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Abstract: We derive the necessary and sufficient condition for the L∞−monotonicity of finite
difference θ-scheme for a diffusion equation. We confirm that the discretization ratio ∆t =
O(∆x2) is necessary for the monotonicity except for the implicit scheme. In case of the heat
equation, we get an explicit formula, which is weaker than the classical CFL condition.

Key-words: Theta-scheme, monotonicity.

∗ We thank Nizar Touzi (CMAP) for fruitful discussions.
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La condition de la monotonie du θ−schéma
pour les équations de diffusion

Résumé : Nous nous intéressons à la condition nécessaire et suffissante de la monotonie du
θ−schéma pour l’équation de diffusion en dimension un. Notre résultat confirme que le ratio de
discrétisation ∆t = O(∆x2) est nécéssaire pour la monotonice sauf le schéma implicite. Dans
le cas de l’équation de la chaleur, nous obtenons la formule explicite, qui est plus faible que la
condition CFL.

Mots-clés : Theta-schéma, monotonie.
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Monotonicity of theta-scheme 3

1 Introduction

The monotonicity of a numerical scheme is an important issue in numerical analysis. For exam-
ple, in the convergence analysis in Chapiter 2 of Allaire [1], the author uses the L∞−monotonicity
to derive the stability of the scheme, which gives a proof of convergence. In the viscosity solution
convergence context of Barles and Souganidis [2], the L∞−monotonicity is a key criterion to
guarantee the convergence of the numerical scheme.

We are here interested in the finite difference θ−scheme for the diffusion equation:

∂tv − σ2(x) D2
xxv = 0, (t, x) ∈ R+ × R. (1.1)

with initial condition v(0, x) = g(x).

2 The θ−scheme and CFL condition

Let h = (∆t,∆x) ∈ (R+)2 be the discretization in time and space, denote tn := n∆t, xi := i∆x,
σi := σ(xi) and by uni the numerical solution of v at point (tn, xi), let N := {xi : i ∈ N} be
a discrete grid on R. The finite difference θ−scheme (0 ≤ θ ≤ 1) for diffusion equation (1.1) is
a countable infinite dimensional linear system on N :

un+1
i − uni

∆t
− σ2

i

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+ (1− θ)

uni+1 − 2uni + uni−1

∆x2

)
= 0, (2.1)

with initial condition u0
i = g(xi).

Let (un) := (uni )i∈Z be a Z−dimentional vector, denote αi :=
σ2
i ∆t

∆x2 and βi := θαi

1+2θαi
, we define

Z × Z diensional matrices I, D, T and E as follows: I is the identity matrix, D is a diagonal
matrix with Di,i = αi, T is a tridiagonal matrix with Ti,i−1 = Ti,i+1 = αi and Ti,i = 0, and
E := θ[I+2θD]−1T which is a tridiagonal matrix with Ei,i−1 = Ei,i+1 = βi and Ei,i = 0. Then
the system (2.1) can be written as[

I + 2θD − θT
]

(un+1) =
[
I − 2(1− θ)D + (1− θ)T

]
(un),

or equivalently[
I + 2θD

] [
I − E

]
(un+1) =

[
I − 2(1− θ)D + (1− θ)T

]
(un). (2.2)

Proposition 2.1. Suppose that the function g is bounded on N and there is constant σ̄ > 0
such that |σi| ≤ σ̄ for every i ∈ Z, then the Z × Z matrix I − E is invertible and its inversion
B is given by

B := I +

∞∑
n=1

En. (2.3)

And therefore, there is a unique solution for system (2.1) (or (2.2)) given by

(un+1) = B
[
I + 2θD

]−1 [
I − 2(1− θ)D + (1− θ)T

]
(un). (2.4)

Proof. First, (αi)i∈N defined by αi =
σ2
i ∆t

∆x2 are uniformly bounded by ᾱ := σ̄2∆t
∆x2 since (σi)i∈Z

are uniformly bounded by σ̄. It follows that βi = θαi

1+2θαi
≤ ρ := θᾱ

1+2θᾱ <
1
2 .
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4 J.F. Bonnans and X. Tan

Denote by B(N ) the space of all bounded functions defined on N , then E can be viewed as an
operator on B(N ) and its L∞−norm is defined by

‖E‖∞ := sup
u∈B(N ),u 6=0

|Eu|∞
|u|∞

.

Clearly, ‖E‖∞ ≤ 2ρ < 1, and therefore, B in (2.3) is well defined and one can easily verify that
B is the inverse of

[
I − E

]
.

Definition 2.2. A numerical scheme for equation (1.1) given by un+1
i = Th[un]i is said to be

L∞−monotone if

u1,n
i ≤ u2,n

i , ∀i ∈ Z ⇒ Th[u1,n]i ≤ Th[u2,n]i, ∀i ∈ Z.

Remark 2.3. It is well-known that in the case θ = 1, system (2.2) is an implicit scheme, and
it is automatically L∞−monotone for every discretization (∆t,∆x). When θ < 1, a sufficient
condition to gurantee the L∞−monotonicity of system (2.2) is the CFL(Courant-Friedrichs-
Lewy) condition

ᾱ :=
σ̄2∆t

∆x2
≤ 1

2(1− θ)
, for σ̄ := sup

i∈Z
σi. (2.5)

The CFL condition is a sufficient condition for the monotonicity of θ−scheme, and it implies
a discretization ratio ∆t = O(∆x2). We shall confirm that this ratio is necessary to guarantee
the monotonicity in the following.

3 The necessary and sufficient condition

Let γi := (1−θ)αi

1+2θαi
= (1−θ)

θ βi and bi,j be elements of the matrix B, i.e. B = (bi,j)(i,j)∈Z2 . It is

clear that bi,j ≥ 0 for every (i, j) ∈ Z2 by the definition of B in (2.3). Therefore, it follows from
(2.4) that the necessary and sufficient condition for monotonicity of system (2.1) can be written
as :

bi,j−1γj−1 + bi,j
( 1

1 + 2θαj
− 2γj

)
+ bi,j+1γj+1 ≥ 0, ∀(i, j) ∈ Z2. (3.1)

Theorem 3.1. Suppose that |σi| ≤ σ̄ < ∞ for every i ∈ Z, and let θ ∈ (0, 1). Then the
necessary and sufficient condition of monotonicity for the θ−scheme in (2.1) is

αi =
σi

2∆t

∆x2
≤ 1

2(1− θ)
+

bi,i − 1

2θ(1− θ)
, ∀i ∈ Z. (3.2)

Proof. First, since B is the inversion of I − E, we have B
[
I − E

]
= I, and it follows that

bi,j−1βj−1 + bi,j+1βj+1 =

{
bij − 1, for i = j,

bij , for i 6= j.

Therefore, in case that i 6= j, (3.1) is equivalent to:

bi,j

(1− θ
θ

+
1

1 + 2θαj
− 2γj

)
≥ 0. (3.3)
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Monotonicity of theta-scheme 5

Since bi,j ≥ 0, the inequality (3.3) holds as soon as

(1− θ)(1 + 2θαj) + θ − 2θ(1− θ)αj ≥ 0,

which is always true.

In case that i = j, (3.1) is equivalent to:

bi,i

(1− θ
θ

+
1

1 + 2θαi
− 2γi

)
− 1− θ

θ
≥ 0,

i.e.

αi ≤
1

2(1− θ)
+

bi,i − 1

2θ(1− θ)
.

which is the required inequality (3.2).

Remark 3.2. Since bi,i < ∞ for every i ∈ Z, it follows from Theorem 3.1 that the ratio
∆t = O(∆x2) is necessary for the monotonicity of θ−scheme ( 0 < θ < 1) as soon as σi 6= 0
for some i ∈ Z.

4 The heat equation

In this section, les us suppose that σ(x) ≡ σ0 with a positive constant σ0, then the diffusion
equation turns to be the heat equation:

∂tv − σ2
0 D

2
xxv = 0, (t, x) ∈ R+ × R. (4.1)

In this case, we can compute bi,i and then get an explicit formula for the monotonicity condition
(3.2). Let

A be a Z× Z tridiagonal matrix such that Ai,i−1 = Ai,i+1 = 1 and Ai,i = 0, (4.2)

then clearly, E = βA with β = θα
1+2θα <

1
2 , α =

σ2
0∆t

∆x2 and

B =
[
I − βA

]−1

:=

∞∑
n=0

βnAn. (4.3)

Lemma 4.1. Denote by An the n−th exponentiation of matrix A in (4.2) for n ∈ N, we

rewritten An = (a
(n)
i,j )(i,j)∈Z×Z. Then,

a
(n)
i,j =

{
C

(n+i−j)/2
n , if n+i−j

2 ∈ Z ∩ [0, n],

0, otherwise.
(4.4)

Proof. We proceed by induction. First, it is clearly that (4.4) holds true for n = 1. Suppose that
the (4.4) is true in case that n = m. Since Am+1 = Am A, we then have am+1

i,j = ami,j−1 +ami,j+1.

It follows from Ckn = Ckn−1 + Ck−1
n−1 that (4.4) holds still true for the case n = m + 1. We then

conclude the proof.

By Lemma 4.1 and equality (4.3), we get bi,i =
∑∞
k=0 C

k
2kβ

2k with the convention that C0
0 := 1.

As a result, the monotonicity condition (3.2) of θ−scheme reduces to

α ≤ 1

2(1− θ)
+

f(β)

2θ(1− θ)
, (4.5)
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6 J.F. Bonnans and X. Tan

where

f(x) :=

∞∑
k=1

Ck2k x
2k for − 1

2
< x <

1

2
.

Remark 4.2. We can verify that Ck2k ≈ 1√
πk

4k as k →∞ by Stirling’s formula, thus the radius

of convergence of f(x) is 1
2 .

Let us now compute the function f(x). Since Ck2k = 2 2k−1
k Ck−1

2(k−1), it follows that for |x| < 1
2 ,

f ′(x) =

∞∑
k=1

2k Ck2k x
2k−1 =

∞∑
k=1

4 (2k − 1) Ck−1
2(k−1) x

2k−1

= 4x +

∞∑
k=1

(8k + 4) Ck2k x
2k+1 = 4x + 4x2f ′(x) + 4xf(x).

We are then reduced to the ordinary differential equation

f ′(x) =
4x

1− 4x2
(f(x) + 1), with f(0) = 0,

whose solution is f(x) = 1√
1−4x2

− 1. Inserting this solution into (4.5), and by a direct manip-

ulation, it follows that (4.5) is equivalent to

α ≤ 1

2(1− θ)
+

θ

4(1− θ)2
. (4.6)

We get the following theorem:

Theorem 4.3. The necessary and sufficient condition for the L∞−monotonicity of θ−scheme
(0 < θ < 1) of the heat equation (4.1) is

α =
σ2

0∆t

∆x2
≤ 1

2(1− θ)
+

θ

4(1− θ)2
. (4.7)

Remark 4.4. In particular, when θ = 1
2 , the CFL condition is α =

σ2
0∆t

∆x2 ≤ 1, and the necessary

and sufficient condition of the monotonicity is α =
σ2
0∆t

∆x2 ≤ 3
2 .
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