishing. This implies that with quadratic decay it is never optimal to stay at the
threshold for a while, neither before returning to the reversible region, nor before entering
the irreversible region. However, for low initial fossil fuel stocks the difference are not
striking.

The paper is organized as follows. In section 2 we present the formal model. Section 3
characterizes the optimality candidates, reversible as well as irreversible. In section 4 we
derive the optimum for a calibrated example and provide some economic intuition about
when irreversibility plays a role. Section 5 compares our results with those obtained by
Tahvonen and Withagen (1996). Section 6 concludes.

2 The model

We consider a partial equilibrium representation of the global warming problem. Our
carbon economy is described by the following set of assumptions. The economy produces
one final good. Production of the good is denoted by y. We assume that it is produced
with a technology that uses a nonrenewable natural resource of fossil fuels, in such a way
that final production equals the rate of extraction. Extraction is costless. Emissions are
a one-to-one by-product of production. So they equal y as well. The resource stock x

follows the usual law:

ẋ(t) = −y(t) with x(0) = x0 given, x(t) ≥ 0 and y(t) ≥ 0 (1)
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Hence x(t) = x0 −
∫ t

0
y(u)du. Let U(y) be the utility derived from consumption of the

good. In the same vein as Tahvonen and Withagen (1996) we make:

Assumption 1. The utility function is such that: U(0) = 0, U ′′(y) < 0, 0 < U ′(0) <

∞ and there exists ȳ such that U ′(ȳ) = 0.

Remark. The utility function can also be understood as a profit function: U(y) =

py−c(y) with p a constant and exogenous price and c(y) a convex production cost function.

Emissions contribute to the accumulation of a pollution stock, z. The initial pollution
stock is given: z0. Pollution accumulation is not innocuous to ecosystems and, in particular,
it affects their capacity to regenerate. We assume that pollution turns irreversible if the
stock passes a critical threshold z̄. We suppose z̄ > z0. This irreversibility threshold is
known to the policy-maker. We do not consider any uncertainty surrounding z̄. To account
for irreversibility, the dynamics of the stock of the pollutant are defined piece-wise:

ż(t) =

{
y(t)− αz(t) if z(t) ≤ z̄

y(t) else
(2)

The natural regeneration or assimilation rate α is constant and positive as long as
accumulated emissions are not too high, that is, as long as the stock remains below or is
at the irreversibility threshold z̄. Once the threshold is surpassed, a new stage is entered
where the regeneration capacity is completely and permanently vanished. Thus, pollution
becomes irreversible. In section 5 we will consider an alternative specification where
decay is not exponential up to the ceiling, but is inverted U-shaped, the case studied by
Tahvonen and Withagen (1996), in order to assess the differences between their model and
ours. Hereafter, the domain where z ≤ z̄ is called the reversible region whereas whenever
pollution is higher than z̄, the economy is said to be in the irreversible region. For the
solution it matters whether the reversible region is an open or a closed set. We assume
the latter.

Pollution is damaging to the economy. For any level z, pollution damage is denoted
by D(z).

Assumption 2. The damage function is such that: D(0) = 0, D′(z) > 0, D′′(z) >

0 for all z > 0, D′(0) = 0 and limz→∞D
′(z) =∞.

The social welfare function reads

V =

∞∫
0

e−δt [U(y(t))−D(z(t))] dt (3)

with δ the discount rate.
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3 Optimality candidates

We make a distinction between reversible and irreversible solutions, according to the be-
havior of the pollution stock. A solution is said to be reversible if the pollution stock
remains within the reversible region forever: z(t) ≤ z̄ for all t ≥ 0. By contrast, a solution
is irreversible if the pollution stock enters the irreversible region in finite time. In this
section we provide a first sketch of the characteristics of these solutions by outlining the
optimization programs that correspond to the candidates.

A reversible policy solves the problem of maximizing (3) subject to ( 1), ż(t) = y(t)−
αz(t), and z(t) ≤ z̄. The latter condition is a pure state constraint. The current value
Lagrangian reads L(y, z, λ, µ) = U(y)−D(z)− λ(y− αz)− µy+ κ(z̄ − z). The co-state λ
is to be interpreted as the cost of pollution and µ is the in situ value of the resource stock.
The Lagrange multiplier κ is associated with the pure state constraint. The necessary
conditions include (omitting the time argument when there is no danger of confusion)

U ′(y)− λ− µ 5 0, (U ′(y)− λ− µ)y = 0, y = 0

µ̇ = δµ

λ̇ = (δ + α)λ−D′(z)− κ, κ ≥ 0, κ(z̄ − z) = 0

limt→∞ e
−δt(λ(t)z(t) + µ(t)x(t)) = 0

(4)

Irreversible policies solve a two-stage optimal control problem. Suppose that from
a given z0 < z̄, it is optimal to reach the threshold in finite time and to go beyond z̄

immediately afterwards. Fix, for the time being the date of the transition T and the
resource stock at the transition: xT . Then the optimal path can be decomposed into two
parts, each solving an optimization problem. The first problem reads

max

T∫
0

e−δt(U(y)−D(z))dt

subject to

ż = y − αz, z(0) = z0, z(T ) = z̄

ẋ = −y, y(t) ≥ 0, x(0) = x0, x(T ) = xT

For this problem we can neglect the pure state constraint and therefore the necessary
conditions defined in (4) with κ = 0 are also valid here (except the transversality condition
since this regime is not terminal).
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The second problem reads

max

∞∫
T

e−δt(U(y)−D(z))dt

subject to

ż = y, z(T ) = z̄

ẋ = −y, y(t) ≥ 0, x(T ) = xT

For the second problem we get the same necessary conditions as in (4), with α put equal
to zero. The pure state constraint can be neglected here as well.

The two optimization problems posed above have fixed T and xT . It will be our task
in the sequel to determine the optimal transition time T as well as the optimal resource
stock to be left in situ at that instant of time.

There is another optimality candidate. In principle, it may be optimal to stay at the
threshold for a non-degenerate period of time before entering the irreversible region. Also
this possibility will be investigated in due course.

3.1 Irreversible solutions

In principle four types of irreversible programs exist. One distinction is between staying
at the threshold for just one instant of time or for a non-degenerate interval of time.
The other distinction is between full or partial exhaustion of the resource. In the present
section we characterize each of these options. We show that partial exhaustion can only
be optimal if the threshold is passed immediately after reaching it.

Before proceeding, we identify a set of conditions that need to be met for the existence
of irreversible optimality candidates. Consider the problem of maximizing social welfare
while neglecting the resource constraint as well as the possible irreversibility of decay.
This problem has necessary conditions similar to (4) with µ = κ = 0. Focus on interior
solutions: y(t) > 0 for all t.

First, for our problem to be of interest, it should be physically feasible to reach the
threshold. A necessary condition for this is that ȳ > αz̄: If the inequality would not hold
then decay at the threshold level is just too high. Put differently, assume that the economy
with abundant resource sets extraction to the maximum level for all t: y(t) = ȳ. Then,
the pollution stock monotonically converges toward a level ¯̄z = ȳ/α. If ¯̄z < z̄ ⇔ ȳ < αz̄

then it is clear that the threshold will not be reach by an economy submitted to resource
scarcity.
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Second, the threshold should be smaller than the steady state in a resource abundant
economy that is not threatened by irreversibility. Indeed, it is easily seen that in this
setting it is optimal for the economy to converge to (y∗, z∗) defined by

U ′(αz∗) =
D′(z∗)

α + δ
, y∗ = αz∗ (5)

The optimal policy consists in appropriately choosing initial emissions so that (y(0), z0)

is located on the stable branch of the saddle point. Hence, when initial pollution is low,
the initial extraction rate is high and decreases; pollution monotonically increases until the
steady state is reached. For a high z0, the economy starts with a low extraction rate, that
is increasing towards the steady state whereas the pollution stock decreases. Returning to
the problem with exhaustibility and irreversibility, we require z̄ < z∗. The reason is that if
z̄ ≥ z∗ and noting that z0 < z̄, the threshold z̄ will never be exceeded in an optimum. To
see this compare two economies: a resource abundant economy, denoted by hats (x̂0 =∞)

and a resource-poor economy (x0 <∞). Suppose at some instant of time T we have ẑ(T ) =

z(T ) = z̄ > z∗ and the resource-poor economy enters the irreversible region: y(T ) > αz̄.

The resource rich economy necessarily has ŷ(T ) ≤ αz̄ because it monotonically converges
to ẑ∗. Hence, from the combination of necessary optimality conditions, U ′(y(T )) = λ(T )+

µ(T ) < U ′(ŷ(T )) = λ̂(T ), so that λ(T ) < λ̂(T ). The necessary conditions also yield:

λ̂(T ) = e(α+δ)T

∞∫
T

e−α(α+δ)sD′(ẑ(s))ds

and

λ(T ) = eδT
∞∫
T

e−δsD′(z(s))ds

= e(α+δ)T

∞∫
T

e−(α+δ)seα(s−T )D′(z(s))ds

> e(α+δ)T

∞∫
T

e−(α+δ)sD′(z(s))ds > λ̂(T )

because z(t) ≥ ẑ(t) for all t ≥ T. This is a contradiction. So, z̄ < z∗, which is equivalent
to U ′(αz̄) > D′(z̄)/(α + δ), is also necessary for the existence of irreversible solutions.

Third, once the economy finds itself at the threshold, it should at least not be re-
frained, from a welfare point of view, from passing the threshold. This requires that
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the marginal utility of the first unit of consumption U ′(0) should be larger than total
discounted marginal damages: D′(z̄)/δ. To see this, focus now on the problem with irre-
versibility of decay but without resource scarcity. If an economy with abundant resource
were to exceed the threshold in finite time, it would achieve in the long run a steady
state level of pollution given by U ′(0) = D′(z∞)/δ. If U ′(0) ≤ D′(z̄)/δ then we obtain a
contradiction because z∞ ≤ z̄. So, it must hold that U ′(0) > D′(z̄)/δ.

With these assumptions in mind, the analysis of irreversible solutions proceeds as
follows. These candidates solve an optimization program that can be decomposed into the
two sub-problems presented above. In addition, they must satisfy an additional optimality
condition related to the instant when pollution exceeds the threshold. Define the value
functions, for the given T and xT

V (T ) =

T∫
0

e−δt(U(y)−D(z))dt

V̂ (T ) =

∞∫
T

e−δt(U(ŷ)−D(ẑ))dt

Here the optimum of problem 2 is denoted by hats. According to Seierstad and Sydsaeter
(1987, p. 213) we have for T > 0

∂V

∂T
= e−δT [U(y(T ))− λ(T )(y(T )− αz̄)− µ(T )y(T )−D(z̄)]

= e−δT [U(y(T ))− U ′(y(T ))y(T ) + λ(T )αz̄ −D(z̄)]

−∂V̂
∂T

= e−δT [U(ŷ(T ))− λ̂(T )ŷ(T )− µ̂(T )ŷ(T )−D(z̄)]

= e−δT [U(ŷ(T ))− U ′(ŷ(T ))ŷ(T )−D(z̄)]

Hence, if an optimal T exists, the following equation is satisfied:

U(y(T ))− U ′(y(T ))y(T ) + λ(T )αz̄ = U(ŷ(T ))− U ′(ŷ(T ))ŷ(T ) (6)

Under assumption 1, the function U(y) − U ′(y)y is monotonically increasing. This
implies that the entrance in the irreversible region is accompanied by an upward discon-
tinuity in y. The economy compensates for the loss of benefits (from pollution decay) by
an increase in consumption.

Next we will consider all possible irreversible solutions in detail, thereby paying atten-
tion to the possibility of partial depletion. This cannot occur in Tahvonen’s model since the
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pollution problem has no influence on the extraction policy and full exhaustion occurs in
finite time. Within our framework with irreversibility, it may however be possible to leave
some resource in the ground forever because of the ever increasing environmental damage.
Since the shadow value of the resource stock vanishes due to the transversality condition,
necessary conditions for the second problem are given by (4) with (µ, α, κ) = (0, 0, 0).

Along any optimal irreversible path, in the limit for t → ∞, the extraction rate van-
ishes. This implies that U ′(0) = D′(z(∞))/δ, which uniquely defines z(∞). Let T be the
moment when the irreversible region is entered. Since z(T ) = z̄, the time path of z is
uniquely determined. This implies that the time path of ŷ, the solution of the second
problem, including ŷ(T ) is also uniquely defined. Expression (6) simplifies to

U(y(T ))− U ′(y(T ))(y(T )− αz̄) = U(ŷ(T ))− U ′(ŷ(T ))ŷ(T ).

This yields y(T ). For a given z0 we can uniquely determine the initial extraction rate
y(0) that leads the economy to y(T ). We can then also find the initial resource stock
that makes the proposed path feasible. If the actual initial resource stock is larger than
or equal to this critical value, then we can always find a path satisfying the necessary
conditions. The higher initial stock will not change social welfare, because the shadow
value of the resource stock is zero. Hence, the path satisfying the necessary conditions
will not alter. Note that ŷ(T ) does not depend on α and that it should be larger than
αz̄ because otherwise an upward jump will not prevail. Therefore, and this is intuitively
appealing, we should have α small enough for this case to occur. The general conclusion
is that with α large it is optimal to choose the reversible program.

Note that the dynamic system governing irreversible paths without exhaustion is qual-
itatively the same as the one we would obtain in the pollution problem alone. In particular
the isoclines for y and z are identical to those of the problem with an abundant resource
and it is thus possible to illustrate the features of this kind of irreversible policy in the
(z, y) plane (see the trajectory starting from yi0 in figure 1).2

Next, we address the question whether it could be optimal to stay in z̄ for a while
before entering the irreversible region and leaving some of the resource unexploited. The
answer is negative, as can be seen from condition (6). Suppose that for some interval of

2An example of reversible policy is also depicted for illustrative purposes (the one starting from yr0).
Actually, it should be clear that for policies featuring exhaustion the shadow price is not nil which
complicates the dynamics. This notably implies that the ẏ = 0 locus cannot be represented so simply
because its location changes with the evolution of the shadow price. See the next section.
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Figure 1: Irreversible path with a discontinuity in extraction.

time z(t) = z̄ and y(t) = αz̄. Then (6) reduces to

U(αz̄) = U(ŷ(T ))− U ′(ŷ(T ))ŷ(T )

With ŷ(T ) given, this condition does not hold in general. Intuition runs as follows. Take
z0 = z̄, thus T = 0, and suppose we have z(t) = z̄ and y(t) = αz̄ until some instant of
time T1 whereas for t ≥ T1 we have the optimal path constructed above, leaving some of
the resource unexploited. Since the resource is not completely depleted its shadow price
equals zero, meaning that adding to the initial stock does not increase social welfare. This
implies that the planner is indifferent between the resource stocks at all instants of time
between 0 and T1. Hence, the program followed from time 0 on is welfare equivalent to
the program followed from T1 on. But the welfare values obviously differ. This yields a
contradiction. Hence we do not have to worry about programs that do not exhaust the
stock and stay in z̄ for a while.

The last possibility consists in entering the irreversible region and fully exhausting the
resource. In this case, we cannot find simple arguments to rule out a solution featuring
a stage at the threshold. So, in general, there are two irreversible candidates leading to
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exhaustion: one where the system stays in z̄ for a while and one where the system passes
through z̄ at just one instant of time. In addition, one logically expect that irreversible
candidates with exhaustion exist for initial resource stocks lower than the ones leading to
irreversibility but conservation.

We summarize all the preceding analysis in the following proposition.

Proposition 1 Suppose z0 ≤ z̄. The conditions ȳ > αz̄, U ′(0) > D′(z̄)/δ, U ′(αz̄) >

D′(z̄)/(α+ δ) and (6) are necessary for the existence of irreversible solutions. There exist
three kinds of irreversible optimality candidates:

i/ Two irreversible candidates with exhaustion of the resource in finite time: One
directly reaching the irreversible region whereas along the other, the economy stays at the
threshold for a non-degenerate period of time.

ii/ One irreversible candidate with some amount of resource left in the ground in the
long run, immediately crossing the threshold, as soon as it is reached.

In the next section, we examine the features of reversible optimality candidates.

3.2 Reversible solutions

We will show that there are two candidates for optimality with reversibility that is, two
different solutions to the necessary optimality conditions (4). One candidate is always in
the interior of the reversible region, the other stays at the boundary for a while.

For the case where the constraint z(t) ≤ z̄ is ignored a priori, it has been shown by
Tahvonen (1997) that, given x0, if z0 is small enough, z(t) is inverted U-shaped. Otherwise
z is monotonically decreasing. In both cases the resource is exhausted in finite time, since
it has been assumed that U ′(0) <∞. Tahvonen works with fixed x0 by varying z0. In the
subsequent analysis, it is more convenient to think in terms of fixed z0 and varying x0. It
turns out that Tahvonen’s claim can easily be restated as:

Lemma 1 If x0 is small enough, z is monotonicaly decreasing whereas, for high enough
x0, z is inverted U-shaped.

Proof. See appendix A.
Then, we can establish the following:

Proposition 2 For any x0 > 0 there exists a program satisfying the necessary conditions
(4). There exists x̌0 such that the unique reversible solution is to have the pollution stock
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increasing initially, hitting the threshold for just an instant of time, and decreasing even-
tually. For x0 < x̌0 the solution is to stay in the reversible region forever. For x0 > x̌0 the
program satisfying the necessary conditions has an interval of time along which the pollu-
tion stock is at its threshold level. In all cases the resource stock is depleted eventually.

Proof. See appendix B.
In sum, for any z0 in the reversible region, there always exists a unique reversible

optimality candidate. The nature of the solution mostly depends on the ordering between
the initial resource stock and the critical x̌0. On the one hand, for all initial resource stocks
smaller than x̌0 the threshold will never be hit, which means that the economy stays in
the interior of the reversible region forever. On the other hand, any initial x0 > x̌0 makes
the crossing of the threshold feasible. Hence, when x0 > x̌0, the pure state constraint will
be binding for a non degenerate period of time. The resulting solution looks as follows.
Initially the rate of extraction is high and pollution approaches the threshold. Then, for
a period of time (z, y) = (z̄, αz̄) and λ̇ = (δ + α)λ − D′(z̄) − κ.3 There is a final phase
where pollution is decreasing.

In all the cases considered here, the resource stock is depleted within finite time, extrac-
tion from the stock goes to zero as time goes to infinity and the pollution stock vanishes
asymptotically. See the path touching the threshold but remaining in the reversible region
in figure 1 for an illustration.

In conclusion, we always have a unique solution to the reversible program. In addition,
under the set of conditions summarized in proposition 1, we know that there may also exist
irreversible optimality candidates. So, in general, the optimal extraction/emission prob-
lem tackled so far can exhibit a multiplicity of optimality candidates with very different
features. This raises a series of questions: does our problem always produce multiple solu-
tions? In case of multiplicity, which one of the optimality candidates yields the optimum?
Clearly, the answer to the first question is negative. With a very low initial resource stock
and a low enough pollution stock, the threshold will never be hit. Therefore, in this case,
the optimum necessarily corresponds to the reversible solution. In other circumstances,
however, it is not possible to provide a definitive answer. That is why, in the next section,
we resort to a numerical example to conduct the optimality analysis.

3For the characterization of this solution, we make use of the continuity of z, x, λ and µ in the transition
dates. These conditions imply the continuity of y.
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4 Optimality: a numerical example

We use a quadratic specification of utility and damage{
U(y) = θy(2ȳ − y), θ > 0

D(z) = γz2

2
, γ > 0

, (7)

and choose the following set of baseline parameters: δ = 0.05, α = 0.0083, γ = 0.0022,
θ = 26.992 and ȳ = 12.466. These values are taken from Karp and Zhang (2012), whose
estimates are consistent with the values used by other related papers, dealing with the
optimal regulation of GHG, and more specifically CO2, emissions (see Hoel and Karp,
2002, Liski, 2002, Karp and Zhang, 2005). It is worth mentioning that all these papers
ignore resource scarcity and work in discrete time, except Liski (2002) whose numerical
analysis relies on an earlier version of Hoel and Karp (2002). One has to be careful when
passing from discrete to continuous time models, because for instance, our y corresponds
to a rate of emission or extraction, not to a level. Karp and Zhang (2012) have one
year periods. So, keeping the same discount rate and decay rate in continuous time
makes sense.4 The damage function depends on the stock of CO2, so that the issue of
continuous versus discrete time is not an issue. We can use the same estimate of γ as Karp
and Zhang. Finally, if we want to use their estimates of the parameters of U(y), which
in their framework represents the benefit from emission, one must accept some degree
of approximation.5 The parameter ȳ corresponds to the maximum emission level. In
the literature, it is interpreted as the business-as-usual emission level. Business-as-usual
emissions are not constant in Karp and Zhang since they decrease due to investment in
abatement capital and also respond to random variables. Here we take ȳ equal to Karp and
Zhang’s estimate of the intercept of the BAU emissions. It allows for a maximum emission
level of approximately 12 GtC per year. The initial stock of CO2 in the atmosphere is
z0 = 781 GtC. We assume that the stock of carbon that will likely trigger irreversible
changes is situated in the interval [550, 650] ppm. Converting these values into GtC, one
obtains an interval for the threshold: z̄ ∈ [1168, 1380]. Let us set z̄ = 1200 GtC. For the
moment, the initial stock of resource, also measured in GtC, is left free. A sensitivity
analysis with respect to x0 will be conducted in what follows.

For this set of baseline parameters, we obtain a clear-cut result. Whatever the initial
resource endowment and the initial pollution stock (below the threshold), there exists a

4See Hoel and Karp, 2002, for the relationship between the discount rate in discrete time and its
continuous counterpart, the same kind of relationship can be derived for the decay rate.

5For the sake of consistency, we may interpret y as the level of emission per year.
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unique reversible optimum. In accordance with our proposition 1, for any initial pollution
level, the level x0 only determines whether the economy will spend some time at the
threshold. The frontier depicted in figure 2 is the set of initial stocks (z0, x̌0) such that
starting from a point in this set, there exists a path satisfying the necessary conditions,
staying in the reversible region and hitting the threshold exactly once. From any initial
condition strictly below this frontier, the unique solution is purely reversible whereas from
any x0 above the frontier, the optimal path is still unique and reversible but stays at the
threshold for a non degenerate period of time.

For the parameters values used in our benchmark, the three first necessary conditions
for the existence of irreversible solutions (given in proposition 1) are satisfied. However,
there is no T <∞ satisfying condition (6). The reason for this is simple. Suppose that the
economy is at z̄ during a period of time. Then, during this period the extraction level is
precisely equal to αz̄ = 9.96. According to condition (6), for the switch to the irreversible
region to be optimal, the loss incurred by the economy, due to the vanishing of pollution
decay, must be compensated by a sufficient increase in extraction and hence consumption.
But, for the parameter values chosen, the extraction rate is already high (and close to
the maximum possible level ȳ) before entering the irreversible region, which precludes the
upward jump. Thus, it is not optimal to cross the threshold.

Figure 2: Optimal reversible policies

It goes without saying that the results are sensitive to the assumed maximum emission
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level. Inspection of IPCC (2010)’s emissions scenarios reveals that projected annual emis-
sions of CO2 from all sources (energy, industry and land-use change) will achieve levels
above our maximum of 12 GtC in most scenarios. This is particularly true for scenarios
based on a high-coal and high-oil and gas use). Thus, we find it both reasonable and in-
teresting to compare the results of our benchmark scenario with those in which we allowed
for higher business as usual emissions.

For that purpose, let us consider a 30 % higher ȳ. Then, the results drastically change
because of the existence of multiple optimality candidates, some of them featuring irre-
versible pollution. As an illustration, the following exercise can be conducted. By varying
the initial pollution stock and the resource stock we are able to divide the (z0, x0) plane
into four regions, delimited by three frontiers (see figure 3).

Figure 3: Frontiers

The “Reversible with a stage at the threshold” frontier has the same meaning as in
the benchmark. However, we can now identify two other critical loci. Let Tx be the
instant when the resource is exhausted. The “irreversible Tx < ∞” frontier is the lower
bound of existence of irreversible solutions crossing z = z̄ with exhaustion of the resource.
Originating from any point between the reversible and the “irreversible Tx <∞” frontiers,
the optimal solution is still reversible but has a period of time when the system remains in
z̄ for a while. A third frontier is called “irreversible Tx <∞ with a stage at the threshold”.
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For any initial point lying between “irreversible Tx <∞” and “irreversible Tx <∞ with a
stage at the threshold”, there are two optimality candidates: the reversible path staying in
z̄ for a period of time and an irreversible path that passes through the threshold for just
an instant of time, both featuring exhaustion in finite time. Above the latter frontier there
exists another candidate along which the economy stays in z̄ for a while before entering
the irreversible region and exhausting the resource. In other words, from the frontier
“irreversible Tx < ∞ with a stage at the threshold” onwards, we have three optimality
candidates.6

So, for any initial pollution stock, the initial resource endowment is crucial to under-
stand both the number and the nature of the optimality candidates. This is a prerequisite
for the analysis of the optimal policy. Fixing the stock of pollution at z0=781 GtC, such
an analysis of course relies on the measurement of the stock of available fossil fuels. The
least one can say is that the level x0 varies to a very large extent among studies. For
example, Coulomb and Henriet (2010) take a x0 close to 800 GtC by referring to the es-
timates of reserves of fossil fuels by the International Energy Agency. By contrast, Dietz
and Asheim (2012) use 6000, based on Nordhaus (2008). The differences can be explained
by the different definitions of the available stock of fossil fuels they use. Coulomb and
Henriet (2010)’s study only considers conventional reserves of fossil fuels, whereas Dietz
and Asheim (2012) also include unconventional reserves and (un)conventional resources.7

Let us now assess the impact of x0 on the nature of the optimal policy. It is clear that
as long as x0 is small enough (5 2200 GtC), there exists a unique reversible solution that
yields the optimum. Therefore, by focusing only on conventional reserves of fossil fuels,
we can argue, as in the benchmark case, that the optimal policy is reversible. Next we
have to make the welfare comparison for the cases where there are multiple optimality
candidates. For that purpose, we depict, for the initial pollution stock z0 = 781, the
present values associated with three optimality candidates, namely the reversible, and the
two irreversible with exhaustion differing by the fact that one of them stays in z̄ for a
while and the other doesn’t. Figure 4 illustrates how the values evolve when varying x0.

First, we can find a critical initial resource stock for which we have multiple optima.
The reversible policy staying in z̄ for a while and the policy entering directly the irre-

6Note that there exists a last frontier above which irreversible candidates, that passes through the
threshold for just an instant of time, lead to resource conservation. But, the range of values of x0 (>19000
GtC) allowing for resource conservation does not seem to be relevant for our analysis. That is why we
choose not to draw this frontier.

7Kalkuhl and Edenhofer (2011) report the following estimates, summing the stock of oil, coal and gas:
conventional reserves: 791 GtC, conventional resources: 11588 GtC, unconventional resources: 1839 GtC.
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Figure 4: Optimality candidates: comparison of present values

versible region yield exactly the same present value. This feature echoes Tahvonen and
Withagen (1996)’s finding in their model with quadratic decay but without exhaustibility.
The reversible policy is the optimum for low enough stock of resources. But, once the
resource endowment is above a critical level the optimum becomes irreversible. Second,
we observe that the irreversible path with the economy not staying in z̄ always dominates
the other candidate with a stage in z̄. So, it seems to be always better to directly enter
the irreversible region upon arrival at z̄ than to stay at the threshold for a period of time.
The reason is the following. Compare these two solutions for the period of time just after
the threshold is hit. In the first case, pollution is slightly higher than z̄ (due to continuity)
but the economy benefits from higher consumption (due to the upward jump) whereas in
the second case, pollution is equal to z̄ but the extraction rate is much lower and equal
to αz̄. Therefore, if the former optimality candidate dominates the latter this is mainly
because the gain from higher consumption exceeds the loss from higher pollution.

The following conclusion can be drawn from this numerical exercise. If one believes
that BAU emissions will remain quite moderate or thinks in terms of conventional reserves
of fossil fuels only, then there is a unique reversible optimum. However, when one allows
for higher potential emissions and also adds part of the amount of conventional resources
to the initial resource stock, the results are substantially modified. One can identify
multiple optimality candidates and the optimal policy becomes irreversible for a large
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enough resource stock. The policy implications of both allowing higher maximum emission
levels and higher initial endowments of exhaustible resource are thus far from negligible.

5 Quadratic decay

In the preceding analysis, we have stressed the sensitivity of the results to the maximum
emission level and to the initial stock of fossil fuels. In this section, our purpose is twofold.
First, we investigate how sensitive the results are to the shape of the decay function.
Second, we draw a parallel with Tahvonen and Withagen’s conclusions in the quadratic
decay case without exhaustible resources.

Tahvonen and Withagen (1996), study a decay function that is zero at zero pollution,
increases, reaches a maximum and then declines towards zero, reaching zero at some point
z̄. This introduces a non-convexity in the problem that leads to the possibility of multiple
equilibrium candidates. They do not include exhaustibility. It is the purpose of this section
to see what the effect is in their model of being constrained by a nonrenewable resource.
It cannot be expected that we reach many general conclusions from a purely theoretical
analysis. Some of their results, however, do go through if we include exhaustibility. First,
if the discounted marginal damage at z̄ is larger than the marginal utility of the first drop
of oil, then we will only have reversible solutions. Second, another obvious result is that
due to exhaustibility we will never have a positive steady state extraction rate, whereas in
Tahvonen and Withagen convergence to a steady state is a possibility. Third, in the case
of quadratic decay it is not optimal to stay at the threshold for longer than just an instant
of time. This implies that the set of equilibrium candidates is much easier to depict.

To illustrate this we provide a numerical exercise using the same specification and
parameters values as in our benchmark scenario. Tahvonen and Withagen approximate
the quadratic decay function in a triangular way. Following their approach, we assume
α(z) = αz for z ∈ [0, z̄

2
],= α(z̄ − z) for z ∈ [ z̄

2
, z̄]. Note that the initial stock of pollution

belongs to the second interval, which conveys the idea that for the current concentration
of CO2, the carbon sinks’ ability to store carbon has started to decline. This is consistent
with the evidence reported by the IPCC (2007).

The subsets of the (z0, x0) plane that delineate the optimality candidates look much
simpler that in the previous section. As explained above, the reason is that it is never
optimal now to stay at the threshold for longer than an instant of time. Here there is
almost no decay close to the threshold, whereas earlier decay is maximal at the threshold.
So, now there is no benefit to be found in staying at the threshold.

Generally, there are three regions that can be distinguished, for a given initial pollution
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stock z0. For a small initial resource stock it is optimal to stay in the reversible region
and to deplete the resource stock. For higher resource stocks it is optimal to enter the
irreversible region, with exhaustion in finite time. With still higher resource stock we are
back in the their model with only partial exhaustion. See figure 5.

Figure 5: Zones of existence of the different optimality candidates

These results drastically differ from those of our benchmark case with discontinuous
decay. In addition, it echoes that of Tahvonen and Withagen. Indeed, they identify a
critical z̃0 which is associated with two optima. This means that for this critical level,
there exist both a reversible and an irreversible solution yielding exactly the same present
value. Here, we have another state variable, the exhaustible resource, and it appears that
for each z0, there exists a critical x̃0 such that we observe multiple optima. For example,
with our initial value z0 = 781 GtC, this critical value is x̃0 ' 514 GtC and the resulting
present value is approximatively equal to V ' 56396. For any x0 < x̃0, the only solution
is the reversible one whereas for x0 > x̃0, the only solution is irreversible.

The comparison with the discontinuous decay case shows two important differences.
First, with a quadratic decay, there exist irreversible solutions whereas in the benchmark
scenario of the previous section we only obtain reversible solutions. The reason is that with
the discontinuous decay, entering the irreversible region, even though it is feasible, is very
costly since it implies a switch from maximum to zero decay that must be compensated
by a substantial increase in consumption. Here this is no longer the case because there
is almost no decay in the neighborhood of the threshold. In the quadratic decay case,
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exceeding the threshold is optimal provided that the economy initially owns high enough
resources. Second, since there is no opportunity to stay at the threshold for a period of
time, we cannot have multiple optimality candidates, except for the critical combination
(z0, x̃0). This feature is robust to a change in the maximum emission level ȳ. In other
words, the multiplicity of candidates observed in the preceding section, with a 30 % higher
ȳ, do not hold in this case.

6 Conclusion

This paper has introduced irreversibility of pollution decay in the classical exhaustible-
resource/stock-pollution model. Within this framework, we have studied how the potential
irreversibility of pollution affects the optimal extraction path. Several results have been
obtained. For a small marginal utility of the first unit of the raw material from the non-
renewable resource compared to total discounted marginal damage at the threshold level,
or for a low business-as-usual scenario or if the threshold is too high compared to the
steady state without exhaustibility of the fossil fuel stock, the economy will never enter
the irreversible region. For a resource stock not too small it is optimal to stay at the
threshold level for a while and then to return to the interior of the reversible region. In
any optimum with reversibility, it is optimal to deplete the entire resource stock. With
increasing resource stocks it will become optimal to enter the irreversible region, possibly
after staying at the threshold for a while. Also in the latter case, all fossil fuel is depleted.
These results indicate that staying at the threshold, in order to benefit from the high
decay rate, is profitable. For very large fossil fuel stocks it is optimal to cross the threshold
without staying there. Partial exhaustion is possibly optimal.

Regimes where the economy stays at the threshold for a period of time make sense.
However, there is a danger in following this policy With the introduction of uncertainty on
e.g., the threshold level, or the actual business-as-usual emissions, one might easily enter
the irreversible region, whereas this is suboptimal, or premature (see Ayong et al., 2011,
who introduce uncertainty about the threshold). Hence, the equilibrium during the phase
at the threshold is really a knife-edge. There is also evidence that available and existing
stock of fossil fuels are not well known. This suggests a first extension of our work, which
is motivated by the observation that a lot of uncertainty surrounds both the extent of
fossil fuels reserves present in the ground and the concentration of GHG that will initiate
irreversible phenomena. Another extension of the present paper naturally comes into
mind. The introduction of a backstop technology would be a means to examine how the
optimal timing of the backstop adoption and how the optimal combination of technologies
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are affected by irreversibility.
We have also investigated the introduction of exhaustibility in a model with quadratic

decay. It turns out that qualitatively the results are very sensitive. Apart from the obvious
fact that no steady state extraction will occur, an important outcome is that with quadratic
decay the set of optimality candidates looks much simpler, which also makes it easier to
determine the optimum. More importantly, however, a regime where the economy stays at
the threshold for a while is not optimal. This strengthens our conclusion that knowledge
on actual decay is crucial for determining the best extraction-pollution program.

For future research it would be important to investigate in more detail and for larger
parameters sets the differences in welfare arising from different specifications of decay, and
the seriousness of making mistakes in estimating the decay schedule.
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Appendix

A Proof of lemma 1

From Tahvonen (1997)’s proposition 2, we know that the path of z cannot have U-shaped
segments. He also shows that z asymptotically converges to 0. Hence z is either inverted
U-shaped or monotonically decreasing.

Suppose y(0) < αz0. Then U ′(y(0)) > U ′(αz0) and z is monotonically decreasing. Since

λ(t) = e(α+δ)t

∫ ∞
t

e−(α+δ)sD′(z(s))ds, (8)

we then have λ(t) ≤ D′(z0)
α+δ

for all t ≥ 0 . Moreover, it has been assumed that

D′(z0)

α + δ
< U ′(αz0). (9)

Therefore λ(t) ≤ U ′(αz0) for all t ≥ 0. So

U ′(y(0)) = λ(0) + µ0 ≤ U ′(αz0) + µ0. (10)

Note that µ0 depends on x0. We can make µ0 arbitrarily small by taking x0 large
enough. This can be seen as follows. Suppose there exists ε > 0 such that µ(0;x0) > ε

for all x0, where we use the convention that for any variable w, w(t;x0) is the optimal
value of w at instant of time t when the initial resource stock is x0. Then U ′(y(t;x0)) =

λ(t;x0)+µ(t;x0) > εeδt for all t and all x0. But the inequality implies that
∫∞

0
y(t)dt < M

for some M <∞. This is a contradiction. But then, for x0 large enough, and therefore µ0

very small, we cannot have (10). Hence for x0 large enough, we have y(0) > αz0. Q.E.D.

B Proof of proposition 2

It has been shown in lemma 1 that for large enough x0 pollution will initially rise. Now
we show in a first step that for large enough x0 pollution will hit the threshold. Recall
that (y∗, z∗) is defined as the steady state of the resource abundant economy, not subject
to potentially irreversible pollution.

Consider a constant path of extraction: ỹ(t) = α
2
(z̄+ ẑ∗) for all t. With this extraction

policy, the threshold will be reached at instant of time t1 given by

z̄ = z0e
−αt1 +

1

2
(z̄ + z∗)(1− e−αt1)

27



Let us consider the problem with exhaustibility. Suppose that for some x0 we have
z(t;x0) ≤ z̄ for all t ≥ 0. Then

λ(t;x0) = e(α+δ)t

∫ ∞
t

e−(α+δ)sD′(z(s);x0)ds ≤ D′(z̄)

α + δ

and

U ′(y(t);x0) = λ(t;x0) + µ(t;x0) <
D′(z̄)

α + δ
+ µ(0;x0)eδt

<
D′(z∗)

α + δ
+ µ(0;x0)eδt = U ′(αz∗) + µ(0;x0)eδt

for all t ≥ 0. In particular, this inequality is valid at the instant t1 defined above. Now,
choose x0 such that

µ(0;x0) =
U ′(αz̄)− U ′(αz∗)

eδt1
,

This equation has a solution, since we can make µ arbitrarily small by a proper choice of
x0 as demonstrated in the previous lemma. Hence, we obtain a contradiction. Then, from
a continuity argument, it is clear that there exists a unique initial resource stock x̌0 such
that the threshold is exactly hit for a single instant of time.

The second step of the proof works while ignoring the pure state constraint z(t) ≤ z̄.
It establishes that for any solution starting from (x0, z0), with x0 > x̌0, it holds that
z(t) > ž(t) for all t, where ž indicates the program corresponding to x̌0. This means that
for any solution originating from x0 > x̌0, the pollution stock will be above the threshold
for a connected period of time. Hence, adding the pure state constraint z(t) ≤ z̄, we can
argue that a reversible solution with x0 > x̌0 will stay at the threshold for a non-degenerate
period of time (during which the constraint z(t) ≤ z̄ is binding).

To start with, we claim that for any z0, if x0 > x̌0 then y0 > y̌0 that is, z(t) > ž(t) for
an initial period of time.

Assume that x0 > x̌0 and y0 < y̌0. This implies that z(t) < ž(t) for an initial period
of time. The resource is more abundant, which means that µ0 < µ̌0 and µ(t) < µ̌(t) for
all t. The inequality y0 < y̌0 is equivalent to λ0 + µ0 > λ̌0 + µ̌0. Hence, λ0 > λ̌0 and,
using (8), there exists an instant of time t1 > 0 such that z(t) < ž(t) for all t ∈ [0, t1)

and z(t1) = ž(t1), with ż(t1) > ˙̌z(t1), and therefore y(t1) > y̌(t1). This is turn implies
that there exists a date t2 ∈ (0, t1) such that y(t) < y̌(t) for t ∈ [0, t2), y(t2) = y̌(t2) and
ẏ(t2) > ˙̌y(t2). From

U ′′(y)ẏ = δU ′(y) + αλ−D′(z), (11)

ẏ(t2) > ˙̌y(t2) is equivalent to α(λ(t2)−λ̌(t2)) < D′(z(t2))−D′(ž(t2)). Hence, λ(t2) < λ̌(t2).
We also have µ(t2) < µ̌(t2) so that y(t2) > y̌(t2), a contradiction.
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So, at least initially z(t) > ž(t). Let us then assume that x0 > x̌0 and z(t) < ž(t) for
some interval of time [t1, t2], with 0 < t1 < t2 5 ∞, with z(t) > ž(t) for all t ∈ [0, t1)

and z(t1) = ž(t1) with ż(t1) < ˙̌z(t1), so that y(t1) < y̌(t1). Moreover, z(t) < ž(t) for all
t ∈ (t1, t2) and z(t2) = ž(t2) with ż(t2) > ˙̌z(t2) so that y(t2) > y̌(t2). Finally z(t) > ž(t)

for all t ∈ (t2,∞).
First, suppose that t2 =∞. The t1 is the unique instant of time where the paths z(t)

and z̆(t) intersect. We have z(t) < ž(t) for all t ∈ (t1,∞), so that λ(t1) < λ̌(t1). But we
also have y(t1) < y̌(t1) and µ(t1) < µ̌(t1). Hence from (4) λ(t1) > λ̌(t1), a contradiction.

Next, consider the case t2 < ∞. We have y(t1) < y̌(t1), y(t2) > y̌(t2), so that y(t3) =

y̌(t3) and ẏ(t3) > ˙̌y(t3) for some t1 < t3 < t2. In view of (11) we then have λ(t3) < λ̌(t3).

Moreover, µ(t3) < µ̌(t3). But this contradicts λ(t3)+µ(t3) = λ̌(t3)+µ̌(t3) which is required
because y(t3) = y̌(t3).

In a similar we we can prove that any path originating from (x0, z0), with x0 < x̌0 has
z(t) < ž(t)) for all t. Q.E.D.
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