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Abstract

The aim of this paper is to describe a method to introduce empirical data in

agent based models. Starting from the econometric and calibration literature, it is

shown how to select the values of the parameters in the model and which conditions

has to be met to have consistent estimations. A crucial point lays in the analysis

of the arti�cial data produced by model, in particular to test for ergodicity and

stationarity.
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1 Introduction

The economic system is composed by many di�erent autonomous agents that interact
with each other and with the environment. The result is a system that exhibits emer-
gent properties: the properties at the macro level cannot be explained directly by the
properties at the micro level [22]. Agent based modeling is a tool used to overcome the
limitations of pure mathematical analysis, it allows the construction of more realistic
models; unfortunately this happens at a cost. Indeed, agent based models are more dif-
�cult to understand, to generalize and to explain. A model consisting of algebraically
solved equations can easily be interpreted and generalized using formal proofs. Despite
the fact that it can be considered as a well de�ned set of equations [34], an agent based
model su�ers from the di�erent (smaller) degree of knowledge about the functions that
are at the base of the model. While analytical results are conditional only in relation
to the speci�c hypothesis about the model, simulation results are conditional in relation
to both the speci�c hypothesis of the model and to the speci�c values of the parame-
ters used in the simulation runs: each run of an agent based model yields a su�ciency
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theorem, but a single run does not provide any information on the robustness of such
theorems [7]. One way to treat the �su�ciency problem� in agent computing is through
multiple runs, systematically varying initial conditions or parameters in order to assess
the robustness of results [7]. Another (not alternative) option is to �nd the most realistic
setting of the model and analyze the model in its neighborhood. This paper describes
a method to use empirical data in computational models; by using observed data about
the system under analysis it is possible to select the values for the parameters so that
the arti�cial data and the observed data are as similar as possible. The �su�ciency the-
orems� proven by the runs produced with the �data-driven� agent based models are still
just su�ciency theorems, but are quite interesting su�ciency theorems since they show
the behavior of the model in the neighborhood of the most realistic setting. Introducing
empirical data in agent based models is also a fundamental step in the interpretation of
the model and possibly in the validation of it [42, 8], but it is still largely missing in the
literature [1, 38, 34]. Quantitative methods to make inference on a complex model are
very interesting both in �nance and in economics. The interaction between the agents
in a stock market, for example, is largely accepted as fundamental in shaping the prop-
erties of the markets. This led to build (e.g. [5, 31, 35, 10, 13]) and rarely to estimate
complex �nancial models [9, 1, 23], for a survey see [11]. The starting point to �nd the
"data-driven" parameters is the simulation based econometrics literature. The smaller
degree of knowledge about the model is a problem also for the estimation procedure. The
properties of the model are not know a priori, this means that to know how to interpret
the parameters resulting from simulation based econometrics methods, the model has to
be tested. In particular to know whether the estimation produces consistent parame-
ters, the optimization heuristic has to be tested (to know whether there exists a global
minimum and whether the heuristic is able to �nd it) and there is the need to test for
stationarity and ergodicity of the arti�cial data.

The aim of this paper is to contribute to the empirical research in agent based models
by showing how to introduce empirical data into an agent based model, and in particular
stressing the importance of the analysis of the arti�cial data. �Data-Driven� is a general
notion to denote the procedure that leads to the selection of parameter values using
observational data. The actual interpretation of the data-driven parameters (e.g. as
estimated parameters) depends on the properties of the agent based model, in particular
on stationarity and ergodicity. In the following sections the "experimental model" used
to evaluate the estimation method will be presented, followed by the description of how
to estimate the model. Even if the estimation (or "data-driven") is presented in the
particular environment de�ned by the model, the set of proposed tests can be used in
any situation. Every model that is stationary, ergodic and that have a global minimum
for the de�ned objective function can be estimated.
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2 The Model: El Farol Bar Problem

The model chosen to be the experimental model is the El Farol Bar Problem introduced
by [4]1. This model has been chosen due to its similarity with many economic situations
in which the agents make a decision by looking at past events, as in a stock market where
part of the information the agents use to decide on their actions is gathered from the
past behavior of the price. The model is built in the following way. N agents have to
decide whether to go or not to go to the El Farol Bar in Santa Fe (New Mexico). Since
the space in the bar is limited, the agents will prefer to go to the bar if the total number
of agents attending the bar is below a given threshold; otherwise they will prefer to stay
at home. In [4] the total number of agents is 100 and the dimension of the bar is such
that the agents consider it too crowded when there are more than 60 agents present.
There is no sure way to tell in advance the number of attending people, therefore the
agents have to formulate an expectation about the agents that will attend the bar and
make a decision upon it. If an agent expects that more than 60 agents will go, (s)he will
stay home, otherwise (s)he will decide to go. To formulate the expectations the agents
use �bounded rationality� strategies that use past attendance to forecast next period
attendance. Every agent has a set of available strategies, and chooses to use the strategy
that has performed best in the past periods (for further details see [4]). In this paper
the model has been simpli�ed by eliminating the learning mechanism: the agents will
not be able to choose a strategy among a set of available strategies but will have just
one strategy each. Supposing that the described model is a good representation of a real
system, the kind of parameters that will be �data-driven� depends on the assumption and
knowledge available about the system. Supposing for example that the structure of the
strategies used by the agents and the distribution of the strategies between the agents
are known, the interesting parameters would be the ones that de�ne the strategies. For
example it may be known that half of the agents decide whether to go or not to go to
the bar looking back on the attendance of x1 weeks ago, and the other half computes a
moving average over the last x2 weeks. In such a case the estimation would be performed
for the parameters inside the strategies (x1 and x2). In a second case it can be supposed
that the strategies are completely known but the distribution of the strategies among the
agents is unknown. The parameters to be estimated would thus be the distribution of
the strategies among the agents. A third and more complete estimation is the union of
the two cases, which means �nding both the strategy parameters and the distributional
parameters. In this work the parameters that will be found are the parameters that
de�ne the distribution of the strategies in the model.

The available strategies at the system level are the following ones:

1. Cyclical: the agent forecasts next week's attendance by looking at the attendance
7 weeks ago. If the forecast is above the threshold, he decides not to go, otherwise
he decides to goo

1The model reproduced in Python can be found on the internet:
http://jakob.altervista.org/PythonElFarol.zip
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2. Moving average: the agent computes the average attendance of the last 5 weeks.
If the forecast is above the threshold, he decides not to go, otherwise he decides to
go

3. Fixed: the agents forecast the same attendance (65 agents), regardless of the past
history (they never go!)

The scope is to �nd a �data-driven� method and to evaluate it. To perform this task a
set of �pseudo-real data� will be produced. Since di�erent distributions of the strategies
produce di�erent outcomes, if a set of assumptions is satis�ed, it will be possible to �nd
the distributional parameters that produce the pseudo-real data. The aim is to replicate
a real setting in which a theoretical model and a set of observed data are available.
Given the model and given the data, the aim is to �nd the values of the parameters that
minimize the di�erence between the real data and the arti�cial data. The starting point
is the simulation based econometrics literature and the calibration literature.

3 Estimation, Calibration and �Data-Driven�

In agent based models, and in computational models in general, there are non-linear
relations between parameters and emergent outcome of the model. To start an investi-
gation of methods and potentiality of a data driven approach it is possible to refer to the
literature on simulation based econometrics and calibration.

Simulation Based Econometrics

Agent based modeling is an instrument used to model complex phenomena that involve
interactions between the elements of the system under analysis, interaction between the
elements and the environments, heterogeneity and so on. Agent based models are thus
used in situations in which the analytical approach is too restrictive to have a good
representation of the system. From the previous, obvious statement it follows that it
is not possible to use standard econometric tools to compare arti�cial data and real
data. Indeed, the complexity of an agent-based model impedes the writing of an an-
alytical condition to �nd the parameters that minimize a given distance between real
data and the model. To overcome this di�culty it is possible to refer to the literature on
simulation-based econometric methods. A good reference in this framework is Gouriéroux
and Monfort's book [12] where the most important methods are described: Methods of
Simulated Moments (MSM), Indirect Inference and Simulated Maximum Likelihood. In
the following, the method of simulated moments will be used; it is an intuitive way to ex-
tend simulated econometrics to agent based models. The simulated methods of moments
was introduced by McFadden [18] and Pakes and Pollard [36]. Du�e and Singleton [17]
apply the method of simulated moments to a markovian process, Lee and Ingram [33]
apply it to time series models. Suppose that we have a set of observations yt , a vector
of D explanatory variables {zt} and a vector of K instruments {xt}. Supposing that a
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well speci�ed theoretical model is available and that it tells that there is a linear func-
tional relationship between the observations and the explanatory variables yt = zt

′δ+ εt,
the aim is to estimate the vector of D parameters. Supposing moreover that the data
generator process is well behaved, i.e. that (yt, zt,xt) are jointly ergodic and jointly sta-
tionary and that the orthogonality conditions are satis�ed, it is possible to estimate the
parameters by minimizing the function J(δ,W ), where J(.) is the quadratic form that
represents the distance between the theoretical moments and the real moments (that is
between the orthogonality conditions and the sample counterparts) and where δ is the
vector of parameters and W is a weighting matrix (see [29]). The hypothes is that the
model is well speci�ed implies that the real data are a realization of the theoretical model
with an unknown set of parameters (that is what we are looking for) and with a given
random sequence. Given the stationarity and ergodicity properties it is possible to es-
timate consistently the parameters by minimizing the distance between the moments of
the real data and the moments of the arti�cial data conditional to the value of the vector
of parameters (that is the conditional moments of the theoretical model). The method
of moments or the general method of moments requires the possibility of computing an-
alytically the theoretical moments; unfortunately such condition signi�cantly limits the
its applicability. If the model is complex (and non linear), it may be impossible to �nd
an analytical form of the conditional moments and thus it may be impossible to �nd an
analytical expression of the quadratic form and of its derivatives. This means that it
may be impossible to minimize analytically the objective function. The solution is to
simulate the model: if the theoretical expected moments conditional to the parameters
cannot be found, it is possible to simulate the model and compute the moments from
the arti�cial data. The method of simulated moments thus extends the method of mo-
ments by replacing the population moments with its simulated counterpart calculated
with simulated data [17]. To estimate the parameters it is su�cient to choose the value
of the parameters that minimize the distance between the simulated moments and the
observed moments. The general expression of the objective function to be minimized can
be found in Gourieroux and Monfort ([12], p. 27), where also the asymptotic properties
of the estimator are shown. In particular when the number of observations (n) tends to
in�nity and the number of simulations (S) is �xed, the estimator is strongly consistent
and its distribution tends towards a Normal under regularity conditions in [27]. The
variance of the simulated moments estimator (given the weighting matrix W) decreases
when S increases, and tends to be equal to the variance of the GMM estimator when
S →∞. Indeed, it is shown that for S →∞ the method of simulated moments estima-
tion is equivalent to the GMM estimation [12]. The extension to agent based models is
straightforward: the arti�cial data produced by the simulation model are used to com-
pute the simulated moments to be compared with the observed moments. The variance
of the simulation based estimator depends on the choice of the weighting matrix, on the
variance of the random component inside the model and on the randomness due to the
simulation procedure. To compute the variance of the estimator and to be able to make
hypothesis testing on the resulting parameters it is possible to run the estimation proce-
dure several times and estimate the variance of the estimator using the resulting sample
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of estimations. The computational model that will be used in this work is particularly
simple compared to other agent based models. The agents simply decide their moves
based on a strategy that uses the previous periods. There is neither explanatory vari-
ables nor instruments. Despite the simplicity, there is no way of writing any analytical
expression of the emergent data (the attendance at the bar). Since the model is dynamic
and it has no explanatory variable, the simulated moments conditional to are computed
by running the model for n periods (where n is the number of observations) computing
the �rst M non-centered moments (provided that they exist), simulate the model S times
and compute the average moment over the S simulations (see equation 2). An alterna-
tive estimator for the theoretical moments is to compute the simulated moments using
one run with Sn observations. Under stationarity and ergodicity the two estomator are
both consistent, and under strict stationarity or n → ∞ or S → ∞ they have also the
same variance2. The advantage of using the �rst estimator (S simulation of length n) is
that it is possbile to compute the moments also in a non ergodic situation. If S → ∞,
the simulated moments tend to the theoretical moments and the MSM estimator tends
to the GMM estimator. The simulated moments are conditional on the values of the
parameters used to run the simulations and the estimation requires the minimization of
the distance between the actual moments and the simulated moments. The objective
function is:

J(δ,W ) = (µR − µS(δ))′W (µR − µS(δ)) (1)

where µR is the vector of dimensionM containing the �rst M non-centered moments
computed over the real data, µS is the vector of dimension M containing the �rst M
non-centered moments computed over the simulated data, the simulated data depends
on the parameters used to run the simulation. The element m of the vector µS is:

µSm =
1

S

S∑
s=1

(
1

n

n∑
t=1

ymt

)
s

(2)

The estimated set of parameters is the solution of the minimization of J(δ,W ). As
known from [27], the number of moments M in the objective function has to be equal or
greater then the number of parameters to be estimated, that is the dimension D of δ. If
M = D there is perfect identi�cation and the solution of the minimization is the set of
parameters δ0 such that J(δ0,W ) = 0. Note that this condition holds necessarily only
in the case in which J(δ,W ) is continuous in δ, which is not the case in a computational
model. Since the simulation can handle only discrete values of δ, it is not always possible
to �nd such that J(δ0,W ) = 0 . Under the regularity condition de�ned in [27], the
values of the parameters resulting from the minimization of (1), δ̂, are consistent and
normally distribuited [12]. A crucial issue for agent based estimation is to know whether
the regularity condition are actually met. In particular this paper will focus on the
consistency of the estimator and thus on the stationarity and ergodicity properties.

2See Appendix A
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In this implementation the model is well speci�ed for construction; in �real� applica-
tion the model will be supposed to be well speci�ed. Stationarity and ergodicity have
to be tested. Nonparametric tests proposed in [26] will be made on the arti�cial data.
This is a crucial di�erence compared to the standard econometric literature where the
stationarity test is made on observed data and ergodicity is supposed. Given the hypoth-
esis of a well-speci�ed model, it is possible to use the model itself to test the properties
of the data generator process. This method allows increasing the number of observations
to increase the power of the nonparametric test and allows testing for ergodicity, which
is usually supposed.

Calibration

�Calibration consists of choosing numerical values for the parameters so that for the
existing policy regime, the model reproduces (either exactly or closely) the benchmark
data as a model solution� [14], the parameters can be exogenous, chosen from the lit-
erature, and/or endogenous, chosen to match the real data. The aim of calibration is
to parametrize a model, and the most logical way of choosing parameters is to use the
information derived from real data [14]. Given the theoretical models, the task of the
calibration is to give answers to the problems of the day, to understand the e�ects of
a given policy, using the numerical implementation [14]. All that is needed to use the
models is to choose the appropriate value of the parameters. A very famous and early
attempt to calibrate a model can be found in [32], and will then be developed especially in
the business cycle literature. In [32] the calibration procedure is used to test the theory;
i.e. to control whether there is a set of parameters for which the model is quantitatively
consistent with the real data. The calibration consists in choosing most of the parameters
in the literature and leaving the other parameters free to be determined using real data.
In particular, to choose the value of the parameters, a set of properties (e.g. moments) of
the actual data are compared to a set of properties of the arti�cial data. The di�erences
and similarities between calibration and estimation are well summarized in [37] and in
[28] among others. The main distinction lies in the fact that �calibrated models� may use
parameters taken from the literature to address the over-parametrization of a model [19].
Since the parameters in the literature have often been found in di�erent economic and
theoretical contexts, calibration has to be used carefully. In this paper the distinction
between calibration and estimation is not crucial for the results, for this reason the term
estimation will be used without distinction.

Data-driven

The previously de�ned concepts need two fundamental and very rare properties: sta-
tionarity and ergodicity. The possibility of building more realistic models using agent
based models is directly linked to the very realistic feature of non-ergodicity and/or non-
stationarity of the models. Since the problem is very common, it will be central in the
following work; while non-stationarity can be reduced to stationarity with traditional
methods, non-ergodicity is a major problem. Note that it is very di�cult to foresee
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the behavior of an agent-based model without running it. This means that the agent-
based model has to be built using a theoretical and intuitive foundation and cannot be
built to be ergodic. In standard economic modeling, stationarity is tested on data while
ergodicity is supposed. This latter hypothesis cannot be made a priori in agent-based
modeling, the ergodicity of the model must be tested and supposing the good speci�-
cation of the model, the result of the test can be extended to the real system under
analysis. Since many models (real systems) will turn out to be non-ergodic it is useful to
de�ne the �data-driven� parameters. Data-driven in this paper is de�ned in a very broad
sense as a method that allows using the observed data when estimation is not possible.
Data-driven parameters are simply a set of values of the parameters that minimize the
objective function, although they cannot be interpreted as estimations. Estimation is
rigorous inference while the data-driven method allows the use of data when estimation
would be meaningless. The di�erence will be only in the assumptions and consequently
in the interpretation of the parameters, the use of the real data and the method will
be the same. The aim of de�ning the data-driven parameters is to avoid confusion and
explicitly consider the non-ergodicity problem.

To summarize, in order to make inference and to estimate the structural parameters
of the model it is necessary to have a well-speci�ed model and an ergodic and stationary
data generator process. The model is supposed to be well speci�ed, or at least represent
a good approximation of the reality. The ergodicity and stationarity will be tested using
nonparametric tests. What is interesting here is to use real data in agent based models,
and in particular understand how to interpret the results. If stationarity and ergodicity
are not satis�ed, the inference about the real system is by de�nition impossible, but real
data can still be used to specify the parameters. Using exactly the same method (same
objective function and same optimization heuristic) it is possible to �nd the value of
the parameters that minimize the distance between a given set of moments computed
over the real data and the same set of moments computed over the arti�cial data. The
procedure will be called �data-driven�; the interpretation of the resulting parameters as
estimation or simply empirically plausible values depends on the properties of the model.
In both cases the outcome of the procedure improves the speci�cation of the agent based
model and decreases the �su�ciency problem�.

4 Objective Function

The aim is to �nd the set of parameter values that minimize the distance between the real
data and the arti�cial data. The de�nition of distance is crucial, as di�erent objective
functions produce outcomes with di�erent properties. The reference to the simulation
based econometric literature is important in order to understand the conditions needed
for the consistent estimation of the parameters and the properties of the estimators. The
chosen objective function refers to the method of simulated moments (e.g. [12, 17, 33])
and is compatible also with the use of the moments made in the calibration literature [32]:
the distance between the model and the real data is measured as the quadratic di�erence
between a given set of moments computed over the real data and the set of moments
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computed over the arti�cial data. A similar objective function has been proposed in
[43]. The selection of the moments should be such that the objective function is able
to discriminate between alternative models and/or parameters; moreover [43] advises
the use of a large number of moments in order to increase the probability of identifying
the model parameters. Since the aim of the �data-driven� is to mimic the properties of
the observed data, the moment based objective function is perfectly compatible. The
weighting matrix is important only for the e�ciency of the estimations and will not
be taken into consideration in this paper (see [43] for more details about the weighting
matrix). The choice is to use an identity matrix and focus on the consistency property.
Given the assumption that the model is well speci�ed, the moments of the arti�cial data
are a function of both the parameter values and the random seed used to initialize the
model. If the random process is stationary and ergodic and if the orthogonality condition
is satis�ed, it is possible to �nd consistent estimates of the parameters. The consistency
property assures that by increasing the number of observations the estimations tend
towards the true value of the parameters. In a traditional econometric setting, the
parameters would be found by comparing the moments computed over the real data
and the theoretical moments computed using the model. In this framework, this last
operation in not possible, and for this reason it is necessary to compute the conditional
moments using simulations. The moments computed over a simulation are di�erent from
the theoretical moments of the model because a simulation uses a random draw of the
random component embedded in the model. By increasing the number of simulations
the simulated moments tend towards the theoretical moments, and the MSM estimator
tends towards the GMM estimator [12]. The objective function is the equation (1) with
the identity matrix as weighting matrix and using the �rst 10 non-centered moments:

J(δ,W ) =
M∑
m=1

(µRm − µSm)2 (3)

where M is equal to 10 and m represents the degree of the non-centered moments,

µRm =
1

n

n∑
t=1

ymt (4)

yt is the observation t, n is the number of observations. The simulated moment of
order m is the moment of order m computed over a simulation of n observations and it
depends on the value of the parameters and on the random seed:

µ̂sm(δ, εs) =
1

n

n∑
t=1

ŷmt (δ, εs) (5)

ŷt is the simulated observation i, δ is the vector of parameters and εs is the random
sequence used for the simulation. In this particular case the simulation depends only on
δ and εs. To decrease the in�uence of the random seed on the value of the simulated
moments it is possible to compute the moment over a set of S simulations, as noted above
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for S that tends towards in�nity the simulated moments tends towards the theoretical
moments:

µSm =
1

S

S∑
s=1

µ̂sm(δ, εs) (6)

For example, the simulated mean of the emergent properties of the ElFarol model
will be computed by running the model with a given set of parameters and di�erent
random seeds 5 times and computing the mean for each simulation and then the mean
of the �ve computed means. Note that the random seeds used for each combination of
the parameters has to be the same, otherwise it would be impossible to disentangle the
e�ect on the value of the arti�cial moments (and in the objective function) due to the
change of the random component and to the change of the values of the parameters used
in the simulation.

5 Optimization heuristic and genetic algorithm

Given the objective function, the problem is to minimize it. The objective function
cannot be written analytically, is not globally convex and has many local minima. The
complexity of the model and of the search space requires the use of heuristics to �nd
the minimum of the objective function. The most naïve approach is the brute force
approach: by creating a set of all the combinations of the parameters it is possible to
run the model for each of these combinations and choose the combination that gives the
minimum value of the objective function. Theoretically possible, the brute force approach
would be practically impossible in most applications. The use of an optimization heuristic
reduces the computing time by searching the space with a given set of rules. The set
of rules (i.e. the chosen heuristic) and the objective function are crucial for an e�cient
optimization. In particular the objective function has to be able to well characterize the
results: the more the value of the objective function change by changing the value of the
parameter the more the search will be e�cient. Increasing the number of moments in
the objective function increases the search e�ciency and the ability of the optimization
heuristic to �nd the minimum. The optimization function is an instrument, it is a
way to �nd the minimum in complex optimization problems, but it has no in�uence
over the properties of the minimum itself. A heuristic has to be able to provide a good
approximation of the global optimum, it cannot be problem-speci�c and it has to be easily
implemented [24]. The advantage of using an optimization heuristic is that it does not
need strong hypotheses about the optimization problem, apart from the assumption that
a global minimum actually exists. On the other side heuristics cannot produce high-
quality solutions with certainty [24], so they have to be used only when a traditional
analytical method cannot be applied.

[23] use a combination of the Nelder-Mead simplex direct search method and the
threshold accepting optimization heuristic. In this paper a genetic algorithm will be
used. Genetic algorithms have been introduced by [30] and have had quite a success in
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the economics literature; it has been used for example in [5] as a classi�er system and by
[6, 3, 2] and [40] as a learning mechanism. The use of a genetic algorithm is motivated
by the fact that it is well known, easily implemented and its optimization mechanism
is simple. A genetic algorithm mimics the Darwinian evolutionary mechanism. A set
of binary strings representing a set of strategies are chosen randomly. The best strings,
de�ned according to a given �tness or an objective function, are selected probabilistically
creating a new set of strings with the same cardinality as the original set; the genetic
operators will then act on the selected strings, cross-over and mutation. The selection
exploits the best strings in the population while cross-over and mutation create diversity
and explore the search space. The result is a new set of strings that have to be evaluated:
the model is run and the �tness is computed for each string and the cycle starts again.
For further details about genetic algorithms see [30], [25], [21]. In this paper the strings
represent the values of the three parameters de�ning the distribution of the strategies
among the agents. The �tness of each string is computed using the objective function; the
lower the value of the objective function the higher is the probability of being selected.
To build a genetic algorithm, the �rst issue to face is how to encode the parameters of
interest into a binary string.

5.1 Encoding the strategies

The �rst problem is to understand how to encode the parameters: we need a binary
string that produces deterministically three natural numbers, and the sum of the three
numbers has to be equal to the number of agents in the model. The problem is very
similar to the problem faced during the distribution of the seats in parliament after an
election; see for example [16] and [15]. In this case the problem is less complex since it is
not necessary to bargain with political representatives. The aim is to use a deterministic
algorithm that is able to transform a binary string, used by the genetic algorithm, to a
string containing the number of agents that uses each strategy. Every genetic string has
7 bits for each of three parameters; the total length of the genetic string is of 21 bits.
For example: (1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1)

To evaluate the performance of a string, it is necessary to translate the binary string
into natural numbers representing the distribution of the strategies among the agents.
The �rst step is to compute the decimal numbers corresponding to each of the seven
digit binary numbers. The result is a string of three numbers between 0 and 127 (that
corresponds to a seven digit binary number with all ones). Transforming the above string,
the following vector is obtained:(115, 63, 77)

Since the aim is to �nd the distribution of the strategies in the system, the next
operation is to transform the natural numbers in weights. Each number has to be between
zero and one and the sum has to be one. The simplest method to obtain a vector of
weight from the vector of natural numbers is to divide each element of the above vector
by the sum of the three elements in the vector. The position in the vector represents the
strategy, then the weight of strategy i, wi, is:
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Figure 1: The points represent the resulting weights. The extreme values (selected parts)
are less likely.

wi =
xi∑
xi

(7)

where xi is the element i in the vector. In the vector above the sum of the elements
is
∑
xi = 255 and the resulting string is: (0.450980392, 0.247058824, 0.301960784).

The sum of the elements of this last vector is 1. It is the string of weights of each of
the three strategies in the model. Note that this way of computing the weights may be
biased [39]. Using this method, the central numbers (for example the weights 0.3, 0.3,
0.4) are more likely because more combinations of the original integer number (between 0
and 127) produce such central numbers. To show the problem 10,000 triples of numbers
between 0 and 127 has been randomly created. Following the above procedure, the weight
has been computed and the �rst two elements of the weight vector have been plotted in
�gure 1: it is evident that there is a cloud in the central part of the plot that is more
dense than on the extreme positions. This means that if the real distribution is extreme,
it is harder (not impossible) for the genetic algorithm to �nd it. One solution is to include
some deterministic strings in the initial set of random strings that reproduce the extreme
positions. In this way it is possible to control the performance of these strings and force
them into the population.

To use the weights in the model, the weight has to correspond to the actual number
of agents that use the strategy i. The �rst step is to multiply each weight by the total
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number of agents in the model (in this case 100) and round it to nearest natural number:
(45.0980392, 24.7058824, 30.1960784). Rounding to: (45, 25, 30).

There may still be a problem: the sum of the new natural numbers can be below or
above the total number of agents. To solve the problem, a very simple algorithm has
been used: if the sum is above 100, the smallest number on the list is decreased by one,
if the sum is below 100, greatest element on the list is increased (iterating the algorithm
until the sum is 100). Every possible binary string can be transformed deterministically
(a given string always gives the same distribution of strategies) in a string containing the
number of agents that uses each strategy. This last vector of numbers is used to run the
model and obtain the attendance for that distribution of strategies; by computing the
moments and by using the objective function the �tness of every given string is obtained.
The aim is to �nd the string (the distribution of strategies) that minimizes the objective
function. This naive encoding method is simple to understand and to implement but it
is not e�cient. If the model is complex and computationally heavy and/or the number
of parameters to be found is high, the following problems can slow down the search for
the minimum: a) it may happen that strings with a small di�erence in bits represents a
quite di�erent distribution of strategies in the population; b) the space of search is wider
than needed, indeed di�erent strings can represent the same distribution of strategies.

Depending on the nature of the variables and on the dimension of the search space it
may be worth it to develop alternative ways of encoding the parameters for the genetic
algorithm or even choose a di�erent optimization heuristic. In this speci�c case the main
problem derives from the nature of the parameters: since they represent weights they
must sum to one.

5.2 Checking the performance of the genetic algorithm

A crucial point is to check whether the chosen heuristic is appropriate for the complexity
of the search space. Supposing that a set of real data is available it is important to
be sure that, given the complexity of the model and of the search space, the chosen
heuristic is able to �nd the minimum. To make the test, the data-driven method has to
be run over a set of pseudo-real data created with a known random seed. Using only
one run of the model and the same random seed used to create the data, the minimum
value of the objective function is known, equal to zero, and reached with the �pseudo-real
parameters� (given the random seed and just one run, the model always produces the
same time series with a given set of parameters). This procedure can be thought as a way
of understanding the search space. This operation tells how e�cient the genetic algorithm
is and can help in developing more e�cient heuristic and in setting the parameters of the
genetic algorithm (as mutation and cross-over probability). The �data-driven� procedure
can easily become very heavy since the genetic algorithm will have to run many times
many models with di�erent parameters. For this reason it is important to use e�cient
optimization heuristics. To create a faster genetic algorithm a slightly modi�ed genetic
algorithm has been developed.

The problem of a genetic algorithm is that it faces a trade o� between exploiting
the minimum in the population (i.e. to perform a local search around the minimum
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Figure 2: The modi�ed Genetic Algorithm
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it has already found achieved with very low cross over and mutation probability) and
exploration (which is achieved with high cross over and mutation probability). The aim
of the modi�ed genetic algorithm is to decrease this trade o�. As an initial set 200
random strings have been chosen. The modi�ed genetic algorithm evaluates the strings,
sorts them, takes the best 50 strings and selects probabilistically 50 strings to create a
set of 100 strings. It creates two di�erent sets both containing the 100 selected strings
and starts the genetic operations on the two sets, one with low mutation and cross-over
(respectively 0.01 and 0.6) that exploits the best strings in the set, the second that uses
very high mutation and cross-over (0.1 and 0.8). When the genetic operations on the
two sets are over, they are uni�ed to recreate a 200 string set and starts over again by
selecting the best 100 strings. The idea behind this modi�ed genetic algorithm is to
exploit the best strings in the population and at the same time explore the space. If the
exploring set �nds a good string it will be selected (with probability 1 if it is top 50), and
it will be used as a starting string both in the exploiting set and in the exploring set. The
modi�ed genetic algorithm can �nd the minimum in 4.7 (average over 10 trials) genetic
generations, while the normal genetic algorithm, run with the same parameters of the
exploiting part of the modi�ed algorithm and with 200 strings, takes 8.9 (average over
10 trials with the same random seed of the trials with the modi�ed algorithm) genetic
generations. In this simple case the modi�ed genetic algorithm permits saving half of the
computing time; the di�erence is remarkable. When the real procedure will be run, each
string will be evaluated using the moments computed over 5 runs of the model. This
means that a large amount of computing time will be saved using the modi�ed genetic
algorithm.

6 The Genetic Data-Driven Algorithm

It is now possible to understand how the �data-driven� method works. The following
steps are crucial:

1. Build the model

2. Build the genetic algorithm and encode the parameters (create the heuristic)

3. Check the search space and the performance of the heuristic

4. Run the calibrator with the real data

5. Test for stationarity and ergodicity in the neighborhood of the �data-driven� pa-
rameters

The model is built using the SLAPP protocol3. The genetic algorithm has been added
above the observer module. The calibrator works in the following way. It starts by
creating 200 random strings and distributing them to the observers. The observers
translate (deterministically) the strings into the value of the parameters (the weights of

3see http://eco83.econ.unito.it/terna/slapp/
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the three di�erent strategies) and run the model. The run of the model produces an
outcome, the attendance. The observers run the model 5 times, collect the attendance
data and compute the simulated moments. It must be stressed that the random seed
used by the observers is always the same and is �xed at the start4; the reason is that
it has to be possible to distinguish between the change of the outcome due to a change
of the random seed and a change due to the values of the parameters (the latter is
the most interesting). Running the estimation many times with di�erent random seeds
gives the possibility of �nding the variance of the estimates and eventually making some
hypothesis testing. Given the simulated moments the value of the objective function
associated with each string is computed to evaluate the performance of each string. The
selection will select a set of strings, cross-over and mutation will act on the selected
string, and the cycle will start again. The new strings are distributed to the observers,
run in the model and �tness is computed. It has been tested above that with a known
minimum the genetic calibrator is able to �nd the minimum. In the following part the
method is applied to a more realistic setting where the true model is available but the
random seed that produced the pseudo-real data is unknown.

6.1 Data-Driven

To create the pseudo-real data, a random distribution of the strategies has been chosen.
There are 100 agents, who forecast next week's attendance by using a simple strategy.
If the forecast is above 60 (threshold) agents they do not want to go (they dislike the
crowded bar), if the forecast is below the threshold they will decide to go. The strategies
are 1) cyclical; 2) moving average; 3) �xed.

The distribution of strategies is: 29 agents use strategy 1, 39 use strategy 2, 32 use
strategy 3. The pseudo-real data set is created by letting the El Farol model run for 500
periods as shown in �gure 2.

6.2 The parameters

The next step is to use the data-driven method to search for the parameters that pro-
duced the pseudo-real data. Following the literature on simulated moment estimation,
by increasing the number of observations the consistency of the estimated parameters
increases, and by increasing the number of simulation runs the di�erence between the
simulated moment estimator and the GMM estimator is reduced (i.e. the di�erence be-
tween simulated and theoretical moments is reduced). The number of observations is
500, and the number of simulations is 5. The evaluation of a string is done by running
the model 5 times. The 5 random seeds used for the 5 runs remain constant. The av-
erage value for each moment is computed and compared with the pseudo-real moments
through the objective function. As mentioned above this procedure gives consistent es-
timates only if the data are stationary and ergodic. The data generator process is the

4The random seed is �xed when the observer starts to run the models. The result is as if 5 di�erent
seeds were �xed at the beginning of each run. These (virtually) 5 di�erent seeds has to be always the
same.
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Figure 3: The pseudo real data. This data has been produced with a known distribution
of the strategies in the model. The aim will be to �nd this distribution using the pseudo
real data and the model.

model; the actual data that the process generates are random, since they depend on the
random seed. Let's de�ne �process moments� as the moments that are computed on a
single realization of the process, that is on a time series produced with a given sequence
of random numbers (with a given random seed) and �ensemble moments� as the moments
computed over more than one realization of the process. A process is stationary when
the �process moments� do not depend on the time (week) in which they are computed.
A process is ergodic when the process moments tend towards the ensemble moments
by increasing the observations. This means that if a process is ergodic and if enough
observations of a single process are available, the information about the data generator
process is enough to infer its properties. If a process is non-ergodic, one single realiza-
tion is not su�cient to infer about the data generator process. These two properties
are fundamental for every econometric analysis. In the real world they are normally not
satis�ed, and in particular ergodicity is a very rare property. In standard econometrics,
stationarity is tested while ergodicity is supposed. The reason is that it is not possible to
test ergodicity on real data, for the obvious reason that only one observation is available.
In agent based models it is usually not possible to predict the properties of the emergent
data of a model, for this reason once the model has been built it is necessary to test
for stationarity and ergodicity. This will be done following the method outlined in [26].
The outcome of the tests tells whether the parameters found by minimizing the objective
function can be interpreted as estimation or simply as calibrated values.
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6.3 Stationarity and Ergodicity

To check the stationarity and ergodicity of the data generator process the tests proposed
in [26] will be used. The behavior of an agent based model is a priori unknown and
needs to be tested. The aim is to estimate some structural parameters by comparing
the moments of a real time series and the arti�cial moments computed using the agent
based models. Since the model represents a complex system, or at least a system in
which the emerging behavior is not reducible to an analytical form, the researcher has no
knowledge about the distribution of the random term or the e�ects of the randomness
on the emerging properties; for these reasons a non-parametric tests must be used. Sup-
posing that the model is well speci�ed, the usual lack of power of non-parametric tests
is overcome by testing not the real time series but the arti�cial time series. The idea is
that if the model represents the reality, or at least an approximation of it, it is possible
to suppose that the model has the same properties of the real system under analysis.
This assumption permits the use of a non-parametric test over an elevated number of
observations produced by the model, instead of using real observations that are usually
costly and few. An agent based model can exhibit very di�erent behaviors by simply
changing the value of the parameters. This is also the case with the (modi�ed) El Farol
Bar Problem. In particular it will be seen that with di�erent values of the parameters
(which in this case represent the distribution of the strategies among the agents) the
model can produce an ergodic or non-ergodic behavior. In a real setting the strategy
should be to run the �data-driven� procedure and then test the ergodicity and station-
arity in the neighborhood of the estimated parameters. In the present framework, to
make the analysis simpler, the stationarity and ergodicity are tested with the pseudo-
real parameters. The stationarity test described in [26] checks whether the moments
are constant during a given time series using the Runs Test (or Wald-Wolfowitz test)
proposed in [41]. Since all the agents choose deterministically, given the past behavior
of the attendance, once all the agents have enough observations to use their strategy,
the series becomes deterministic. The only random part lies in the starting condition,
as the agents use a random behavior only when they are not able to use their strategy.
The behavior of the attendance is cyclical, and the moments will not change over time.
Given that the series is deterministic it is not possible to use the two tailed Run Test,
since it would reject the hypothesis of randomness. The constancy of the moments is
tested using the one-tailed Run Test (see [20]), for which the alternative is the presence
of a trend. The scope of the test is to understand whether the moments are able to
characterize the data generator process or not, so in this particular case the interest lies
in the constancy rather than in the randomness. The stationarity test is made using a
series of 1000 observations divided in 100 windows of length 10. The number of win-
dows is essential for the power of the test, while the length of the windows in�uences
the ability of the test of detecting asymptotic stationarity. To save computational time
it is possible to start with many small windows; if the result is stationarity the process
is stationary. If the outcome of the test is non-stationarity the test has to be run with
longer windows and a longer series (to keep the number of the windows constant) to
check whether the process is really non-stationary or it is �asymptotically stationary� .
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Figure 4: Four di�erent run of the model with di�erent random seed. The model has the
same behavior in each run.

The test made on the attendance time series cannot reject the null-hypothesis of con-
stancy of the 10 moments. Each of the 10 moments used in the objective function is
stationary, in the sense that they are constant during the time series. The test shows
that the moments are not randomly distributed around the overall mean, as the number
of runs is too high. The augmented Dickey-Fuller con�rms the stationarity result by
rejecting the hypothesis of unit root. To be able to make inference from the observed
data and to estimate consistently the parameters, also the ergodicity property is needed.
A stochastic system is called ergodic if it tends in probability towards a limiting form
that is independent of the initial conditions. To be clear, with stationarity the moments
are constant whithin the series, with ergodicity the moments are constant between the
series. To test the ergodicity of the data produced by the model it is necessary to test
whether the moments produced by di�erent processes tend towards the same value. The
agent based model can be considered a function [38, 34], and in this very simple case it
is a deterministic function. It is possible to check intuitively that the model is ergodic
simply by checking the attendance in a given period. For example in the particular case
under exam for 100 di�erent processes the attendance in week 100 is always the same
and equal to 0.39 (39 agents at the bar). Since the process is deterministic (apart from
a small random initial part) the moments computed on di�erent run of the model are
the same. In �gure 4 the model has been run with four di�erent random seed, in �gure
5 the 10 moments used for the data-driven procedure computed over 30 di�erent run of
the model are shown.

To con�rm ergodicity it is possible to use the test described in [26] and use the Wald-
Wolfowitz test again. The non-rejection of the stationarity hypothesis implies that it is
possible to consider the moments as constant in time. Since the process is stationary, the
moments computed over the windows created from one long time series (100 windows long
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Figure 5: The 10 non centered moments has been computed over each of 30 di�erent run
of the model. The value of the moments is always the same.

10 observations in this case) come from the same distribution. If the process is ergodic,
the moments computed over 100 processes of the same length of the windows come from
the same distributions as the window moments. To test the null of ergodicity the Run
Test is used again. A problem arises since the series is deterministic. Indeed, to build
the second sample (of processes) the test produces 100 small processes and computes the
moment on that processes. If the process is deterministic this procedure will produce a
set of almost all equal moments. The fact that the process is deterministic, stationary
and ergodic implies that in a given interval of time (e.g. between week 10 and week
20) the attendance will be always the same. The ergodicity test will fail simply because
the windows moments are all around the overall mean, while the processes mean will
all be the same. To avoid the problem it is possible to slightly modify the ergodicity
test to introduce randomness. Instead of always taking the �rst weeks of the process
it is possible to create long processes and use the moments computed over a window
of the needed length but taking randomly the starting period. The ergodicity test has
been modi�ed in the following way. A time series is produced and 100 windows with
given length and random position are chosen from it. The moments computed over these
windows compose the �rst sample in the Wald-Wolfowitz test. The second step is to
produce 100 processes (of the same length as the previous one) and choose one window
with the given length and random position from each time series, compute the moments
and create the second sample of moments. Under the null-hypothesis of ergodicity, the
two samples come from the same population, as the random procedure to choose the
windows is the same both for the �rst and second sample. If the process is ergodic then
also the set of possible windows that can be chosen is the same both for the �rst and
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Figure 6: The ergodicity test reults for each moment. The number of non ergodic results
over 100 processes. The theoretical number of rejection is 5%. The actual number of
rejection for each moment is distributed around 5%

for the second sample. To be clear, if the process is ergodic it is equivalent to choose
100 windows randomly from one time series or to choose 100 windows from 100 di�erent
processes. If the process is ergodic, the moments computed randomly on a process come
from the same distribution, while if the process is non-ergodic there should be di�erences
between the moments. The test is very similar to the test made in [26], but adds a
random component in order to use the test on a deterministic series. The Run Test
made 100 times tells us that the two samples really come from the same distribution; the
process can be regarded as ergodic since the test gives about 5% of non-ergodicity results
(see �gure 6), which is the expected value given the chosen type I error (α = 0.05).

Given the properties of the model the value of the parameters that will be found
using the �data-driven� procedure can actually be considered as estimates of the true
parameters. Note that in a real setting the procedure should be inversed, once the data-
driven method �nds the parameters it is possible to test for stationarity and ergodicity
in the neighborhood of the parameters to know how to interpret the data-driven results,
that is whether to consider the values as estimations or simply data-driven parameters.
In the table 1, the estimated values are listed. In this particular case the values of
the estimated parameters are exactly the pseudo-real values, and there is no di�erence
between the estimations with di�erent random seeds. This comes from the fact that the
model produces deterministic values and that the series is quite long. For a stochastic
process, provided that it is ergodic and stationary, the di�erences between the estimated
parameters with di�erent random seeds can be used as the variance of the estimator and
to �nd the distribution of the estimates to make hypothesis testing. In this particular
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Table 1: The result of the estimation. The column seeds shows the seed used to run the
model (has to be constant during the procedure). The second column shows the value of
the objective function in the found minimum. The third column shown the value of the
parameters that minimizes the objective function.

case the estimated parameters can be considered as a degenerate random distribution
with variance zero.

For every seed the calibrator minimizes the objective function and �nds the pseudo-
real parameters very quickly, in less than 10 generations.

6.4 The non ergodic case

Unfortunately ergodicity is neither a necessary nor a common property; on the contrary
it is quite rare in the real world. By taking for example the same identical model with a
di�erent distribution of strategies, in particular reducing the weight of the �xed strategy,
ergodicity disappears. With a set of parameters equal to 71,22,7 the process exhibits
di�erent behaviors depending on the random seed. The stationarity test cannot reject the
null-hypothesis of stationarity, while the ergodicity test gives the following non-ergodic
results for each of the ten moments over 100 tests: 80, 96, 97, 98, 96, 99, 100, 100, 100,
98. The outcome clearly suggests non-ergodicity. The reason for which there is not full
power of the test is that the model produces a �nite number of di�erent patterns. In the
set of possible attendance behaviors, there is one pattern that is more likely. This means
that if the long process used to build the �rst sample has the most common behavior,
and/or by chance many of the processes used to build the second sample are of the most
likely type, the test has di�culty in detecting the non-ergodicity. The problem is model
speci�c. In �gure 7 the �rst moment of 100 di�erent run of the model has been plotted.
It is clear that there are di�erent regimes at which the model runs, but one of them is
more likely to happen.

The number of tests that give non-ergodicity results is enough to infer non-ergodicity.
For a further con�rmation, �gure 8 shows four examples of the model with di�erent
random seeds: the behavior of the attendance is clearly di�erent.
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Figure 7: The �rst moment of 100 di�erent run of the model. The model can run at
di�erent regimes, but one of them is more likely

Figure 8: Four di�erent run of the model with four random seeds

23



Figure 9: The 10 moments computed over each of 30 run of the model. The same model
produces with di�erent seed 3 di�erent means, several second moments etc.
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Figure 10: The value of the pseudo real moments and the moment produced by the
model with the pseudo real parameters, with the parameters that minimize the objective
function, and the mean parameters computed over the results of several data driven
procedures.

These di�erent behaviors are re�ected in the moments, as it can be seen from �gure
9. The moments are di�erent depending on the random seed. This behavior is detected
also by the ergodicity test. Non-ergodicity makes inference impossible. Since the random
seed is unknown the estimation method will search for the set of parameters that in
average produces the minimum value of the objective function. The problem is that
the parameters that will be found by minimizing the objective function will not be a
consistent estimation of the real parameters; the values will be nothing more than the
ones that minimize the objective function. The true parameters produce on average a set
of moments that are di�erent from the moments that are produced by a single process
(e.g. the one observed). This di�erence in the moments is systematic. By increasing
the number of observations the �process moments� will not tend towards the �ensemble
moments�.

Figure 10 shows the problem. The black dots are the moments of the pseudo-real
data set. The green dots are the moments (average over �ve runs) of the best performing
set of parameters (74, 21, 5), the red dots are the moments (average over �ve runs) of
the pseudo-real set of parameters. In the presence of non-ergodicity, minimization of the
objective function yields a set of parameters that produces on average a set of moments
close to the pseudo-real moments, but this set will usually not be the pseudo-real set.
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Table 2: The result of the estimation. The column seeds shows the seed used to run the
model (has to be constant during the procedure). The second column shows the value of
the objective function in the found minimum. The third column shown the value of the
parameters that minimizes the objective function.

The di�erent attendance patterns are enough to bias the estimated parameters. In table
2 the results of the data-driven procedure are shown; the (modi�ed) genetic algorithm
ran for 30 periods and has been initialized with 200 strings. The method can �nd the
set of parameters that minimize the objective function but the found values are di�erent
from the �pseudo-real parameters�; by increasing the number of observations it would not
be possible to achieve an improvement in the estimation of the variables.

Even if the parameters cannot be estimated, it can be useful to compare the model to
real data. It is crucial to interpret the values in the right way. The values to be chosen
for the parameters could be the mean for each parameter: 72.875, 21.125, 6, that can be
rounded to (73, 21, 6) or the values that gives the minimum error, in this case seed 78960
and parameters 74, 21, 5.

If the properties of stationarity and ergodicity are satis�ed it is possible to estimate
the parameters consistently and e�ciently using the method above (given a well speci�ed
model), otherwise the best achievement is to reproduce the properties of the observed
data set and choose the parameters and the run that give the smallest possible value for
the objective function, that is the smallest possible distance between the real moments
and the arti�cial ones. It is crucial to use the resulting parameters not as estimated
parameters; the basic idea is that it is better to have no (or little) information instead of
wrong information. There may also be the option of reducing noise, and with some luck
at the same time get ergodicity. In this particular model the agents use past data for
decision making. This is a common characteristic for many economic and particularly
�nancial models. In El Farol, this is a very strong characteristic, as given the past
attendance the agents' decisions are deterministic, and all the noise of the model is in
the �rst weeks where the agents do not have enough data to use their strategies. The idea
to reduce the noise in such a situation is to use the pseudo-real data to start the model
and avoid the initial randomness. The agents instead of deciding randomly, decides using
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as information the real data. This is coherent with what has been done here: use at best
the limited information available. Indeed, the only information is the pseudo-real data
and the structure of the model and the aim is to �nd the parameters of the distribution
of the strategies in the population of agents. Given the strategies, it is known that from
the �rst to the ninth week there is noise in the model, while after the ninth week the
attendance is deterministic and depends on the past attendance. If the model starts at
the tenth week using pseudo-real data as past data the result is a deterministic model
perfectly able to reproduce the behavior of the pseudo-real data using the pseudo-real
value of the parameters. In this case the real parameters can be found even in a non-
ergodic situation. This is a particular case, usually there will probably be noise also after
the �rst weeks, but the idea is that by using observed initial conditions, some noise can
be eliminated. Given the data and the model, the use of the initial real data can be used
as initial conditions to reduce the noise and obtain better results.

7 Conclusions

This paper presents a method for selecting the parameter values in an agent based model
by using observed data. The experimental model is a widely known model in the literature
that mimics many economic situations in which the agents use strategies basing decisions
on past data. After the model was built it was analyzed in order to be able to use properly
the information that can be gathered from the data-driven procedure. The �rst step is to
build an optimization heuristic. Given the heuristic, the search space has to be analyzed
in a known situation. This analysis has to be done with pseudo-real data. Performing
the minimization of the chosen objective function when the minimum is known, gives
important information about the existence of a global minimum (i.e. identi�cation)
and about the ability of the heuristic in �nding it. Once the heuristic has been proven
to work, it is possible to perform the real �data-driven� procedure, which consist in
the minimization of a de�ned distance between real data and arti�cial data. The last
step is to understand how to interpret the value of the parameters resulting from the
minimization. Using a stationarity test and an ergodicity test it is possible to determine
whether the found values are estimated or simply values that make the model mimic the
real system. The di�erence is crucial and the comparison is useful both in the case in
which ergodicity and stationarity are satis�ed and in the case in which they are not, but
the information and the interpretation of the parameters are radically di�erent. If the
model is non ergodic it is possible to reduce the noise using as starting condition the real
data. The algorithm can be used also as a tool to select the value of the parameters so
that the arti�cial data has some desired properties. Supposing that the model has been
estimated, calibrated or �data-driven� it is possible to use the same method to select
policies or parameters, other than the estimated ones, so that the emergent time series
has some given properties. For example, in the El Farol Bar problem the dimension of
the bar, which is the threshold the agents use to decide whether to go or not to go, can
be considerd as a policy instrument. The parameters will be estimated with the current
observed policy and given the estimated parameters it is possible to use the data-driven
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method to select the value of the threshold that minimizes the volatility. The idea is
similar to the behavior search proposed by Wilensky in NetLogo5. Given the strategies
of the agents and their distribution it is possible to optimize the objective function of
the policy maker.

Appendix A

Properties of the simulated estimators

Consider a model that given δ produces a time series {yt} (where the dependence on δ
is implicit). The aim is to compute the theoretical moments using simulated data. It is
possible to use two di�erent estimator:

µ̄Sm =
1

S

S∑
s=1

(
1

n

n∑
t=1

ymt

)
s

(8)

µ̂Sm =
1

Sn

Sn∑
t=1

ymt (9)

where n is the number of observations, S is the total number of simulations and s is
simulation s. Supposing that the process {yt} is stationary and ergodic it is possible to
show that both estimators are consistent. Indeed, supposing that E(ymt ) = µm, then
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ymt

))
= µm (11)

This is a direct consequence of the stationarity and ergodicity properties. The ergodic
theorem states that the estimators will converge almost surely to their expected value as
n→∞. Note that if the ergodicity property is not satis�ed then the two estimators has
two di�erent expected values, (8) tends to the overall expected value, while (9) tends to
the particular expected value of the particular process (determined by the random initial
conditions).This is the reason for which (8) has been used in the paper.

Since the variance of the estimator of the theoretical moments enters directly in the
variance of the simulated moments estimator, it is interesting to understand whether one
of the two estimators is more e�cient. Supposing that the variance of ymt is σ2m if the
process is strictly stationary, then

V ar

(
1

Sn

Sn∑
t=1

ymt

)
=

1

(Sn)2

Sn∑
t=1

V ar(ymt ) =
σ2m
Sn

(12)

5see http://www.behaviorsearch.org/index.html
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which is the variance of estimator(9). The variance of estimator (1) is

V ar

(
1

S

S∑
s=1

(
1

n

n∑
t=1

ymt

)
s

)
=

1

S2

S∑
s=1

V ar

(
1

n

n∑
t=1

ymt

)
s

(13)

given that the proces is strictly stationary and ergodic we know that for all s

V ar

(
1

n

n∑
t=1

ymt

)
=
σ2m
n

(14)

Since each simulation is independent from each other for construction, it is possible to
use again the property of the variance operator, that the variance of a sum of independent
random variables is the sum of the variances, and by substution (7) in (6) �nd that

1

S2

S∑
s=1

σ2m
n

=
σ2m
Sn

(15)

Since (5) and (15) are equal, we know that under strict stationarity and ergodicity the
two estimators are equivalent. If the process is weakly stationary than also the covariances
have to be considered. In this case the estimator (9) has the following variance:

V ar

(
1

Sn

Sn∑
t=1

ymt

)
=

1

(Sn)2

Sn∑
i

Sn∑
j

Cov(ymi , y
m
j ) (16)

while the estimator 8:

V ar

(
1

S

S∑
s=1

1

n

n∑
t=1

ymt

)
=

1

S2

S∑
s=1

V ar

(
1

n

n∑
t=1

ymt

)
s

(17)

using the fact that each simulation is independent. Supposing that the process is
ergodic, thus that for each s the variance of the process is the same than it is possible to
substitute

V ar

(
1

n

n∑
t=1

ymt

)
=

1

n2

n∑
i

n∑
j

Cov(ymi , y
m
j ) (18)

in equation (17), to eventually �nd the variance of estimator (1)

1

S2

S∑
s=1

V ar

(
1

n

n∑
t=1

ymt

)
s

=
1

Sn2

n∑
i

n∑
j

Cov(ymi , y
m
j ) (19)

The problem is to understand whether (16) and (19) are di�erent. Note that the
covariance matrix in (16) is bigger (more arguments in the summation) but it is multiplied
by 1

(Sn)2
which is smaller than 1

Sn2 . To know with certainty which of the two estimators
is more e�cient we should know how the covariance matrix is composed. Let's rewrite
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(16) to highlight the part in common with (19). We can divide the summation in (16)
in two parts:

A =
S∑
s=1

sn∑
i=1+(s−1)n

sn∑
j=1+(s−1)n

Cov(ymi , y
m
j ) (20)

B = 2
S−1∑
s=1

sn∑
i=1+(s−1)n

Sn∑
j=1+sn

Cov(ymi , y
m
j ) (21)

such that (16) is equal to

1

(Sn)2
(A+B) (22)

Suppose to divide the covariance matrix Sn×Sn de�ned in (16) in n×n sub matrices
and call such submatrices Nij . The original covariance matrix, supposing that S = 3 can
then be represented in the following way: N11 N12 N13

N21 N22 N23

N31 N32 N33


(20) represents the summation of the elements on the main diagonal N11, N22, N33

(the summation of each element the sub-matrices on the main diagonal), while (21) rep-
resents the sum of the remaining elements. Since the process is stationary, the covariance
between two elements depends only on the distance between the two elements and not
on the speci�c position, which implies that the covariance matrix is symmetric. Since
the elements in Ngh when g = h are equal, then (20) can be rewritten as S times Ngg.
Taking for example s = 1, (20) can be rewritten as:

A = S
n∑
i=1

n∑
j=1

Cov(ymi , y
m
j ) (23)

that is SN11. (23) multiplied by 1
(Sn)2

is equal to (19). The di�erence between (19)

and (16) thus is:

1

(Sn)2
B (24)

The question is whether B is positive, negative or zero, to answer the question it would
be necessary to know the elements of the covariance matrix. In general it is not possible
to decide which of the two estimators is the most e�cient but it is possible to state some
important asymptotic properties of the estimators. Recall that the stationarity and
ergodicity assumption implies that limτ→∞Cov(Xt, Xt+τ ) = 0. Given the asymptotic
behavior of the covariance it is easy to show that when n → ∞ and/or S → ∞ the
variance of both estimators tends to zero (which implies also that they tend to be equal).
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The fact that the covariance tends to zero as the distance between the observations
tends to in�nity implies that the summation of the elements of the covariance matrix
as the dimension of the matrix increases tend to a �nite number. While the summation
converge, the denominator in (19) and in (16) instead tends to in�nity, that implies that
(19) and (16) tend to zero as n→∞ and/or S →∞.

To conclude, it has been shown that both estimators are consistent and if the process
is strictly stationary, they have also the same variance. If the process is only weakly
stationary then the two estimators have di�erent variance. In any case, the variance of
the estimators tends to 0 as S →∞.
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