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.

LEARNING STRICT NASH EQUILIBRIA THROUGH

REINFORCEMENT

ANTONELLA IANNI

Abstract. This paper studies the analytical properties of the reinforcement learning
model proposed in Erev and Roth (1998), also termed cumulative reinforcement learn-
ing in Laslier et al (2001). This stochastic model of learning in games accounts for
two main elements: the law of effect (positive reinforcement of actions that perform
well) and the law of practice (the magnitude of the reinforcement effect decreases with
players’ experience).

The main results of the paper show that, if the solution trajectories of the underlying
replicator equation converge exponentially fast, then, with probability arbitrarily close
to one, all the realizations of the reinforcement learning process will, from some time
on, lie within an ε band of that solution. The paper improves upon results currently
available in the literature by showing that a reinforcement learning process that has
been running for some time and is found sufficiently close to a strict Nash equilibrium,
will reach it with probability one.

JEL: C72, C92, D83.

1. Introduction

Over the last two decades there has been a growing body of research within the field of
experimental economics aimed at analyzing learning in games. Various learning models
have been fitted to the data generated by experiments with the aim of providing a learn-
ing based foundation to classical notions of equilibrium. The family of stochastic learning
theories known as positive reinforcement seem to perform particularly well in explaining
observed behaviour in a variety of interactive settings. Although specific models differ,
the underlying idea of these theories is that actions that performed well in the recent past
will tend to be adopted with higher probability by individuals who repeatedly face the
same interactive environment. Despite their wide applications, however, little is known
on the analytical properties of this class of learning models. Consider for example a
normal form game that admits a strict Nash equilibrium. Suppose players have almost
learned to play that equilibrium, meaning that players have been playing for some time
and their behaviour is close to that equilibrium prescription. Since, for each player, any
action different from the equilibrium action will necessarily lead to lower payoffs, one
would expect players to consistently reinforce their choice of the equilibrium action and,
by this doing, to eventually learn to play that Nash equilibrium. This seems to be a
basic requirement for a learning theory. Yet, it is not satisfied by some reinforcement
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2 ANTONELLA IANNI

learning models (e.g. the Cross model as studied in Börgers and Sarin (1997)), and most
results available to date can only guarantee that in some reinforcement learning models,
it may (e.g. the Erev and Roth model analyzed in Hopkins (2002), Beggs (2005) and
Laslier et al. (2001)).

This paper studies the stochastic reinforcement learning model introduced by Roth
and Erev (1995) and Erev and Roth (1998), also termed cumulative proportional rein-
forcement in Laslier et al. (2001). In the model, there is a finite number of players who
are to repeatedly play a normal form game with strictly positive payoffs. At each round
of play, players choose actions probabilistically, in a way that accounts for two main
features. The first effect (labelled the Law of Effect) is the positive reinforcement of the
probability of choosing actions that have been played in the previous round of play, as a
function of the payoff they led to. The second effect (labelled the Power Law of Practice)
is that the magnitude of this reinforcement is endogenously decreasing over time. The
main results of this paper imply that, if play is found, after some time, close to a strict
Nash equilibrium of the underlying game, players will learn to play it with probability
one. While doing so, players will in fact choose actions in a way that is close to a de-
terministic replicator dynamics. The latter dynamics have been studied extensively in
biology, as well as in economics, and it is known that all, and only those, strict Nash
equilibria are their stable rest points. Our results exploit the fact that in proximity of
a strict Nash equilibrium, convergence occurs at an exponentially fast rate. If learning
has been going on for some time, the stochastic component of the reinforcement learning
process, which in principle could move the process away from the equilibrium, is in fact
overcome by this deterministic effect.

The results we obtain rely on stochastic approximation techniques (Ljung (1978),
Arthur et al. (1987), (1988), Benaim (1999)) to establish the close connection between
the reinforcement learning process and the underlying deterministic replicator equation.
Specifically the paper shows that up to an error term the behaviour of the stochastic
process is well described by a system of discrete time difference equation of the replicator
type (Lemma 1). The main result of the paper (Theorem 1) shows that if the trajectories
of the underlying system of replicator equations converge sufficiently fast and if the
learning process has being going on for sufficiently long, then the probability that all the
realizations of the learning process over a given spell of time, possibly infinite, lie within a
given small distance of the solution path of the replicator dynamics, becomes arbitrarily
close to one. In particular, the paper shows that the property of fast convergence, as
required in the main result, is always satisfied in proximity of a strict Nash equilibrium
of the underlying game (Remark 1) and is sufficient to guarantee that the approximation
error converges uniformly over any spell of time.

The paper is organized as follows. Section 2 describes the reinforcement learning
model we study. Section 3 states the main result of this paper. Since the logic followed
in the proof is more general and could fruitfully be applied to the study of other learning
models, an explicit outline is provided (Detailed proofs are instead contained in the
Appendix). Finally, Section 4 contains some concluding remarks.
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2. The model

Consider an N -player, m-action normal form game G ≡ ({i = 1, ..., N};Ai;πi), where

Ai = {j = 1, ...,M} is player i’s action space and πi :
∏N
l=1A

l ≡ A → < is player i’s
payoff function1. Given a strategy profile a ∈ A, we denote by πi(j, a−i) the payoff to
player i when (s)he chooses action j and all other players play according to a−i, where
the subscript −i refers to all players other than i. Throughout the paper we assume
that payoffs are strictly positive and bounded.

We shall think of player i’s behaviour as being characterized by urn i, an urn of
infinite capacity containing γi balls, bij > 0 of which are of colour j ∈ {1, 2, ...,m}.
Clearly γi ≡

∑
j b
i
j > 0. We denote by xij ≡ bij/γi the proportion of colour j balls in urn

i. Player i behaves probabilistically in the sense that we take the composition of urn i to
determine i’s action choices and postulate that xij is the probability with which player
i chooses action j. Behaviour evolves over time in response to payoff consideration in
the following way. Let xij(n) be the probability with which player i chooses action j at

step n = 0, 1, 2.... Suppose that (j, a−i(n)) is the profile of actions played at step n
and πi(j, a−i(n)) shortened to πij(n) is the corresponding payoff gained by player i who

chose action j at step n. Then exactly πij(n) balls of colour j are added to urn i at step
n. At step n+ 1 the resulting composition of urn i, will be:

(1) xik(n+ 1) ≡
bik(n+ 1)

γi(n+ 1)
=

bik(n) + σik(n)

γi(n) +
∑

l σ
i
l(n)

where σik(n) = πij(n) for k = j (i.e. if action j is chosen at step n) and zero otherwise,

and l = 1, 2, ...m. In the terminology of Roth and Erev (1995) the bik(·) are called
propensities. Since γi(n+1) = γi(0)+

∑
r=1,...,n

∑
l σ

i
l(r), this learning process is termed

cumulative reinforcement learning in Laslier et al. (2001).
The above new urn composition reflects two facts: first the proportion of balls of colour

j (vs. k 6= j) increases (vs. decreases) from step n to step n+ 1, formalizing a positive
(vs. negative) reinforcement for action j (vs. action k), and second, since γi appears
at the denominator, the strength of the aforementioned reinforcement is decreasing in
the total number of balls in urn i. It is usual to label the first effect as the law of effect
(reinforcement) and the second as the law of practice.

To better understand the microfoundation of this learning model, it is instructive
to rewrite (1) for j being the action chosen at step n and by recalling that bij(n) ≡
xij(n)γi(n), as:

xij(n+ 1) = xij(n)

[
1−

πij(n)

γi(n) + πij(n)

]
+

πij(n)

γi(n) + πij(n)
(2)

xik(n+ 1) = xik(n)

[
1−

πij(n)

γi(n) + πij(n)

]
for k 6= j

1We hereby assume that each player’s action space has exactly the same cardinality (i.e. M). This is
purely for notational convenience.
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This shows that conditional upon a(n) being played at step n, player i updates her state
by taking a weighted average of her old state and a unit vector that puts mass one on
action j, where step n weights depend positively on step n realized payoff and negatively
on step n total number of balls contained in urn i2.

Since the relative effect of payoffs from the interaction on action choices becomes
smaller as players gain more experience in the learning routine, gains decrease endoge-
nously. Since payoffs are random, so are the updated weights given to payoffs experienced
at any given point in time. Furthermore, since different players may get different streams
of payoffs over time, each player’s learning process may display a different sequence of
decreasing gains.

Given an initial condition, [γ(0), x(0)], for any n > 0, the above choice probabilities
define a stochastic process over the state space [x(n), γ(n)], described by the following
system of N(m+ 1) stochastic difference equations:

(3)

{
xik(n+ 1) = xik(n) +

[σi
k(n)−xik(n)

∑
l σ

i
l (n)]

γi(n+1)

γi(n+ 1) = γi(n) +
∑

l σ
i
l(n)

i = 1, ..., N k = 1, ...,M

Clearly γ ≡ [γi] ∈ <N+ and xi ≡ [xik] ∈ ∆i ≡ {xi ∈ <+ :
∑

j x
i
j = 1}, x ∈ ∆ ≡ ×i∆i,

i.e. x lies in the Cartesian product of the N unit simplexes ∆i. It can be easily checked
that, conditional upon a realization of a(n) the system of equations (3) reproduces
exactly the system of equations (2). Note that, by construction, the process is Markovian
in the state variables [x(n), γ(n)] (and time inhomogeneous, since γ(n) depends on n).

In analogy with Hopkins and Posch (2005), we re-label the system in terms of new
variables µi(n) ≡ n−1γi(n) and re-write the dynamics as a process with a constant step
size, equal to n−1. This leads to an N(m+ 1) system, entirely analog to (3), in the new
state variables [x(n), µ(n)]:

(4)

{
xik(n+ 1) = xik(n) + 1

nµ
i(n)[σik(n)− xik(n)

∑
l σ

i
l(n)]

µi(n+ 1) = µi(n) + 1
nµ

i(n)[1− µi(n)
∑

l σ
i
l(n)]

Let ={n} denote the sigma algebra generated by{x(l);µ(l) l = 1, ..., n}. Consider the

term in square brackets in equation (4)̇ and compute its expected value conditional on
={n}. It is not difficult to see that E[σik(n) | ={n}] = xik(n)πik(n), i.e., it is the expected
payoff to player i from playing action k at step n (given other players’ choices). By the
same token, E[

∑
l σ

i
l(n) | ={n}] =

∑
l x

i
l(n)πil(n), i.e., it is the expected payoff to player

i at step n. As a result:

E[[σik(n)− xik(n)
∑
l

σil(n)] | ={n}] =

= xik(n)[πik(n)−
∑
l

xil(n)πil(n)] ≡ f ik(x(n))(5)

2The system of equations (2) carries a direct analogy with Börgers and Sarin (1997)’s reinforcement
model, where payoffs are assumed to be positive and strictly less than one and the payoff player i gets
by playing action j is taken to represent exactly the weights given to the unit vector in the above
formulation. In their model the weights do not depend on the step number n, and as a result, the
formulation of their model only accounts for the reinforcement effect.
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where the term of the right hand side of this equation defines a (discrete time) system
of deterministic replicator dynamics. Its continuous time version f(x) : ∆→ ∆ is defined
by:

(6)
d

dt
xi(t) = f ik(x) ≡ xik[πik −

∑
l

xilπ
i
l ]

and is a direct generalization of the Taylor (1979) multipopulation replicator dynamics.
It has been extensively studied in the literature on evolution, usually in the contest of
large population and random matching models (see for ex. Fudenberg and Levine (1998),
Weibull (1995), Benaim and Weibull (2003) and therein references) and has been applied
to the study of learning models by Börgers and Sarin (1997)), Posch (1997), Ianni (2007),
Hopkins (2002), Vega-Redondo (2003), among others.

Lemma 2 in Hopkins and Posch (2005) shows that, under the assumption that payoffs
are strictly positive and bounded, the ODEs associated with these dynamics are fM (x) :
∆ ∪ <+ → ∆ ∪ <+ defined by:

(7)

{
d
dtx

i(t) = µif ik(x)
d
dtµ

i(t) = µi(1− µi
∑

l x
i
lπ
i
l)

and it can be easily seen that for µi = (
∑

l x
i
lπ
i
l)
−1 (i.e., for stationary values of µis):

(8)
d

dt
xi(t) =

f ik(x)∑
l x

i
lπ
i
l

which corresponds exactly to the Maynard Smith replicator dynamics (see, for ex-
ample, Weibull (1995), and Beggs (2005)), where the excess payoff of action k over the
average payoff to player i is renormalized by the latter quantity.

It is clear that the two types of replicator dynamics share the same rest points and it is
known (see Hopkins (2002) and Hopkins and Posh (2005)) that the two dynamics share
the same set of asymptotically stable rest points. It is also known (see Ritzberger and
Weibull (1995)) that a stationary point is asymptotically stable in the Taylor’s replicator
dynamics if and only if it is strict Nash equilibrium of the underlying game.

Before proceeding to state the main result of this paper, we find it useful to place it
in the contest of results already available in the literature on stochastic approximation
that have found application to the study of learning dynamics.

Many studies emphasize the fact that the deterministic replicator dynamics act as a
driving force for the stochastic reinforcement learning process, in that they describe its
expected motion and can be used to approximate the dynamics of the learning process
over finite time intervals. This is exactly what is done, for example, in Laslier et al (2001),
Lemma 1, where, using terminology and results from Benaim (1999), it is shown that the
replicator dynamics is an asymptotic-pseudo-trajectory of the learning process. This is
helpful in understanding the asymptotics of the reinforcement learning process, since one
is allowed to show that (Theorem 7.3 in Benaim (1999) applies and that) the probability
that the reinforcement learning process gets absorbed in an asymptotically stable Nash
Equilibrium is strictly positive. This is, however, only a partial characterization: it might
very well be that the long run behaviour of the learning process is dramatically different
from its finite time approximation (see for example the analytical study of the Cross
learning model in Börgers and Sarin (1997), or Izquierdo et al. (2007) for various results
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and simulations of learning processes for which the transient behaviour is very different
from its asymptotics). To address general properties of convergence to Nash equilibria
of reinforcement learning models, i.e. to show that convergence actually obtains with
probability one, one needs more. One way to proceed is to rule out convergence to all
the other rest points of the replicator dynamics, i.e. to linearly unstable Nash equilibria
and/or boundary rest points that are Nash equilibria only with respect to strategies in
their support. This latter need raises significant issues and can only be done on an ad
hoc basis, typically for very simple games (see Hopkins and Posch (2005), Beggs (2005)
and therein references for further clarifications on this issue).

Relative to the above logic, our results provide a more direct and more general way
to achieve the aim. As it will become clear below, the results of this paper exploit an
additional stability property of strict Nash equilibria under replicator dynamics: namely
that different trajectories of the replicator dynamics started within the basin of attraction
of a strict Nash equilibrium converge exponentially fast. This finding allows us to show
that if the process is found, after sufficiently many steps, in proximity of a strict Nash
equilibrium, convergence of the learning process to that equilibrium will obtain with
probability arbitrarily close to one. This implies that, for the reinforcement learning
model we study, the approximation in terms of replicator dynamics is suitable, both to
describe its transient behaviour (over finite time spells), as well as asymptotically.

In the next Section we shall state the main result and outline the logic of its construc-
tion.

3. The main result

Let I = {nl | l ≥ 0} be a collection of indices such that 0 < n0 < n1 < .... < nl< .... .
Let x(n0), x(n1), .....x(nl), .... denote the realizations of the stochastic process (3) at steps
n0, n1, ....., nl, ..... . Consider the process x defined by (3) and introduce the following
fictitious time scale: let tl =

∑
k=n0,nl−1

k−1 and ∆tl = tl+1− tl. Consider the collection

of points {(x(nl), tl) | nl ∈ I}. Suppose also that the solution of the system of differential
equations (6), started at time t0 with initial condition equal to x(n0) is plotted against
the same time scale.

The main result of this paper estimates the probability that all points x(nl) for nl ∈ I
simultaneously are within a given distance ε from the trajectory of the solution of the
system of differential equations. In words, Theorem 1 shows that, if and whenever, the
solutions of the system of differential equations (6) converge sufficiently fast, there exists
constants ε, n that depend on the payoffs of the game, such that, for ε < ε and n0 > n,
the probability that all realizations of the process in I simultaneously lie in an ε-band
of the trajectory of the ODE, becomes arbitrarily close to one, after time n.

Theorem 1. Consider the stochastic learning process x defined by system (3). Suppose
payoffs of the underlying game are bounded and strictly positive. Let the system of ODE
(6) denote a system of deterministic replicator dynamics and x(t, t0, x) denote any time
t ≥ 0 solution, when the initial condition is taken to be x at time t0. Suppose that the
following property holds over a compact set D ⊆ ∆:

(9) |x(t+ ∆t, t, x+ ∆x)− x(t+ ∆t, t, x)| ≤ (1− λ∆t) |∆x|
with 0 < λ < 1 and |.| denoting the Euclidean norm.
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Then there exists constants C, ε, n that depend on the game, such that, for ε < ε,
n0 > n and x(n0) ∈ D:

(10) Pr

[
sup
nl∈I
|x(nl)− x(tnl

, tn0 , x(n0)| > ε

]
≤ C

ε2

N∑
j=n0

1

j2

for nl ∈ I = {n0, n1, ...... N}, where N = supI nl.

The Theorem shows that the learning process stays close to the corresponding tra-
jectory of the replicator dynamics with higher probability as n0 increases, for a given
ε. An important thing to notice is that, since the right hand side of inequality (10)
is square summable, the statement holds for any N , possibly infinite. This amount to
saying that, under the assumptions of the Theorem, the reinforcement learning process
is stochastically approximated, to an arbitrarily high degree of precision, by a replicator
dynamics over any interval of the form [t,+∞[3. Next, condition (9) is shown to hold
for any strict Nash equilibrium of the underlying game:

Remark 1. Let x∗ be a strict Nash equilibrium of G and denote its basin of attraction
by:

B(x∗) ≡ {x ∈ ∆ | lim
t→∞

x(t, t0, x) = x∗}

Then there exists an open set Br(x
∗) ≡ {x ∈ ∆ | |x− x∗| < r} ⊆ B(x∗) such that

condition (9) stated in Theorem 1 holds in Br(x
∗).

A straightforward implication of the above Remark is that if the stochastic process
is started in a suitably defined neighbourhood of a strict Nash equilibrium, then the
probability with which the process converges to that Nash equilibrium can be made
arbitrarily close to one.

Remark 2. Let x∗ be a strict Nash equilibrium of G and suppose x(n0) ∈ Br(x∗), defined
in Remark 1. Then, for n > n0 :

lim
n→∞

Pr[x(n) = x∗ | x(n0) ∈ Br(x∗)] = 1

Proof For N =∞ in inequality (10) reads:

Pr

[
sup
nl∈I
|x(nl)− x(tnl

, tn0 , x(n0)| ≤ ε

]
≥ 1− C

ε2

∞∑
j=n0

1

j2

Hence:

lim
n0→∞

Pr

[
sup
nl∈I
|x(nl)− x(tnl

, tn0 , x(n0)| ≤ ε

]
≥ 1− lim

n0→∞

C

ε2

∞∑
j=n0

1

j2
= 1

�

Before proceeding to the proof of the main result, we remark on the ingredient that is
novel and key to its proof, i.e. the use of the notion of exponential stability as applied to

3In the terminology of Benaim (1999) and applied in Laslier et al. (2001), the replicator dynamics
constitutes a.s. a limit trajectory (and not only an asymptotic-pseudo-trajectory) for the process.
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our non linear time varying system. We say that an equilibrium x = 0 is exponentially
stable for d

dtx(t) = f(x(t)) if there exists positive constants, c, k and γ, independent of
the initial condition t0, such that | x(t) |≤ k | x(t0) | exp[−γ(t − t0)] for all t ≥ t0 ≥ 0
and for all | x(t0) |< c. It can be shown (see Khalil (1996)) that, for linear systems, this
requirement is equivalent to asymptotic stability of the solution, holding uniformly with
respect to the initial condition4. Exponential stability is what will allow us to extend
the approximation result to the infinite interval. To see this, consider any two solution
trajectories, labelled as y(t) and z(t), with initial conditions y(t0) and z(t0) respectively.
If the solutions are exponentially stable, then the following is an upper bound to the
time t distance between the two trajectories:

| y(t)− z(t) |≤| y(t0)− z(t0) | k exp[−γ(t− t0)] + β

where k, γ and β are positive constants. This bound is valid also on infinite time
intervals (for t→∞)5.

The main result relies on a series of Lemmas. Lemma 1 allows us to re-write the
process x as:

xi(j(n)) = xi(n) +

j(n)−1∑
s=n

1

s
f i(x(s)) +

j(n)−1∑
s=n

εi(x(s), s)

for j(n) ≥ n + 1, where the last term can be made arbitrarily small by an appropriate
choice of n, since it is the difference between two converging martingales.

Lemma 2 then proceeds to show that if the process is, at step n of its dynamics, within
a small ρ-neighbourhood of some value x, then it will remain within a ρ-neighbourhood
of x for some time after n. As such, Lemma 2 provides information about the local
behaviour of the stochastic process x(.) around x′, by characterizing an upper bound to
the spell of re-scaled time within which the process stays in a neighbourhood of x′.

The intuition used to derive global results runs as follows. Suppose time t realization
of the process, x′, belongs to some interval A. Within a time interval ∆t two factors
determine the subsequent values of the process: a) the deterministic part of the dynamics,
i.e. the functions f(x(t)) started with f(x(t)) in A and b) the noise component. If the
trajectories of f(x) converge, then after this time interval, f(x(t+ ∆t)) will be in some
interval B ⊂ A, for all x that started in A. Exponential stability guarantees that the
distance between any two such trajectories will decrease over this time interval, the
more so, the longer is the time interval. According to Lemma 2, the realization of the
stochastic process will differ from the corresponding trajectories by a small quantity,

4We say that a solution x = 0 is stable if for each ε > 0 , there is δ = δ(ε, t0) such that | x(t0) |< δ ⇒
| x(t) |< ε for all t ≥ t0 ≥ 0. We say that a solution x = 0 is asymptotically stable if it is stable and there
is c = c(t0) > 0 such that x(t) → 0 as t → ∞ for all | x(t0) |< c. We say that a solution is uniformly
asymptotically stable if c does not depend on t0,i.e. if for each ε > 0 there is T = T (ε) > 0 such that
| x(t) |< ε for all t ≥ t0 + T (ε) and for all | x(t0) |< c.

These definitions are standard and can be found for example in Khalil (1996) p. 134.
5Note that this bound is tighter than the one obtained by applying the Gronwall-Bellman inequality:

| y(t)− z(t) |≤| y(t0)− z(t0) | exp[L(t− t0)] +
δ

L
{exp[L(t− t0)]− 1}

where δ > 0 and L is the Lipschitz constant. This bound is valid only on compact time intervals, since
the exponential term grows unbounded for t→∞.
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say ±C, the more so, the smaller is the time interval. Hence the stochastic process
will not diverge from its deterministic counterpart if B + 2C ≤ A. In order for this
to hold, the time interval ∆t needs to be large enough to let the trajectories of the
deterministic part converge sufficiently, but small enough to limit the noise effect. To
this aim, Lemma 3 shows that if the realization of our process x(.) lies within ε distance
from the corresponding trajectory of x(.) at time nl, then this will also be true at time
nl+1, provided ε is small enough to guarantee that ∆tl is

a) big enough for any two trajectories of x(.) to converge sufficiently, and
b) small enough to limit second order effects and the effects of the noise.
To conclude the proof of Theorem 1 it is then sufficient to estimate the probability

that Lemma 2 holds simultaneously for all nl.

4. Conclusions

This paper studies the analytical properties of a reinforcement learning model that
incorporates the Law of Effect (positive reinforcement of actions that perform well),
as well as the Law of Practice (the magnitude of the reinforcement effect decays over
repetitions of the game). The learning process models interaction, among a finite set of
players faced with a normal form game, that takes place repeatedly over time. The main
contribution to the literature relies on the full characterization of the asymptotic paths
of the learning process in terms of the trajectories of a system of replicator dynamics
applied to the underlying game. Regarding the asymptotics of the process, the paper
shows that if the reinforcement learning model is found, after sufficiently many steps, in
a neighbourhood of a strict Nash equilibrium, then convergence to that equilibrium will
take place with probability arbitrarily close to one. As for the dynamics of the process,
the results show that, from some time on, any realization of the learning process will
be arbitrarily close to the trajectory of the replicator dynamics started with the same
initial condition.

The convergence result we obtain relies on two main facts: first by explicitly mod-
elling the Law of Practice, we are able to construct a fictitious time scale over which
any realization of the process can be studied; second, the observation that whenever the
solution of the system of replicator dynamics converge exponentially fast, the determin-
istic part of the process drives the stochastic dynamics. Both requirements are shown
to be essential to establish the result.

We conclude with two further remarks. First, since the methodology we used is
not peculiar to the reinforcement learning model analyzed in this paper, it could be
fruitfully applied to the study of different learning models (for example in relation to
the analogies between fictitious play and a perturbed version of reinforcement learning,
identified in Hopkins (2002), or to the study of the Experience Weighted Attraction
model proposed in Camerer et al. (1999)). Second, and more technically, we conjecture
that an alternative sufficient condition to achieve the results we obtain in this paper could
rely on modelled fast convergence properties of the learning algorithm (for example a
sequence of weights given by [γ(n)]−p for p > 1), rather than on those of the underlying
deterministic dynamics (i.e. the properties of the f(x(n)). Although conceptually this
would amount to considering different learning models, the results of Benaim (1999) on
shadowing do support this conjecture.
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Appendix

Lemma 1. Consider the reinforcement learning model defined by (3) and suppose that
x(0) > 0 component-wise, and for all i’s and for all a ∈ A, 0 < π ≤ πi(a) ≤ π <∞.

Then the following holds:{
xik(n+ 1) = xik(n) + 1

nf
i
k(x(n)) + εik(n) n ≥ 1

0 < xik(0) < 1 n = 0

where f ik(x(n)) is defined in (5) and:

Pr[ lim
n→∞

∞∑
k=n

εik(k) = 0] = 1

for all i = 1, ..., N and k = 1, ...,M and n ≥ 1.

Proof. Simple algebra shows that the dynamics is defined by:

(11)

{
xik(n+ 1) = xik(n) + 1

nΦi
k(n) n ≥ 1

0 < xik(0) < 1 n = 0

for all i = 1, ..., N and k = 1, ...,m, where:

(12) Φi
k(n) ≡ [σik(n)− xik(n)

∑
l

σil(n)] + δik(n)

with:
δik(n) ≡ (µi(n)− 1)[σik(n)− xik(n)

∑
l

σil(n)]

We then study the conditional expectation E[Φi
k(n) | ={n}] by looking at the two

additive components separately. As already mentioned, simple algebra shows that:

E[[σik(n)− xik(n)
∑
k

σik(n)] | ={n}] = f ik(x(n))

Also, since:

µi(n) ≤ π
σik(n)− xik(n)

∑
l

σil(n) ≤ σik(n) ≤ π

it follows that, for all i and for all k:

| δik(n) |≤ 1

n
[π]2

As a result, we can now write:

xik(n+ 1) = xik(n) +
1

n
f ik(x(n)) + εik(n)

where:

εik(n) =
1

n
[δik(n) + ηik(n)]

ηik(n) ≡ Φi
k(n)− E[Φi

k(n) | ={n}]
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For n ≥ 2, for Ξ(0) ≡ 0, and for each given i, k we then construct:

Ξ(n) ≡
n−1∑
l=1

εil(l) ≡ Ξδ(n) + Ξη(n)

Note that:

Ξδ(n+ 1) = Ξδ(n) +
1

n
δik(n)

Ξη(n+ 1) = Ξη(n) +
1

n
ηik(n)

and since by construction, δik is bounded by 1
n [π]2, it follows that:

Ξδ(n+ 1) ≤ Ξδ(n) +
π2

n2
.

Hence, we can construct an auxiliary stochastic process:

Z(n) ≡ Ξδ(n) + π2
∑
k≥n

1

k2

where the series of which in the second term converges, and show that this is a super-
martingale relative to ={n}. By the convergence theorem for supermartingales, there
exists a random variable Z(∞) and, for n→∞, Z(n) converges pointwise to Z(∞) with
probability one. Hence, also Ξδ(n) converges to Ξδ(∞) with probability one.

With regard to Ξη(n), since E[ηik(n) | ={n}] = 0, Ξη(n) is a quadratically integrable
martingale relative to ={n}. Hence (see for ex. Karlin and Taylor (1975), p. 282), there
exists a random variable Ξη(∞) and Ξη(n)→ Ξη(∞) for n→∞ a.s..

Since Ξ(∞)− Ξ(n) ≡
∑∞

l=n ε
i
k(l), the assert follows. �

Lemma 2. Consider the reinforcement learning model defined by (3) under the assump-
tions of Lemma 1. Define the number m(n,∆t) such that

lim
n→∞

m(n,∆t)−1∑
k=n

1

k
= ∆t

Assume that, for ρ = ρ(x′) > 0 and sufficiently small, x(n) ∈ B(x′, ρ) = {x : |x− x′| <
ρ}. Then there exists a value ∆t0(x′, ρ) and a number N0 = N0(x′, ρ) such that, for
∆t < ∆t0 and n > N0, x(k) ∈ B(x′, ρ) for all n ≤ k ≤ m(n,∆t).

Proof. By Lemma 1, for j(n) ≥ n+ 1, the process can be re-written as:

x(j(n)) = x(n) +

j(n)−1∑
s=n

1

s
f(x′) +

j(n)−1∑
s=n

1

s
[f(x(s))− f(x′)] +

j(n)−1∑
s=n

ε(s)

and an upper bound for x(j(n)) can be constructed as follows.
Since the function f is Lipschitz in x:

j(n)−1∑
s=n

1

s

∣∣f(x(s))− f(x′)
∣∣ ≤ L max

n≤k≤j(n)−1
| x(k)− x′ |

j(n)−1∑
s=n

1

s
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where L is global Lipschitz constant. Hence, by letting ∆t(n, j(n)) ≡
j(n)−1∑
s=n

s−1 we

obtain:
|x(j(n))| ≤ |x(n)|+ ∆t(n, j(n)) | f(x′) | +

+∆t(n, j(n))L max
n≤k≤j(n)−1

| x(k)− x′ | +(13)

+

∣∣∣∣∣∣
j(n)−1∑
s=n

ε(s)

∣∣∣∣∣∣
As for the last term, from Lemma 1 we know that, for all α > 0 there exists an

n = n(α) such that for all n > n(α) with probability one:∣∣∣∣∣∣
j(n)−1∑
s=n

ε(s)

∣∣∣∣∣∣ ≤ α
since these are differences between converging martingales.

Now consider j(n) = m(n,∆t), where m is such that limn→∞∆t(n,m(n,∆t)) = ∆t.
Note that the number m is finite for any n and for any ∆t <∞, since

∑
s s
−1 =∞ and∑

s s
−2 <∞ by assumption. Denote

∣∣∣∑j(n)−1
s=n ε(s)

∣∣∣ by α(n) and suppose x(k) ∈ B(x′, 2ρ)

for all n ≤ k ≤ m(n,∆t)− 1.
Inequality (13) states that:

|x(m)| ≤ |x(n)|+ ∆t | f(x′) | +∆t2ρL+ α(n)

Hence:

∣∣x(m)− x′
∣∣ ≤ |x(m)− x(n)|+

∣∣x(n)− x′
∣∣

≤ ∆t
∣∣f(x′)

∣∣+ ∆t2Lρ+ α(n) + ρ

and as a result, we can choose N0(ρ) = n(ρ2) such that, for all n > N0, α(n) < ρ
2 and

∆t0(x′, ρ) = ρ
2(|f(x′)|+ 2Lρ)−1 > 0 and show that, for all ∆t < ∆t0 and n > N0 :∣∣x(m)− x′

∣∣ ≤ ρ

2
+
ρ

2
+ ρ = 2ρ

Hence if x(k) ∈ B(x′, 2ρ) for all n ≤ k ≤ m − 1, this implies that also x(m) ∈
B(x′, 2ρ). By induction it then follows that x(k) remains in B(x′, 2ρ) also for all k up to
m(n,∆t)− 1. �

Lemma 3. Beyond the assumptions of Lemma 2, suppose that the system of ODE (6)
satisfies property (9) on a compact set D ⊆ ∆. Suppose x(nl) ∈ D with probability one,
and x0(l) ∈ D.

Then,
if |x0(l)− x(nl)| ≤ ε, also

∣∣x0(l + 1)− x(nl+1)
∣∣ ≤ ε

for λε
2L ≤ ∆tl ≤ 3λε

2L , where 0 < λ < 1, L is the Lipschitz constant of f(.) on D, and

0 < ε < ε = min{
√

(6λ2)−14ρL, (3λ)−12L∆t0} with ∆t0 = infx∈D,ρ=ρ(x) ∆t0(x, ρ) > 0
defined in Lemma 2.
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Proof. Let I = {nl | l ≥ 0} be a collection of indices such that 0 < n0 < n1 < .... < nl<

nl+1 < ..... and let ∆tl = tl+1 − tl, with tl =
nl−1∑
k=n0

k−1. Lemma 1 states that the value of

the process at time nl+1 is given by:

x(nl+1) = x(nl) + ∆tlf(x(nl)) + α(nl)

and Lemma 2 shows that, for ∆tl small and nl large, α(nl) < ρ/2, meaning that if
the process is started at x(nl), it stays close to it for some time.

Solve the system of differential equations (6) from tl to tl + ∆tl Since f(.) is Lipschitz
continuous:

|x(t+ ∆t, t, x)− (x+ ∆tf(x))| ≤ L∆t2

where x(t + ∆t, t, x) denotes the solution at time t + ∆t, when the initial condition is
taken to be x at time t and L is a constant.

Now take x(nl) = x and compute the distance between the stochastic process at step
nl+1, x(nl+1), and the differential equation at time tl+1, with initial condition x at time
tl, x(tl+1, tl, x) shortened to xl(l + 1) :

|x(nl+1)− xl(l + 1)| = |x(nl) + ∆tlf(x(nl)) + α(nl)− xl(l + 1)|
≤ L∆t2 + α(nl)

As a result:∣∣x0(l + 1)− x(nl+1)
∣∣ ≤ |x0(l + 1)− xl(l + 1)|+ |xl(l + 1)− x(nl+1)|
≤ |x0(l + 1)− xl(l + 1)|+ L∆t2l + α(nl)(14)

where the first term is the distance between two trajectories of the ODE, one started at
x(n0) and one at x(nl) at time t0 and tl respectively, and the second term is the distance
between the ODE and the stochastic process at time tl+1. We know from Lemma 2 that
the last two terms on the right hand side of (14) can be made arbitrarily small by an
appropriate choice of ∆tl and nl. We also know that, if the two trajectories of which in
the first term of the RHS of (14) converge, their distance will become increasingly small.
An assumption that is sufficient to establish the result that follows requires:

(15) |x(t+ ∆t, t, x+ ∆x)− x(t+ ∆t, t, x)| ≤ (1− λ∆t) |∆x|

with 0 < λ < 1. If property (9) holds, then:

|x0(l + 1)− xl(l + 1)| ≤ (1− λ∆tl) |x0(l)− x(nl)|

and as a result, inequality (14) can be rewritten as:

(16)
∣∣x0(l + 1)− x(nl+1)

∣∣ ≤ (1− λ∆tl) |x0(l)− x(nl)|+ L∆t2l + α(nl)

We can now show that, if x(nl) lies in an ε-neighbourhood of the trajectory of the
ODE, so will x(nl+1), for a suitable choice of ε and ∆t.

Under the assumptions of this Lemma, inequality (16) yields:∣∣x0(l + 1)− x(nl+1)
∣∣ ≤ (1− λ∆tl)ε+ L∆t2l + α(nl)
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By Lemma 2 α(nl) < r(ε) ≡ λ2ε23
4L < ρ

2 , which holds for 0 < ε <
√

4ρL
6λ2

as assumed.

Hence:

(1− λ∆tl)ε+ L∆t2l + α(nl) ≤ ε− λ∆tlε+ L∆t2l +
λ2ε23

4L

= ε+ L

[(
∆tl −

λε

2L

)(
∆tl −

3λε

2L

)]
< ε

as stated.
We also need to show that for λε(2L)−1 ≤ ∆tl ≤ 3λε(2L)−1, ∆tl also satisfies Lemma

2, i.e. ∆tl < ∆t0(x, ρ) for all x ∈ D. The radius ρ depends on x and is a measure of how
fast f(x) changes in a neighbourhood of x. Since f(x) is Lipschitz and D is compact,
this radius will have a positive lower bound, as x moves in D. Let this be ρ > 0. Hence:

∆t0 = inf
x∈D

∆t0(x) ≡ inf
x∈D

(
ρ

2[|f(x)|+ 2Lρ]

)
> 0

and since ε < (3λ)−12L∆t0 by assumption, the assert follows. �

Proof of Theorem 1
To proof the Theorem we need to estimate the probability that Lemma 2 holds for all

nl ∈ I. To this aim note that:

Pr

[
sup
nl∈I
|x(nl)− x0(l)| ≤ ε

]
= Pr

[
sup
nl∈I

α(nl) < r(ε)

]
where, as before x0(l) ≡ x(tl, t0, x(n0)).

From Lemma 2:

α(nl) ≡ |ε(nl)| ≡

∣∣∣∣∣∣
nl∑
l=n0

ε(l)−
nl−1∑
l=n0

ε(l)

∣∣∣∣∣∣
and from Lemma 1:

E[εik(l)] ≤
π2

l2

As a result:

α(nl) ≤
√
NM sup

i
sup
k
εik(l) ≤

√
NM

π2

n2
l

E[α(nl)] ≤
√
NM

π2

n2
l

By Chebyshev’s inequality:

Pr [α(nl) > r(ε)] ≤
√
NM

r(ε)

π2

n2
l

Hence:

Pr[α(nl) ≥ r(ε);nl > n0, nl ∈ I] ≤ C

ε2

N∑
j=n0

1

j2
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where C = (3λ2)−14L
√
NMπ2 since r(ε) ≡ 3(4L)−1λ2ε2. In the statement of the

theorem n = N0(ρ), defined in Lemma 2 and ε = min{(3λ)−12L,
√

(6λ2)−14ρL} as from
Lemma 3. �

Proof of Remark 1
To prove the statement we need to show that every strict Nash equilibrium satisfies

condition (9), i.e.:

(17) |x(t+ ∆t, t, x+ ∆x)− x(t+ ∆t, t, x)| ≤ (1− λ∆t) |∆x|
This condition holds if the system of ODE (6) admits the following quadratic Ljapunov
function (see, for example, Ljung (1977)):

(a) V (∆x, t) = |∆x|2

(b)
d

dt
V (∆x, t) < −C |∆x|2 C > 0

Suppose x∗ is a strict Nash equilibrium and w.l.g. let x∗ = 0. Consider the lineariza-
tion of the system (6) around x∗ = 0 :

d

dt
x(t) = Ax+ g(x)

where A ≡ Df(x)|x∗=0 denotes the Jacobian matrix of f(x) at x∗ and limx→0
g(x)
|x| = 0.

From Ritzberger and Weibull (1995), Proposition 2, we know that a Nash equilibrium is
asymptotically stable in the replicator dynamics if and only if it is strict. Hence we also
know that all the eigenvalues of A at x∗ have negative real part and we can consider the
following scalar product in <Nm:

〈x, y〉 =

∞∫
0

(eAtx, eAty)dt

and choose:
V (x, t) = 〈x, x〉

which satisfies condition (a). The scalar product (4) also satisfies condition (b), since:

d

dt
V (x, t) ≤ − |x|2 + 2 〈x, g(x)〉 ≤ − |x|2 + 2

√
〈x, x〉

√
〈g(x), g(x)〉

By the equivalence of norms in <N , there exists a c > 0 s.t.
√
〈x, x〉 ≤ c |x|. For r > 0,

consider an open ball Br = {x ∈ ∆ : |x| < r} such that Br ⊂ D and |g(x)| ≤ (1/(4c2)) |x|
in Br. Then:

d

dt
V (x, t) ≤ − |x|2 + 2c2 |x| |g(x)| ≤ −1

2
|x|2 ≤ − 1

2c2
V (x, t) in Br

which shows that condition (b) holds. �
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