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Abstract

This paper examines the effect of the timing of childbirth on capital accumulation

and welfare in a simple overlapping generations model, where each agent lives for four

periods and works for two periods. We show that delayed childbearing not only reduces

population, but also generates fluctuations in the age composition of workers in the

labor force. This causes the aggregate saving rate to fluctuate, which leads to cycles in

the capital–labor ratio. When all agents delay childbearing, we analytically show that

both the capital–labor ratio and the welfare of all agents can fall in the long run, despite

the population decline. When a fraction of agents delay childbearing, it has differential

welfare effects on agents depending on their positions in the demographic cycles. The

effects of lower lifetime fertility and technological progress are also examined.
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1 Introduction

Consider a fall in population induced by a decline in the number of births in the economy,

taking as given mortality and migration. It is well known that a lower population growth

raises the capital–labor ratio in the Solow–Swan growth model. The same property holds in

Diamond’s (1965) overlapping generations model, and it enhances welfare as long as the econ-

omy is dynamically efficient; i.e., when the interest rate exceeds the population growth rate.

Of course, the declining birth rate can cause welfare problems when the population size has

some positive externality, or when social security systems are explicitly considered.1 Apart

from these issues, it has been generally perceived that the population decline is favorable to

economic welfare.2

This paper considers an overlapping generations model without external effects or a social

security system. Nonetheless, we show that a population decline can worsen the welfare of

agents if it is caused by a change in the timing of childbirth or, more specifically, when many

people decide to delay childbearing to older ages.

Delayed childbearing has been broadly observed in developed countries. Between 1975

and 2005, the fraction of Japanese children who were born to mothers in their 20s decreased

from 75% to 45%, whereas those born to mothers in their 30s increased from 20% to 52%. A

similar trend is observed in the United States and advanced European countries (Gustafsson

and Kalwij 2006), and also in Canada, Australia, and New Zealand (Sardon 2006). Inter-

estingly, as pointed out by Bongaarts and Feeney (1998), even when the cohort’s lifetime

fertility rate (the number of children a mother has in her lifetime) does not fall, the delayed

childbearing alone leads to a decline in the number of childbirths, measured by the total

period fertility rates (TPFRs). Ogawa and Retherford (1993), Kohler et al. (2002), and

Sobotka (2004) confirmed that, to a certain extent, the delay of marriage and motherhood is

1To support a pay-as-you-go pension system, the economy must have enough children. For the relationship

between endogenous fertility and optimal social security, see Zhang and Zhang (2007) and Yew and Zhang

(2009).

2A notable exception is d’Albis (2007), which showed that when agents are uncertain about the length

of their life and there is a perfect annuity market, the capital–labor ratio may respond nonmonotonically to

the population growth rate.
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responsible for the observed period fertility rate decline (now known as the “tempo effect”).

The seminal studies that incorporated the tempo effect into economic theory are Happel

et al. (1984) and Cigno and Ermisch (1989). These studies constructed models where women

endogenously choose the timing of childbearing considering the fact that childbearing inter-

rupts their work experience for a certain period, which affects their lifetime income profiles

through their career paths or the accumulation of human capital.3 Incorporating this idea

into the theory of economic growth, Iyigun (2000), Blackburn and Cipriani (2002), Mullin

and Wang (2002), and d’Albis et al. (2010) constructed dynamic general equilibrium models

where the timing of childbirth is endogenous.4

Complementary to these preceding studies, this paper focuses on the aspect that delayed

childbearing changes the age structure of the labor force. When a considerable fraction of

mothers begin to delay childbearing, it causes a temporary baby bust in the economy, and

the echoes of the initial baby bust create long-lasting demographic cycles. We construct

an overlapping generations model where agents work for more than one period so that the

demographic cycles are translated into fluctuations in the age structure of the labor force.

As the variation in the age composition of workers affects the distribution of income among

different cohorts (see Berger 1989), demographic cycles lead to cycles in the aggregate saving

rate, which drive fluctuations in the capital–labor ratio. We will show that the fluctuations in

the capital–labor ratio have differential welfare effects on agents depending on their positions

in the demographic cycles. This point was not found by earlier studies. For instance, Iyigun

(2000) considered a small open economy with a fixed capital–labor ratio, savings were not

allowed in Blackburn and Cipriani (2002), and Mullin and Wang (2002) and d’Albis et al.

3For empirical studies on this issue, see Buckles (2008), which employed the National Longitudinal Survey

of Youth to investigate the return to delayed childbearing in the US. Using Japanese panel data, Higuchi

(2001) investigated the effects of labor market changes on the timing of marriage, childbirth, and employment.

4Iyigun (2000) built a growth model where women face a tradeoff between childbearing and human

capital accumulation when young, and derived multiple steady state equilibria. Blackburn and Cipriani

(2002) illustrated the mechanism where an increase in longevity delays the timing of childbearing. Mullin

and Wang (2002) constructed an endogenous childbirth timing model where the solution is obtained as a

closed form. d’Albis et al. (2010) proved the existence of a monetary equilibrium in a model where the age

of childbearing is determined endogenously.
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(2010) assumed a linear technology where one unit of effective labor produces a fixed amount

of output. The remainder of the paper is structured as follows. Section 2 introduces the

theoretical model. Section 3 analytically examines the impact of delayed childbearing on

capital accumulation and welfare. Section 4 numerically examines the general case where

only a fraction of agents delay their childbearing. Section 5 considers extensions of the model

with a lower lifetime fertility rate and technological progress. Section 6 concludes the paper.

Appendices A and B provide the proofs of the lemmas.

2 Model

2.1 Demographic Structure

Let us consider an overlapping generations model where each agent lives for four periods,

referred to as child, young, middle-aged, and old. A group of young agents in period t (i.e.,

those who are born in period t − 1) is called generation t, and its cohort size is denoted by

Nt. Each agent has one child during her lifetime (the gender of the agents is not considered),

and she is able to bear a child either in her youth or middle age. In this paper, we say that

an agent “delays childbearing” if she bears her (only) child in her middle age.

Let us denote by λt ∈ [0, 1] the fraction of agents among generation-t agents who de-

lay childbearing. This means that among the generation-t agents with population Nt, the

fraction λt bear their children in their middle age (period t + 1), and the remaining fraction

1−λt bear their children in their youth (period t). The cohort size of generation t + 1, born

in period t, is thus determined by:

Nt+1 = (1 − λt) Nt + λt−1Nt−1. (1)

To highlight the effect of age distribution on capital accumulation and welfare as simply

as possible, the timing of childbearing is assumed to be exogenous throughout the analysis.5

5Doepke (2005) showed that the timing of childbirth is affected by the child mortality rate in a sequential

fertility choice model. A decline in child mortality also reduces the uncertainty about the number of surviving

children, which lowers the fertility rate and raises educational investment, causing the demographic transition

(see Kalemli-Ozcan 2002, 2003; Tamura 2006).
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Figure 1: Fluctuations in Cohort Size Nt over Generations

We consider the situation where all agents until generation −1 bear their children when they

are young, and from generation 0 a constant fraction λ of agents bear their children when

they are middle-aged, i.e.:

λt =

 0, t < 0,

λ, t ≥ 0.
(2)

We normalize the cohort size so that N0 = 1 holds. As equations (1) and (2) imply

that the cohort size is constant until period 0, Nt = 1 holds for all t ≤ 0. When delayed

childbearing begins, the period fertility rate temporarily falls. In period 0, only fraction 1−λ

of generation-0 young agents bear children, while the generation-(−1) middle-aged agents do

not bear children because they completed childbearing in the previous period (i.e., λ−1 = 0).

Thus, the cohort size of generation 1, who are born in period 0, is given by:

N1 = 1 − λ. (3)

From period 1 on, not only a fraction 1 − λ of young agents, but also a fraction λ of

middle-aged agents bear children. Hence, the period fertility rate recovers to some extent,

which is consistent with Bongaarts and Feeney (1998). Substituting N0 = 1, N1 = 1−λ, and

equation (2) into (1), the cohort size after generation 0 is solved as Nt = 1
1+λ

(
1 + (−1)t λt+1

)
for t ≥ 0. Figure 1 depicts the sequences of Nt for various levels of λ. It shows that the
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Figure 2: Dynamics of Labor Force Lt

cohort size Nt fluctuates after delayed childbearing begins (i.e., after period 0), and that the

amplitude of oscillation is larger when λ is higher. This indicates that the initial fluctuation

of age structure (i.e., the fall in the fertility rate in period 0 and a recovery in period 1) has

recurrent “echo effects” over many generations. If λ ∈ (0, 1), the fluctuation decays and Nt

converges to a stationary level at limt→∞ Nt = 1/(1 + λ),6 although Nt fluctuates forever in

the polar case of λ = 1.

2.2 Economic Environment

Agents undertake no economic activity in their childhood, supply one unit of labor inelasti-

cally in their youth and middle age, respectively, and retire when old. The total labor force

in period t is thus expressed as:

Lt = Nt + Nt−1, (4)

which is depicted in Figure 2 for various levels of λ. This figure shows that the delayed

childbearing decreases the labor force permanently even when the lifetime fertility rate is

6This is consistent with Lotka’s stable population theory, which states that in a closed economy where

there is no migration, a long-run age distribution becomes time invariant when age-specific fertility and

mortality rates are constant (see Keyfitz and Caswell 2005).
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held constant, and the level of Lt is lower when a larger fraction of agents decide to delay

childbearing (i.e., when λ is higher).7 Observe also that the labor force Lt has much smaller

oscillations than the cohort size Nt (in fact, there is no oscillation when λ = 1). We will

show that the fluctuations in the age composition of the labor force, rather than in the size

of the labor force itself, drive the economic dynamics in this model.

There is a single final good in each period that can be used for either consumption or

investment. Consumption takes place when agents are middle-aged and old.8 The utility of

a generation-t agent is given by:

Ut = log cm,t+1 + β log co,t+2, (5)

where cm,t+1 and co,t+2 represent generation-t consumption in their middle age (period t+1)

and old age (period t + 2), respectively.

Let wt and rt denote the wage rate and the gross interest rate (i.e., including the principal)

in period t. Then, the budget constraint of a generation-t agent is:

ay,t = wt, (6)

cm,t+1 + am,t+1 = wt+1 + rt+1ay,t, (7)

co,t+2 = rt+2am,t+1, (8)

where ay,t and am,t+1 denote the amounts of assets held by a generation-t agent when she is

young and middle-aged, respectively. Maximizing (5) subject to (6)-(8) yields:

cm,t+1 = (1 − z) (rt+1wt + wt+1) , (9)

am,t+1 = z (rt+1wt + wt+1) , (10)

where z ≡ β/(1 + β) denotes the propensity to save by the middle-aged, which is a key

parameter in the following analysis.

7Using Nt = 1
1+λ

(
1 + (−1)t

λt+1
)
, the total labor force is expressed as Lt = 1

1+λ

(
2 + (−1)t−1

λt (1 − λ)
)

for t ≥ 1. In period 0, it is given by 2−λ. It can be shown analytically that Lt is a decreasing function with

respect to λ when 0 ≤ λ ≤ 1. Similarly, the total population,
∑2

j=−1Nt−j , also decreases as λ increases.

8For simplicity, we do not explicitly consider consumption in childhood and youth as the main results are

not qualitatively affected. We also ignore the utility from and the costs of having children. See, for example,

Tamura (2006) for the fertility decision through utility maximization.
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Observe that in period t, aggregate savings consist of the asset holdings of young agents,

ay,tNt, and the assets held by the middle-aged, am,tNt−1. These aggregate savings, denoted

by St, become the capital stock in the next period. From (6) and (10), this means that the

capital stock in period t + 1, denoted by Kt+1, is determined as:

Kt+1 = St = ay,tNt + am,tNt−1 = wtNt + z(rtwt−1 + wt)Nt−1. (11)

Goods are produced competitively by a representative firm using labor and the capital

stock. The aggregate amount of production is given by a standard Cobb–Douglas production

function Yt = AKα
t L1−α

t , where parameter A > 0 is total factor productivity, whereas pa-

rameter α ∈ (0, 1) represents the share of capital. The production function can be expressed

in terms of per-worker values as yt = Akα
t , where yt ≡ Yt/Lt is output per worker and

kt ≡ Kt/Lt is the capital–labor ratio. Denoting the capital depreciation rate by δ ∈ [0, 1],

the profit-maximizing condition for the firm implies that the factor prices in equilibrium are:

rt = Aαkα−1
t + 1 − δ ≡ r (kt) , (12)

wt = A (1 − α) kα
t ≡ w (kt) . (13)

Substituting these factor prices into (11) gives the evolution of per-worker capital over

generations:

kt+1 = A (1 − α)
Ntk

α
t + zNt−1

[(
Aαkα−1

t + 1 − δ
)
kα

t−1 + kα
t

]
Nt+1 + Nt

, (14)

where we used the fact that kt+1 = Kt+1/Lt+1 = Kt+1/(Nt+1+Nt). Recalling that the timing

of childbirth λt for all t is given by (2), equation (1) and initial condition N0 = 1 determines

the demographic dynamics Nt for all t. Then, given the path of Nt and the initial two values

of capital, k0 and k−1, (14) determines the dynamic path of the capital–labor ratio kt for all

t.

3 Dynamic Effects of Delayed Childbearing

In the following, we investigate the dynamic effects of delayed childbearing on capital accu-

mulation and welfare. Throughout this section, we focus on the polar case of λ = 1, where
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period −1 period 0 period 1 even periods odd periods

t = 2, 4, . . . t = 3, 5, . . .

Old 1 1 1 1 0

Middle-Aged (worker) 1 1 1 0 1

Young (worker) 1 1 0 1 0

Child 1 0 1 0 1

Table 1: Evolution of Demographic Structure when λ = 1. Numbers in italic indicate the

cohorts in the labor force

all agents beginning from generation 0 bear children in middle age. Although this case is

not very plausible, it allows us to analytically explain the effect of delaying childbearing in

a simple way. We also assume full capital deprecation (δ = 1) in this section. The general

case with λ, δ ∈ (0, 1) will be numerically investigated in the next section.

3.1 Equilibrium Path When All Agents Delay Childbearing (λ =

1)

When λ = 1, the demographic dynamics (1) simplify to Nt+1 = Nt−1 for all t ≥ 1. Substi-

tuting N0 = 1 and N1 = 0 from (3) into this equation, it turns out that Nt = 1 for all even t

and Nt = 0 for all odd t. Table 1 describes the implied demographic structure at each point

in time. Note that the whole labor force consists only of young workers in even periods, and

only of middle-aged workers in odd periods.9

With the path of Nt, we can derive the equilibrium path of the capital–labor ratio kt,

given the initial k0 and k−1 values. Substituting N0 = N−1 = 1 and N1 = 0 into (14) for

9Of course, this is an extreme possibility: young and middle-aged workers would coexist if λ ∈ (0, 1).

However, the important point is that the composition of young and middle-aged workers in the labor force

fluctuates, which is still true for λ ∈ (0, 1). Observe from the demographic dynamics illustrated by Figure

1 that the young workers are the majority (i.e., Nt > Nt−1) in the even periods, whereas the middle-aged

workers are the majority (i.e., Nt < Nt−1) in the odd periods.
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t = 0, we obtain the capital–labor ratio in period 1:10

k1 = A(1 − α)
[
(1 + z)kα

0 + zAαkα−1
0 kα

−1

]
. (15)

For k2 and onwards, substituting {N0, N1, N2, N3, · · · } = {1, 0, 1, 0, · · · } into (14) gives:

for t ≥ 1, kt+1 =

 A (1 − α) kα
t if t is even,

A (1 − α) z
{
kα

t + Aαkα
t−1k

α−1
t

}
if t is odd.

(16)

This pattern of dynamics can be intuitively interpreted in terms of the aggregate saving

rate (adjusted for labor force growth), defined by:

vt ≡
St

Yt

/
Lt+1

Lt

=
Kt+1/Lt+1

Yt/Lt

=
kt+1

Akα
t

. (17)

As labor force Lt is constant at 1 for all t ≥ 1 (see Figure 2),11 vt simply represents the

aggregate saving rate for t ≥ 1.

Using this definition, the first line of equation (16) can be restated as vt = 1−α. In even

periods, young agents are the sole workers, and thus they earn the labor share of output,

(1 − α)Yt. At the same time, they are also the sole savers in even periods, and because

they save their income entirely, aggregate savings coincide with their income, (1 − α)Yt.

Therefore, in even periods, the aggregate saving rate vt is determined by the labor share of

the production, 1 − α.

For odd periods, the second line of equation (16) can be restated as vt = (1 − α) z (1 + α/vt−1).

Note that vt−1 in this equation refers to the aggregate saving rate in even periods, which is

1− α as shown above. By substituting vt−1 = 1− α into the above equation, it simplifies to

vt = z. In odd periods (t ≥ 3), the middle-aged are the only workers. In addition, the capital

used in odd periods is owned solely by the middle-aged, because they are the only savers in

the previous period (when they were young in even periods). Therefore, they earn the entire

output Yt. The middle-aged are the sole savers in odd periods, and they save fraction z of

10Recall also that we have assumed δ = 1 for this section.

11When λ ∈ (0, 1), labor force Lt does fluctuate in transition dynamics. However, comparing Figure 2 and

Figure 1 shows that the fluctuations in labor force Lt are much smaller than in the demographic dynamics

of Nt.
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their income. Therefore, the aggregate saving rate vt coincides with their saving propensity,

z.

To summarize, the aggregate saving rate vt exhibits a two-period cycle after period 2:12

for t ≥ 2, vt =

 1 − α if t is even,

z if t is odd.
(18)

Note that either the saving rate in even periods 1 − α, or that in odd periods z, could be

larger. On one hand, young workers have a high saving propensity (unity), but they save

only out of labor income (wt). On the other hand, middle-aged workers earn both labor and

capital income (wt + rtwt−1), but their saving propensity is lower (z < 1).13

Using the values of vt in (18), we can derive the sequence of kt. Note that (17) implies

a simple relationship between the aggregate saving rate vt and the evolution of the capital–

labor ratio kt:

kt+1 = vtAkα
t . (19)

Taking the logs of (19) and applying this recursively, we obtain:

log kt =

(
t−3∑
j=0

αj

)
log A +

(
t−3∑
j=0

αjvt−1−j

)
+ αt−2 log k2 for t ≥ 3, (20)

where k2 = A(1 − α)z
{
kα

1 + Aαkα
0 kα−1

1

}
from (16), k1 is given by (15), and k0 (and k−1) is

given as the initial value. This equilibrium path has the following property.

12There is no cycle in the knife-edge case of 1−α = z. For completeness, v0 is obtained by v0 = k1/ (Akα
0 ),

where k0 is a part of the initial condition and k1 is given by (16). The level of v1 is then obtained by

v1 = (1 − α) z (1 + α/v0) .

13From the Family Income and Expenditure Survey for wage-earning households with two or more persons

in Japan, we confirmed that the average saving rate (1− the average propensity to consume) tends to fall

with the age of the household head, from 32.0% (thirties) to 28.8% (forties) to 25.4% (fifties) and then to

11.3% (sixties) using 2000–2010 data. While some other reports find flat or rising age-saving profiles (even

after the retirement age), Jappelli and Modigliani (2005) pointed out that these are because contributions

to pension funds (including employers’ contribution) are not regarded as savings, and also because pension

incomes are treated as income although they should be regarded as dissavings. They estimated the effects

of social security on the age-saving profile in Italy, which showed that actual savings are highest when the

household head is in his/her late thirties and then falls to zero around age 60.
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Proposition 1 (Limit cycles when all agents delay childbearing):

In the equilibrium with λ = 1, {kt}∞t=0 converges to a two-period limit cycle regardless of the

initial values. Define k∗
even ≡ lims→+∞ k2s and k∗

odd ≡ lims→+∞ k2s+1, where s is an integer.

Depending on z ≡ β/(1 + β), the relative magnitude of k∗
even and k∗

odd is:

(Case I) if z < 1 − α, k∗
even < k∗

odd holds.

(Case II) if z > 1 − α, k∗
even > k∗

odd holds.14

Proof: As t → ∞, the first term of (20) converges to (1 − α)−1 log A, whereas the

third term vanishes because α ∈ (0, 1). When t is even (i.e., when t = 2s for some integer s),

from (18), the second term is expanded as log z+α log(1−α)+α3 log z+α4 log(1−α)+ · · · ,

which converges to (1 − α)−1 log Veven(z), where:

Veven(z) ≡ [(1 − α)α z]
1

1+α (21)

is a geometric weighted average of the aggregate saving rate vt.
15 Similarly, when t is odd

(i.e., when t = 2s + 1), the second term is expanded as log(1−α) + α log z + α3 log(1−α) +

α4 log z + · · · , which converges to (1 − α)−1 log Vodd(z), where:

Vodd(z) ≡ [(1 − α) zα]
1

1+α . (22)

From these, we conclude that the values of kt in even and odd periods, respectively, converge

to:

lim
s→∞

log k2s = log k∗
even =

1

1 − α
[log Veven(z) + log A] , (23)

lim
s→∞

log k2s+1 = log k∗
odd =

1

1 − α
[log Vodd(z) + log A] . (24)

Note that Veven(z) < Vodd(z) holds if z < 1 − α (Case I), whereas the opposite holds if

z > 1 − α (Case II). Therefore, k∗
even < k∗

odd holds if and only if z < 1 − α. ¥
14Although the condition for Case II (z > 1 − α) might seem unlikely to hold, this is only because of the

simplifying assumption of complete capital depreciation (δ = 1). In Section 4, we show that a lower δ makes

Case II more likely, and it is shown that both cases happen within a reasonable parameter range (see also

footnote 24).

15Observe that Veven(z) in (21) puts a higher weight on z than on (1 − α) because in even periods the

most recent aggregate saving rate is v2s−1 = z. Similarly, Vodd(z) in (22) puts a higher weight on (1 − α).

12



(i) Case I: z < 1 − α (ii) Case II: z > 1 − α
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Figure 3: Limit Cycles in kt with Alternating Aggregate Saving Rate vt

Proposition 1 states that if all agents from period 0 delay childbearing, the capital–labor

ratio kt eventually converges to a two-period limit cycle. This fluctuation is driven not by

the size of the labor force (which is constant), but by the age distribution within it, through

the fluctuations in the aggregate saving rate vt. Figure 3 illustrates the limit cycles for the

two cases, where the two loci are drawn by substituting 1 − α (even periods) and z (odd

periods) for vt in the capital accumulation equation (19). Panel (i) shows that in Case I

(z < 1 − α), the aggregate saving rate is higher in even periods, which results in a higher

capital stock in odd periods. Conversely, panel (ii) depicts that the higher saving rate in

odd periods results in the higher capital stock in even periods in Case II (z > 1 − α).

3.2 Effects on Capital Accumulation

As we have seen in Figure 2, delayed childbearing lowers the labor force permanently. This

subsection examines how this affects capital accumulation in the economy by comparing the

capital–labor ratio in the limit cycles to the economy without delayed childbearing.

Note that without delayed childbearing (i.e., when λ = 0), Nt = 1 holds for all t from

(1) and the initial condition N0 = 1. By substituting Nt−1 = Nt = Nt+1 = 1 and δ =

1 into the capital accumulation equation (14), and rewriting the resulting equation using

vt ≡ kt+1/(Akα
t ), we obtain the evolution of the aggregate saving rate vt for the case of

13



λ = 0. From it, we find that the steady state level of vt is a (positive) solution to a quadratic

equation ξ (v) ≡ 2v2 − (1 − α) (1 + z) v − α (1 − α) z = 0, which we obtain as:

v∗(z) ≡ 1

4

{
(1 − α) (1 + z) +

√
(1 − α)2 (1 + z)2 + 8α (1 − α) z

}
. (25)

As (20) holds for any λ, we obtain the steady state capital–labor ratio k∗ for λ = 0 by

substituting (25) into (20):

log k∗ =
1

1 − α
[log v∗(z) + log A] . (26)

It is apparent from (23), (24) and (26) that the relative magnitudes of the capital–

labor ratios, k∗
odd, k∗

even, and k∗, can be obtained by comparing Vodd(z), Veven(z), and v∗(z).

To focus on the relevant situation, we assume that the share of capital is not too high:

α <
(√

5 − 1
)
/2 ≈ 0.618. With this assumption, we can show the following property.

Lemma 1 (Comparison of Vodd(z) and Veven(z) to v∗(z)):

(i) At z = 1 − α, Vodd(z) = Veven(z) = v∗(z) = 1 − α holds.

(ii) There exist ẑ ∈ (0, 1 − α) such that Vodd(ẑ) = v∗(ẑ) holds. Vodd(z) > v∗(z) holds if and

only if z ∈ (ẑ, 1 − α).

(iii) Veven(z) > v∗(z) holds if and only if z > 1 − α.

Proof: Property (i) is immediately confirmed by comparing (21), (22), and (25) at

z = 1 − α. The proofs of (ii) and (iii) are given in Appendix A. ¥
As summarized in Table 2, Proposition 1 and Lemma 1 imply three possibilities regarding

the relative magnitudes of k∗
odd, k∗

even, and k∗:16

Proposition 2 (Comparison of capital–labor ratios between the limit cycle at

λ = 1 and the steady state at λ = 0):

(Case Ia) If z < (0, ẑ), k∗
even < k∗

odd < k∗ holds.

(Case Ib) If z < (ẑ, 1 − α), k∗
even < k∗ < k∗

odd holds.

(Case II) If z > 1 − α, k∗
odd <k∗ < k∗

even holds.

16It can also be shown that if z = 1−α (i.e., when capital does not fluctuate), k∗
even = k∗

odd = k∗ holds. In

addition, if z = ẑ, k∗
even < k∗

odd = k∗ holds. We ignore these border cases because they do not occur except

for a (measure 0) coincidence.
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Case I: k¤
even

< k¤
odd

Case II: k¤
even

< k¤

k¤
odd
< k¤ k¤ < k¤

odd
k¤
odd
< k¤

k
¤

even < k
¤

k
¤
< k

¤

even

Case Ia: k¤even < k
¤

odd
< k¤ Case Ib: k¤even < k

¤ < k¤
odd

Case II: k¤
odd
< k¤ < k¤even

bz 1¡ ® z

k¤even = k
¤

odd
= k¤

odd

Table 2: Derivation of Proposition 2 (shown in the bottom row). The first row is from

Proposition 1. The second and third rows are from Lemma 1(ii) and (iii).

Observe that the lower end of the limit cycle (min{k∗
odd, k

∗
even}) is always smaller than

the steady state level k∗ in the economy without delayed childbearing (which we call the

benchmark economy). In addition, if z is sufficiently small (z < ẑ), the upper end of the

limit cycle can also be smaller than k∗. This means that the long-term levels of the capital–

labor ratio kt in the delayed childbearing economy are always smaller than the steady state

capital–labor ratio k∗ in the benchmark economy. This might seem paradoxical, given that in

the delayed childbearing economy, the labor force remains low compared with the benchmark

economy (compare λ = 1 to λ = 0 in Figure 2). This paradoxical result can be explained

by the alternating age composition in the labor force. Recall from (18) that the aggregate

saving rate alternates between 1−α and z. In Case Ia, the saving propensity of the middle-

aged agents, z ≡ β/(1 + β), is small. Thus, in odd periods, when the labor force is entirely

composed of middle-aged agents, the aggregate saving rate vt = z is low. This makes capital

per worker in the next period (k∗
even) considerably smaller than in the benchmark (k∗), and

therefore also the wage rate. As a result, workers in even periods, who are composed of

young agents, receive substantially lower incomes than in the benchmark economy. Thus,

even though the aggregate saving rate in even periods vt = 1 − α is higher than that in the

benchmark economy (v∗(z)), the amount of aggregate savings can be lower, which explains

the possibility of k∗
even < k∗

odd < k∗.17

17One may then wonder why k∗ < k∗
odd < k∗

even never occurs in Case II. As we assumed α to be lower than
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3.3 Welfare Effects

We now examine how the cycles in the capital–labor ratio in the delayed childbearing econ-

omy affect the welfare of agents. Note that, by substituting (8), (9), and (10) into (5), the

utility of generation-t agents (those who are born in period t − 1) is written as:

Ut = β log z + log(1 − z) + (1 + β) log (rt+1wt + wt+1) + β log rt+2. (27)

Let us call those agents born in odd periods and thus young in even periods the “even-

period generations.” In the delayed childbearing economy (λ = 1), the whole population is

composed only of the even-period generations (Nt = 0 for all odd t). Therefore, the long-

term welfare of agents in the limit cycle can be measured by U∗
even ≡ lims→+∞ U2s. Using

the limit-cycle values of the capital–labor ratio, we can write long-term welfare with λ = 1

as:

U∗
even = (1 + β) log[Aα (k∗

odd)
α−1 (k∗

even)α + (k∗
odd)

α] − β (1 − α) log k∗
even + C, (28)

where C is a constant term defined as C ≡ β log β − (1 + β) log(1 + β) + β log Aα + (1 +

β) log A (1 − α). Similarly, long-term welfare in the benchmark economy (λ = 0) can be

written as:

U∗ = (1 + β) log[Aα (k∗)2α−1 + (k∗)α] − β (1 − α) log k∗ + C. (29)

Comparing (28) with (29), we have the following property.

Lemma 2 (Difference between U∗
even and U∗):

(i) U∗
even is lower than U∗ if and only if Ω(z) < 0, where function Ω(z) is defined by:

Ω (z) ≡ − log (1 − α)

[
α

v∗ (z)
+ 1

]
− α

1 − α
log

v∗ (z)

Vodd (z)
+ z log

v∗ (z)

Veven (z)
. (30)

(ii) limz→0 Ω (z) = −∞ and Ω(1 − α) = 0 hold.

(√
5 − 1

)
/2, the wage equation wt = A(1 − α)kα

t has a certain degree of concavity with respect to kt. This

concavity implies that, while a negative deviation k∗
even from k∗ in Case I results in a substantial drop in

the wage income, a positive deviation of k∗
even from k∗ in Case II results in a relatively small wage increase.

Therefore, k∗
odd does not exceed k∗ in Case II.
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Proof: Given in Appendix B. ¥
As function Ω(z) is continuous, Lemma 2 implies that when z is sufficiently close to 0,

Ω(z) must be negative, and hence U∗
even < U∗ holds. The next proposition states this result.

Proposition 3 (Welfare comparison between λ = 1 and λ = 0):

There exists a value z̃ ∈ (0, 1 − α] such that U∗
even < U∗ holds whenever z < z̃.

As long as the saving propensity of the middle-aged, z ≡ β/(1 + β), is sufficiently small,

or equivalently when the agents discount the future significantly (i.e., β is small), the delayed

childbearing (λ = 1) causes the long-run welfare of agents to fall compared with the case

where delayed childbearing does not occur (λ = 0). This again seems paradoxical, because

when the population falls from the initial level, it is usually anticipated that each agent

enjoys a higher per-worker capital and hence higher consumption. This does not hold true

in this case, similar to the discussion in the previous subsection, because of the fluctuations

in the age composition of workers.

4 Numerical Analysis

This section considers a general case where only a fraction of agents delay childbearing.

When λ ∈ (0, 1), the fluctuations in Nt gradually settle to a long-term value (see Figure 1).

Nonetheless, the fluctuations in Nt continue for an extended number of generations, especially

when λ is relatively large.18 This section examines their effects on capital accumulation and

welfare in the transitional dynamics. We also relax the assumption of complete capital

depreciation.

4.1 Equilibrium Dynamics under λ ∈ (0, 1)

For a given value of λ, the path of Nt is readily calculated as depicted in Figure 1 using

(1) and (2) along with initial condition N0 = 1. As Nt = 1 for all t ≤ 0, we reasonably

assume that the economy has reached the steady state under Nt = 1 by period −1, and also

18For example, if 80% of agents delay childbearing (λ = 0.8), it can be seen that substantial fluctuations

in Nt remain even after 10 generations (around 200 years).
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remains at the same steady state at period 0.19 We previously calculated this steady state

in Subsection 3.2 as the benchmark case, where the steady state level of the capital–labor

ratio k∗ is given by (26). Thus, we use k−1 = k−0 = k∗ as the initial condition to calculate

the path of kt using (14).

We specify the parameters as follows. As an agent lives for four periods, one period in the

model can be considered as approximately 20 years. If agents discount future consumption

by 1% per quarter, as is often assumed in the literature, the discount factor β will be

(1+0.01)−4×20 ≈ 0.45. Therefore, we take β = 0.45 as the reference value, and also examine

the low-beta (β = 0.1) and the high-beta (β = 0.9) cases. For the depreciation parameter δ,

Nadiri and Prucha (1996) estimated a yearly depreciation rate for the physical capital stock

of 5.9%, and 1.2% for the R&D capital stock. The capital stock Kt in our model includes

both physical and R&D capital stocks, but these estimates suggest that a good fraction of

the aggregate capital stock that remains after 20 years would be R&D capital. Therefore we

use a yearly depreciation rate of 2% as a reference (which means δ = 0.33 for a period of 20

years), and also examine the case of a higher depreciation rate of 5% per year (δ = 0.64).

The share of capital α is set to 0.4.20

Figure 4 shows the equilibrium paths of kt for β = 0.1, 0.45, and 0.9, respectively, and

also for δ = 0.33 and 0.64. Each panel depicts 10 paths of kt, where each path corresponds

to the cases of λ = 0.1, 0.2, . . . , 0.9, and 1. In period 1, the labor force falls from 2 to 2− λ

because fraction λ of parents in the previous period decided to delay childbearing, and hence

there are only 1−λ young workers in this period. Note also that the aggregate capital stock

is the same as in the initial steady state, because it is determined by the aggregate savings

in the previous period.21 Therefore, the initial response of the capital–labor ratio is always

19Note that, even though λt jumps up from 0 to λ > 0 in period 0, the population is not immediately

affected, nor is the capital–labor ratio, because the fertility in period 0 determines the amount of labor

supplied in period 1 and beyond.

20As we do not distinguish between physical and human capital, the share of Kt, α, should be higher than

the conventionally measured share of physical capital. Thus, we choose α = 0.4, although the value of α

does not substantially change the pattern of the dynamics. The scaling parameter A is set to 1.5. Under

these parameter values, we confirmed that dynamic efficiency rt > 1 is always satisfied at the steady state.

21This result depends on the logarithmic period utility function, which implies that the savings of agents
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(i) β = 0.1, δ = 0.33 (low discount factor) (ii) β = 0.45, δ = 0.33 (reference)
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(iii) β = 0.9, δ = 0.33 (high discount factor) (iv) β = 0.45, δ = 0.64 (high depreciation)
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Figure 4: Evolution of Capital–Labor Ratio kt

positive, and k1 = (2/(2 − λ)) k∗ is higher when λ is higher.

Observe from Figure 2 that the labor force falls further in period 2 (except for the case

of λ = 1, where Lt falls to the bottom only in one period). At the same time, however, the

aggregate capital stock is also lower than the initial steady state, because there were fewer

young workers in the previous period (N1 = 1 − λ) who contributed to aggregate savings.

Figure 4 shows that the second effect dominates, and the size of the fall in kt at t = 2 is

do not depend on the interest rate. If the agents are more risk averse (i.e., if the intertemporal elasticity

of substitution is lower than unity), the middle-aged agents in period 0 would somewhat increase savings,

because they know that the interest rate in period 1 will be lower because of the reduced labor supply, and

would want to supplement old-age consumption by saving more. Therefore, the magnitude of the initial

fluctuations will be larger than shown in this paper.
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larger when λ is larger. In addition, when β is small (i.e., when the saving propensity of the

middle-aged z = β/(1 + β) is small), the major portion of the aggregate savings depends on

the savings by the young workers. Therefore, with large λ and small β, the fall in aggregate

savings in t = 2 is so large that k2 falls below (or “overshoots”) the initial capital–labor ratio

k∗.22

The pattern of dynamics after period 3 depends both on λ and β. When only a small

fraction of parents delay childbearing, the fluctuations in cohort size Nt disappear in a

relatively short period of time. Therefore, with small λ, kt settles to the steady state value

k∗ relatively quickly, without cycles. If λ is relatively large, two-period cycles in kt are

present, which last for many generations. The pattern of the cycles is comparable to the

results we obtained in Proposition 2. Figure 4(i) shows that when β is small, the capital–

labor ratio kt is smaller in even periods than in odd periods, which corresponds to Case I

(a and b) in Proposition 2. In particular, the values of kt in even periods are far below the

steady state value k∗, whereas in odd periods they are barely above k∗ (except for the case

of λ = 1, where kt in odd periods is also smaller than k∗, as we mentioned in Case Ia in

Proposition 2). This asymmetry can be understood in terms of the reason why both k∗
even

and k∗
odd can be lower than k∗ when z is small, which we discussed in Subsection 3.2.

Figure 4(iii) shows that the pattern of the cycle is opposite when β is large. The capital–

labor ratio is larger in even periods than in odd periods, similar to Case II in Proposition

2. When β is at an intermediate value (β = 0.45), Figure 4(ii) suggests that the pattern is

similar to Case I if λ is large, whereas it is similar to Case II if λ is intermediate (and no

cycle if λ is small). Finally, Figure 4(iv) illustrates that a higher δ shifts the entire path of

the capital–labor ratio kt downwards, but the effect of δ on the pattern of the fluctuations

is not clear from this figure.

To show the dependence of the pattern of cycles on parameter values more explicitly,

we experimented with 40000 combinations of λ and β by varying each of them from 0.005

to 1.00 in 200 steps, and we repeated this for two values of δ. We calculated the dynamic

path of kt for each combination of parameters until period 10, and then classified the result

22In Figure 4, it can be observed that k2 < k∗ occurs when β = 0.1 and λ ≥ 0.6, and also when β = 0.45

and λ ≥ 0.9.
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(i) δ = 0.33 (reference) (ii) δ = 0.64 (high depreciation)
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Figure 5: Pattern of Cycles in kt

according to the pattern of movements, based on that in Proposition 2. The phase diagrams

depicted in Figure 5 summarize the result. When the combination of λ and β belongs to

the area labeled as Case Ib, we find [kt in even periods] < k∗ < [kt in odd periods] holds for

all t > 3, whereas we find [kt in even periods] < [kt in odd periods] < k∗ in the small area

labeled as Case Ia.23 Similarly, in the area labeled as Case II, [kt in odd periods] < k∗ < [kt

in even periods] holds. In the area “No cycle,” kt > k∗ holds for all t > 3. The remaining

white areas correspond to the border cases where the movements of kt do not fit exactly

any of the above patterns (e.g., when cycles are present until a certain period but disappear

before period t = 10).

Figure 5 confirms that cycles in the capital–labor ratio emerge when a certain fraction

23As explained in the text, we classify the pattern of the dynamics according to the level of kt relative to

the steady state value k∗. An alternative method of classification is to focus on the first difference of the

capital–labor ratio, kt − kt−1, and examine if it is greater (or less) than zero. This calculation shows that

the resulting phase diagram is almost identical to Figure 5. The sign of kt − kt−1 is positive only in odd

periods in the area labeled as Case Ia and Ib, and the opposite holds in Case II. The sign of kt − kt−1 is

negative for all t > 3 in the “No cycle” area because kt monotonically falls to the steady state level.
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(around 0.4) of agents delay childbearing. When cycles emerge, the capital–labor ratio is

higher in odd periods if the discount factor β (or equivalently the propensity to save z) is

small, and vice versa. Observe also that the border between Case Ib and Case II bends

toward the right as λ increases. Thus, for a given intermediate β, the pattern of cycles can

be reversed depending on the fraction of agents who delay childbearing (λ). In addition,

comparing panels (i) and (ii) in Figure 5 shows that a higher depreciation rate δ shifts

the border to the right. Intuitively, when δ is higher, the gross interest rate falls, which

reduces the income of the middle-aged agents. This lowers aggregate savings in odd periods

(when the middle-aged workers are the majority in the labor force), and in turn reduces the

capital stock in even periods, making Case Ib more likely.24 Finally, observe that Case Ia is

obtained under a reasonable depreciation rate, although it occurs only when β is very small

(i.e., when agents discount the future quite significantly) and λ is close to one (i.e., when

almost everyone delays childbearing).

4.2 Welfare Analysis under λ ∈ (0, 1)

While we examined Ut only for even-period generations in Subsection 3.3, here we examine

Ut for both even- and odd-period generations because λ ∈ (0, 1) implies that Nt > 0 for all

generations t. By substituting the path of kt into (12) and (13), we obtain factor prices, rt

and wt, on the equilibrium path. Then, substituting these into (27) gives the welfare Ut for

all generations. Similar to Figure 5, we calculated 80000 paths of Ut by varying β, λ, and

δ, and classified the pattern of evolution of Ut according to when Ut is above (or below) the

welfare of agents in the initial steady state, U∗, as given by (29). Figure 6 shows that the

resulting phase diagrams are basically similar to Figure 5.25

24 In Proposition 2, we have shown that the border between Cases Ib and Case II is at z = 1 − α, given

λ = 1 and δ = 1. As z ≡ β/(1 + β), this implies that the border would be at β = (1 − α)/α, which is 1.5 if

α = 0.4. Therefore, it is almost impossible to obtain Case II under the assumption of λ = 1 and δ = 1 (see

footnote 14). However, the discussion in the text suggests that this is only because the highest combination

of λ and δ pushes the border too far away in the direction of the higher β. Under realistic values of δ, Figure
5 shows that both Case I and Case II are possible with a plausible range of β.

25Strictly speaking, there is a slight difference in the upper-right corner of Figure 6(ii), where the pattern

becomes ambiguous. Note that β is close to 1 in this region, which means that the agents do not care about
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(i) δ = 0.33 (reference) (ii) δ = 0.64 (high depreciation)
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Figure 6: Pattern of Cycles in Ut

Types of income wage at young interest at middle wage at middle interest at old

Odd-period generations higher wt higher rt+1 lower wt+1 lower rt+2

(smaller population) (∵ kt > k∗) (∵ kt+1 < k∗) (∵ kt+1 < k∗) (∵ kt+2 > k∗)

Even-period generations lower wt lower rt+1 higher wt+1 higher rt+2

(larger population) (∵ kt < k∗) (∵ kt+1 > k∗) (∵ kt+1 > k∗) (∵ kt+2 < k∗)

Table 3: Effects of Delayed Childbearing on Income Profile (Case I)

Types of income wage at young interest at middle wage at middle interest at old

Odd-period generations lower wt lower rt+1 higher wt+1 higher rt+2

(smaller population) (∵ kt < k∗) (∵ kt+1 > k∗) (∵ kt+1 > k∗) (∵ kt+2 < k∗)

Even-period generations higher wt higher rt+1 lower wt+1 lower rt+2

(larger population) (∵ kt > k∗) (∵ kt+1 < k∗) (∵ kt+1 < k∗) (∵ kt+2 > k∗)

Table 4: Effects of Delayed Childbearing on Income Profile (Case II)
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It is intuitive that when kt converges monotonically to k∗, the welfare of generations Ut

also converges to the steady state value U∗. Therefore, the region of “No cycle” in Figure

5 naturally corresponds to the same region in Figure 6. The correspondence of the other

regions can be understood in terms of the incomes that agents earn throughout their lives.

Consider the case where the combination of β and λ belongs to the “Case Ib” region of

Figure 5. This means that, after the initial response, the capital–labor ratio kt is higher

than the steady state value k∗ in odd periods, whereas kt < k∗ in even periods. This pattern

of movement in kt affects the income profiles of agents differently depending on whether they

belong to odd- or even-period generations. The odd-period generations (i.e., those who are

young in an odd period t) enjoy high wage incomes in their youth because kt > k∗, and also

high interest incomes in their middle age because kt+1 < k∗. Although they suffer from low

wage incomes in their middle age (because kt+1 < k∗) and low interest incomes in their old

age (because kt+2 > k∗), the high incomes in the earlier part of their life affect their welfare

more significantly because of discounting, and hence Ut tends to be higher than the steady

state level, U∗. On the contrary, as summarized by the bottom row in Table 3, even-period

generations (i.e., those who are young in an even period) lose income in the earlier part of

their lives. Thus, their lifetime welfare Ut tends to be lower than U∗. As a result, [the welfare

of the even-period generations] < U∗ < [the welfare of odd-period generations] holds in the

region labeled “Case I” in Figure 6.

Recall from Figure 2 that even-period generations have larger cohort sizes than odd-

period generations, and the difference is more significant when λ is higher. Therefore, the

result in Table 3 suggests that the majority of agents in the economy suffer from welfare loss

when the economy lies in Case I (i.e., when β, or equivalently z, is small). This can be viewed

as a generalized result of Proposition 3, which has shown that the welfare of all agents falls

if z is sufficiently small in the case where only even-period generations exist (λ = 1).

When β and λ belong to “Case II”, the effect of delayed childbearing on the incomes of

the odd- and even-period generations, respectively, are summarized in Table 4. In this case,

the timing of consumption. We guess that this is one reason why cycles in Ut are less evident in this region

(see Tables 3 and 4). Another slight difference is that there is no “Case Ia” region in Figure 6(i), while there

was a small region of “Case Ia” in Figure 5(i).
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(i) Size of cohorts over generations Nt (ii) Capital–labor ratio kt (β = 0.45, δ = 0.33)
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Figure 7: Demographic and Equilibrium Dynamics under Declining Population (n = 0.8)

Ut < U∗ holds for odd-period generations and Ut > U∗ for even-period generations. This

implies that the majority of the population will benefit from delayed childbearing, while

those born in-between the big cohorts experience a fall in their lifetime utility.

5 Extensions and Robustness

5.1 Declining Population

Prior to the previous section, we examined the effect of delayed childbearing by assuming

that each agent has exactly one child in her lifetime. This is equivalent to assuming that the

lifetime fertility rate (LFR) is exactly at the replacement level. However, in most developed

countries where delayed childbirth is observed, the lifetime fertility rate is far below the

replacement level (with a possible exception of the United States, where the LFR is around

the replacement level). This means that the population is declining in the long run, even

without delayed childbearing. Here, we briefly examine the effect of delayed childbearing in

the economy where each agent has, on average, less than one child in her lifetime.

Suppose that each agent has, on average, n ∈ (0, 1) children in her lifetime, and also that

the number of children does not correlate with the timing of childbearing. Recall that the

fraction λt of the generation-t agents delay childbearing. This means that from generation-t
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agents with population Nt, n(1− λt)Nt children are born in period t (i.e., when parents are

young), and nλtNt children are born in period t + 1 (i.e., when parents are middle-aged).

The cohort size of generation t + 1, born in period t, is thus determined by:

Nt+1 = n (1 − λt) Nt + nλt−1Nt−1. (31)

Combining (31) with (2), we obtain the pattern of evolution of Nt.
26 Figure 7(i) depicts

the path of Nt for the case of n = 0.8, which roughly corresponds to the lifetime fertility rate

of 1.68 = 2.1(replacement rate) × 0.8. When λ > 0, the initial fall in the cohort population

(N1 = n(1 − λ) < N0 = 1) is more significant than the benchmark case (λ = 0), not only

because each agent has fewer children in their life, but also because a fraction λ of young

agents in period 0 postpone childbearing until the next period. However, in the long run,

the delay of motherhood slows the pace of depopulation compared with the case of λ = 0.

As a result, for larger t, the population is actually higher when a larger fraction of agents

delay childbearing.

In a similar way to that in Subsection 4.1, substituting the path of Nt into (14) gives the

equilibrium dynamics for kt, as shown by Figure 7(ii). When compared with Figure 4(ii),

we observe that, although the pattern of the fluctuations are similar, the long-run capital–

labor ratio kt is lower than in the initial steady state, and the difference is larger when λ is

higher. Intuitively, delayed childbearing in this economy (with n < 1) raises the long-run

rate of population growth, which naturally leads to a lower capital–labor ratio through a

capital-dilution effect.27

As the capital-dilution effect has already been well studied, we examine whether there

are cycles in the paths of kt and Ut after removing this effect.28 The results are shown in

26With the initial condition of N0 = 1 and N1 = n(1 − λ), equation Nt+1 = n (1 − λ) Nt + nλNt−1

for t ≥ 1 can be solved as Nt = c1σ
t
1 + c2σ

t
2, where σ1 = (n/2)

{
1 − λ +

√
(1 − λ)2 + (4λ/n)

}
> n and

σ2 = n(1 − λ) − σ1 < 0, given λ, n ∈ (0, 1). As |σ2| < |σ1| < 1, the evolution of Nt in the long run

is dominated by the c1σ
t
1 term, which means that delayed childbearing increases the long-term rate of

population growth from n to σ1 > n.

27See Blanchet (1988) and Brander and Dowrick (1994) for more discussion on the capital-dilution effect

by demographic growth.

28Using the long-term rate of population growth with delayed childbearing σ1 =
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Figure 8: Pattern of Cycles with Declining Population (n = 0.8, δ = 0.33)

Figure 8. By comparing Figure 8(i) with Figure 5(i), we observe that the border between

Case Ib and Case II shifts to the left because of a lower n. In addition to the effect of overall

population decline, a lower n also has an effect on the composition of the labor force: if

agents have fewer children, the fraction of younger workers ceteris paribus will fall compared

with older (middle-aged) workers. This increases the aggregate savings in odd periods (when

the middle-aged workers are the majority in the labor force), and in turn raises the capital

stock in even periods, making Case II more likely.

The pattern of cycles in Ut, shown in Figure 6(ii), generally matches the pattern in kt,

although in the upper-right corner we find that the welfare is higher than the long-term level

both for the odd- and even-period generations, at least until t = 10. However, note that this

gain in welfare exists only after controlling for the capital-dilution effect. The overall effect

of delayed childbearing on the capital–labor ratio and welfare is certainly more negative than

(n/2)
{

1 − λ +
√

(1 − λ)2 + (4λ/n)
}

, we calculate the long-term levels of kt and Ut, which depend

on λ because of the capital-dilution effect (see footnote 26). Then, we examine if there are cycles in the

paths of kt (and Ut) relative to their respective long-term levels.
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Figure 9: Equilibrium Dynamics with Technological Progress (γ = 1.49, β = 0.45, δ = 0.33)

analyzed in the previous section because of the capital-dilution effect that shifts the entire

paths of kt and Ut downward.

5.2 Technological Progress

To ensure the robustness of the results obtained so far, here we confirm that the inclusion of

technological progress does not significantly change the pattern of cycles induced by delayed

childbearing. Assume that in every period there is exogenous technological progress that

increases labor productivity by a factor of γ > 1. When labor productivity at period 0

is normalized to unity, production per worker can be represented as yt = Aγtkα
t , where

kt ≡ Kt/(γ
tLt) now represents the amount of capital per efficiency unit of labor. Note that

the amount of labor income for each worker (not efficiency unit) should be modified from

(13) to wt = A(1 − α)γtkα
t , whereas the expression for rt is the same as (12). Then, instead

of (14), we obtain the evolution of kt ≡ Kt/(γ
tLt) as:

kt+1 =
A (1 − α)

γ

Ntk
α
t + zNt−1

[(
Aαkα−1

t + 1 − δ
)
kα

t−1/γ + kα
t

]
Nt+1 + Nt

. (32)

Figure 9 shows the path of kt in the presence of yearly labor productivity growth of 2%,

i.e., when labor productivity is multiplied by γ = 1.49 ≈ (1+0.02)20 in each period. It looks

almost the same as the reference case of Figure 4(ii), but the level of the whole path is lower

than the equilibrium without technological progress. This is because technological progress
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Figure 10: Pattern of Cycles with Technological Progress (γ = 1.49, δ = 0.33)

expands the labor force measured in efficiency units, and thus dilutes capital per efficiency

unit of labor.

Figure 10(i) depicts the pattern of cycles in kt for various β and λ, under γ = 1.49 and

δ = 0.33. When it is compared with the two panels in Figure 5, this phase diagram matches

more closely the high-depreciation case of Figure 5(ii), where δ = 0.64 (5% annum), rather

than the reference case with the same depreciation rate (δ = 0.33). This result suggests

that technological progress affects the pattern of cycles in kt in a similar way to a higher

depreciation rate. Note that while technological progress in a given period enhances total

output Yt in that period, the amount of remaining capital after depreciation (1 − δ)Kt is

unaffected because the latter is determined by the savings in the previous period. Therefore,

technological progress reduces (1 − δ)Kt/Yt, and hence lowers the proportion of income

received by the middle-aged agents (who have claims on the remaining capital).

We also examined the pattern of cycles in the utility of generations, Ut. Note that, even

in the steady state, labor income wt increases by a factor of γ in each period. By substituting

wt = A(1−α)γtkα
t into (27), it can be observed that the utility of generations has a trend term
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(1 + β)(log γ)t. Therefore, after calculating the path of Ut for each β and λ by substituting

the path of kt into (27), we removed the trend by subtracting (1 + β)(log γ)t from it, and

then examined the pattern of the cycles in the detrended path of Ut. Figure 10(ii) shows that

the result is similar to Figure 6(ii). This confirms that the effects of technological progress

on the cycles of kt and Ut are similar to the effects of a higher depreciation rate.

6 Concluding Remarks

In a simple overlapping generations model, we examined the effects of delayed childbearing

on capital accumulation and the welfare of generations. A notable feature of the delayed

childbearing economy is that it causes fluctuations in the age composition of workers for a

long period of time. As workers at different life stages have different sources of income and

also different saving propensities, fluctuations in the age composition affect the aggregate

saving rate, causing cycles in the capital–labor ratio. The cycles in the capital–labor ratio

cause the lifetime welfare of agents to change generation by generation in an alternating

fashion. Depending on the parameters, the majority of agents can experience lower lifetime

welfare when the cycles in the capital–labor ratio affect the factor prices in such a way that

their income in the early stage of their life falls. We also examined extensions of the model

with declining population and technological progress, and confirmed the robustness of our

results.

Although our model is very stylized, it gives insights into a possible cause and effects of

fluctuations in the age distribution of the labor force, which have been examined in different

contexts in the literature. For example, Lee (1997) pointed out that baby booms and busts

can cause fluctuations in the age structure. Mankiw and Weil (1989) investigated their

effects on the US housing market. Our analysis suggests that delayed childbearing can also

generate fluctuations in the age distribution of workers, which have differential welfare effects

on cohorts.

This paper attempted to analyze the effects of the age distribution on capital accumu-

lation and economic welfare as intuitively as possible. For this reason, our model treated

the timing of childbirth and the number of children as exogenous. However, in analyzing
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the implications of policies that aim to cope with delayed childbearing and the low fertility

rate, it will be necessary to clarify how agents endogenously choose the timing of their child-

bearing and the number of children. It will also be interesting to investigate the endogenous

relationship between delayed childbearing and declining lifetime fertility rate, which in this

study we assumed are independent. The exploration of these issues is left for future research.

Appendix A Proof of Lemma 1

Proof of property (ii): From (22) and (25), Vodd(z) ≤ v∗(z) is equivalent to:

1 + z ≥ z
α

1+α

{
2 (1 − α)

1−α
1+α − αz

1−α
1+α

}
(1 − α)−

1
1+α ≡ ρodd(z). (33)

Calculating ρ′
odd (z) and ρ′′

odd (z), we obtain:

ρ′
odd (z) =

α

1 + α
z−

1
1+α

{
2 (1 − α)

1−α
1+α − z

1−α
1+α

}
(1 − α)−

1
1+α , (34)

ρ′′
odd (z) = −

(
α

1 + α

)2

z−
2+α
1+α

{
2

α
(1 − α)

1−α
1+α − z

1−α
1+α

}
(1 − α)−

1
1+α .

Note that ρodd (z) = 0 holds at z = 0 and
(

2
α

) 1+α
1−α (1 − α). In addition, ρodd (z) > 0 and

ρ′′
odd (z) < 0 hold if and only if z ∈

(
0,

(
2
α

) 1+α
1−α (1 − α)

)
. The left-hand side of (33) is

linear with respect to z, and the right-hand side, ρodd (z), has an inverted-U shape while

it is positive. From Lemma 1(i), (33) holds as an equality at z = 1 − α. Moreover, from

ρ′
odd (1 − α) = α/ (1 − α2), ρ′

odd (1 − α) < 1 holds because we have assumed α <
(√

5 − 1
)
/2.

From these properties, Figure 11 (left) shows that there exist two values of z that satisfy

(33) as an equality. One is z = 1 − α from Lemma 1(i), and the other solution ẑ satisfies

0 < ẑ < 1 − α. ¥
Proof of property (iii): From (21) and (25), Veven(z) ≤ v∗(z) is equivalent to:

1 + z ≥ z
α

1+α

{
2z

1−α
1+α − α (1 − α)

1−α
1+α

}
(1 − α)−

1
1+α ≡ ρeven(z). (35)

Calculating ρ′
even (z) and ρ′′

even (z), we obtain:

ρ′
even (z) =

1

1 + α
z−

1
1+α

{
2z

1−α
1+α − α2 (1 − α)

1−α
1+α

}
(1 − α)−

1
1+α ,

ρ′′
even (z) = −

(
α

1 + α

)2

z−
2+α
1+α

{
2

α
z

1−α
1+α − (1 − α)

1−α
1+α

}
(1 − α)−

1
1+α .
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Figure 11: Graphs of Functions ρodd(z) and ρeven(z)

Note that ρeven (z) = 0 holds at z = 0 and
(

α
2

) 1+α
1−α (1 − α). In addition, ρeven (z) > 0 and

ρ′′
even (z) < 0 hold if and only if z >

(
α
2

) 1+α
1−α (1 − α). The left-hand side of (35) is linear with

respect to z, and the right-hand side, ρeven (z), is strictly concave when ρeven (z) > 0. In

addition:

ρeven (1) = (1 − α)−
1

1+α

[
2 − α (1 − α)

1−α
1+α

]
> (1 − α)−

1
1+α (2 − α) > (1 − α)−

1
2 (2 − α) ≥ 2.

Therefore, as depicted in Figure 11 (right), z = 1 − α is the unique solution in the range of

z ∈ (0, 1). ¥

Appendix B Proof of Lemma 2

Proof of property (i): When λ = 1, the definition of vt in (17) and equation (18) implies

k∗
odd/ (A (k∗

even)α) = 1 − α. Using this equation, (28) is rewritten as:

U∗
even = (1 + β) [α log k∗

odd − log (1 − α) − z (1 − α) log k∗
even] + C. (36)

Similarly, when λ = 0, we have k∗/ (A (k∗)α) = v∗(z). Using this equation, (29) is rewritten

as:

U∗ = (1 + β)

[
α log k∗ + log

[
α

v∗(z)
+ 1

]
− z (1 − α) log k∗

]
+ C. (37)
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Note that, from (23), (24) and (26), log k∗
odd − log k∗ = 1

1−α
(log Vodd(z) − log v∗(z)) and

log k∗
even − log k∗ = 1

1−α
(log Veven(z) − log v∗(z)) hold. Using these, we eliminate k∗, k∗

odd and

k∗
even from the difference between (36) from (37) to get U∗

even − U∗ = (1 + β)Ω (z). ¥
Proof of property (ii): Using (21) and (22), (30) is rewritten as:

Ω (z) ≡− log (1 − α)

[
α

v∗ (z)
+ 1

]
+

(
z − α

1 − α

)
log v∗ (z)

+
α

1 − α2
[log (1 − α) + α log z] − z

1 − α
[α log (1 − α) + log z] .

(38)

As limz→0 log z = −∞, limz→0 z log z = 0 and v∗ (0) = (1 − α)/2, the right-hand side of (38)

diverges to minus infinity as z → 0. From Lemma 1(i) and (30), we immediately obtain

Ω (1 − α) = 0. ¥
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