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Social Welfare and Environmental Degradation 
in Agriculture:  The Case of Ecuador 

Abstract

A non-linear optimization model which maximizes total Ecuadorian social welfare,
defined as the sum of consumers’ and producers’ surpluses for the four major crops (corn,
bananas, rice and African palm) is developed to evaluate the tradeoff between welfare and
environmental degradation in Ecuador.  It was found that a total welfare loss of US$122 million
(a 11 percent reduction - from US$ 1.112 billion to US$ 989.66 million) would be expected from
a 30 percent reduction in the total pesticide load on the environment in the production of the four
major crops.  The distributional impacts of the welfare loss were found, however, to be
significantly skewed toward the loss of consumers’ surplus.  Specifically, a 30 percent reduction
of total pesticide load on the environment would result in a reduction of 3.86 percent of
producers’ total surplus while consumers would be expected to loose 19.46 percent of their total
surplus.

Key words:  welfare tradeoff, environmental impacts, non-linear optimization   

Introduction

Located on the Northern portion of the West Coast of South America, Ecuador is a
predominantly agricultural developing country.  Despite the discovery of significant oil reserves
in the 1970s, the agricultural sector is today the major contributor to the country’s Gross
Domestic Product (GDP) and total exports (17 percent and 45 percent respectively in 2001), and
the largest generator of employment (employing 31 percent of the work force).  Agriculture is
also the only economic sector that experienced positive and stable growth in the last decade
(Ministerio de Agricultura y Ganaderia, 2001).  With an exceptional variety of ecological
habitats, a quite diverse production of agricultural commodities takes place on an array of
regions that include the coastal plains facing the Pacific Ocean, temperate high mountain
Andean valleys, and low lands of the Amazon basin.  The agricultural policy reforms of the early
1990s and the opening of the country to international trade have contributed to the development
of a more competitive and modern agriculture (Whitaker, 1996  and Valdes, et. al., 1996).  In
recent years, however, climatic events such as the devastating “El Niño/La Niña” of the late
1990s, have awaken awareness about the fragility of Ecuador’s natural resource endowments and
the need for the protection/conservation of these resources. 

Banana production, for which Ecuador has exceptional climatological conditions, has
reached impressive levels in terms of cultivated area and technology used making Ecuador the
world largest exporter with a share of world exports of 37 percent in 2001.  Another “tradable”
commodity with continuing growth in the lower lands is “African palm” in which the country
has become the largest producer in the Americas.  Traditional crops such as corn and rice, are
still adjusting to the new economic policies, but continue to represent an important sub-sector of
Ecuador’s agricultural production employing large proportions of the rural population. 
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In any given year, the production of corn, rice, African palm and bananas in Ecuador
represent up to 50 percent of the country’s agricultural GDP, and employ 40 percent of the
agricultural labor force (SICA, 2002).  The modernization of Ecuadorean agriculture and the
need to enhance competitiveness, through increased productivity, have encouraged  the use of
technological packages relatively intense in the use of pesticides and other chemical inputs.  At
the same time, another source of rural development, “ecological tourism,” is strongly taking off
in Ecuador.  Foreign tourists attracted by the ecological reserve of the Galapagos Islands are also
discovering the exceptional beauty of the other natural regions of Ecuador including the coastal
beaches, mountain valleys, waterfalls, and rain forests.  Thus, eco-tourism is becoming an
important option to enhance the economic welfare of rural areas, but it requires a delicate
balance between environmental protection and economic development.

The awareness of the potential environmental degradation related to modern agricultural
systems and the consideration of alternative rural development activities, have opened important
policy discussions within the Ecuadorean society.  Currently, the Government of Ecuador is
willing and desirable to evaluate alternative policy options addressing the tradeoff between
welfare and environmental degradation.  These efforts include those to reduce the potential
environmental damage inflicted to natural resource endowments by the use of modern
technologies in agricultural production which require the intense use of chemical inputs.  The
objective of this study is to evaluate the tradeoff between social welfare and environmental
degradation in Ecuador.  It is anticipated that the rigorous methodology developed in this study
will prove to be useful in the formulation of sound and economically feasible policies for the
Ecuadorean agricultural sector in the future.

Optimization Model Structure

The first step in the analysis and evaluation of agricultural production optimality and its
associated environmental impacts in Ecuador, was to develop an optimization model to
maximize total Ecuadorian social welfare from the production and consumption of the four
major crops.  Once this was accomplished, the environmental implications associated with the
baseline optimal solution from the model were derived.  Then, alternative model scenarios’
solutions associated with the reduction of the total pesticide load on the environment in the
production of the four major crops were derived and used to evaluate the tradeoff between
welfare and environmental degradation.  The model was set up as a non-linear optimization
model which maximizes total social welfare (the sum of consumers’ and producers’ surpluses) in
Ecuador for the four major crops.  This model internalized the domestic welfare impacts of the
imports and exports of these crops.  The crops considered in the model were corn, bananas, rice
and African palm.  Rice, however, was split into winter and summer rice production because of
significant differences on the way production of rice practices take place in these two seasons.  

Given the patterns of consumption and production of the four crops analyzed, Ecuador
was assumed to be a “small” country (i.e., its level of production, consumption and trade do not
have a significant impact on the formation of world prices) in the corn, rice and African palm oil
markets.  However, given Ecuador’s importance in the production and trade of bananas, Ecuador
was assumed to be a “big” country (i.e., its level of production, consumption and trade has a
significant impact on the formation of world price) in the bananas market.  Because of
significant differences in production practices and productivity of the four crops considered
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across Ecuador, the country was divided into four production regions:  low costal area, high
costal area, highlands and the eastern territory.  Also, because of significant differences in the
degree of sophistication with respect to technologies used in the production of the four crops in
Ecuador, producers were classified into three possible levels of technology used:  traditional,
semi-sophisticated, and highly-sophisticated producers.  

The overall structure of the optimization model developed is as follows:

          5      BB       5       P*
j

      W     =    3     I Qd
j (Pj) dPj  +   3      I   Qs

j (Pj) dPj (1)
     j = 1    P*
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where: the “j” subscript indicates the crop, the “r” subscript indicates the production region, the
“t” subscript  indicates level of technology used in production, Pj represents the price per ton for
crop “j” (Pj

* represents the equilibrium price for crop “j” which maximizes welfare), Qj
d

represents the demand function for crop “j”in tons, Qj
s represents the supply function curve for

crop “j”in tons, Ajrt represents the number of hectares in the production of crop “j” produced in
region “r” using technology “t”, Yjrt represents the yield in tons per hectare of crop “j” produced
in region “r” using technology “t”, Lr represents the maximum amount of cropland available for
crop production in region “r”, TL represents the maximum amount of cropland available for crop
production of the crops considered in the whole country, Mj represents imports in tons of
commodity “j”, and Xj represents exports in tons of commodity “j.”  Equation (1) depicts the
objective function of the model and represents the definition of the total welfare function (W)
which is found by adding individual welfare components by crop which in turn are composed of
both, consumers’ and producers’ surpluses in each one of the markets of the crops considered. 
Equation (2) represents the supply function per crop.  Equation (3) represents cropland
availability by region.  Equation (4) represents the total cropland availability constraint for the
country as a whole.  Equation (5) represents the demand function per crop which considers both,
imports and exports.  Conditions in (6) represent the non-negativity constraints of the model.
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Procedures and Results

The non-linear optimization model depicted in equations (1) to (5) and conditions in (6)
was solved using GAMS (Generalized Algebraic Modeling System, Brooke, et. al., 1998).  All
the parameters in the optimization model related to the supply side, specifically, land use by
crop, region and technology of production used were obtained from the recently completed
Agricultural Census for Ecuador (SICA, 2002).  Also, domestic and international demand related
information used in the optimization model were obtained from the latest research/studies
conducted by SICA experts including: for corn - Barrionuevo (2002); for bananas - Vasquez
(2002); for rice - Recalde (2002); and for African palm - Arevalo (2002).  For those interested
readers, a documented copy of the GAMS model developed in this study is available from the
authors.  The baseline solution for the model is depicted in Table 1.  As depicted in that table,
optimal total welfare for the four crops considered is US$ 1.112 billion, of which US$ 600
million correspond to producers’ surplus and US$ 512 million correspond to consumers’ surplus. 
Table 1 also depicts producers’ and consumers’ surpluses as well as the optimal levels of
production, equilibrium prices, exports and imports by crop which maximize total welfare.  That
is, Ecuador’s welfare associated with the four crops analyzed would be maximized if the
production, prices, exports, and imports depicted in Table 1 are followed.  The solution depicted
in Table 1 was found to be close, in relative terms, to what the actual conditions are in Ecuador
with respect to production, prices, exports and imports of each of the commodities analyzed. 
Thus, the model developed here was found to closely replicate actual conditions in Ecuador. 
Therefore, it can be used to effectively evaluate the possible impacts of policies affecting these
commodities.

Given the interest in evaluating the environmental impacts of agricultural production in
Ecuador, the first step was to find out what the environmental impacts associated with the
baseline optimal solution of the optimization model were.  In order to accomplish this, the
Environmental Impact Quotient (EIQ) methodology developed by Kovach, et. al., 1992 was
followed.   The EIQ is a calculation of the environmental impact of the most common pesticides
(insecticides, acaricides, fungicides and herbicides) used in commercial agriculture. 
Specifically, the formula used to derive the EIQ value of individual pesticides takes into account
for both the short and long term impacts of pesticides on humans, ground water, soil, and the
impacts on aquatic, avian and insect life (Kovach, et. al., 1992).  The functional form of the
formula used is:

EIQ = FWC + CC + EC  (7)

Where: FWC represents the farm worker component which is defined as C*[(DT*5)+(DT*P)];
CC represents the consumer component which is defined as [(C*(S+P)/2*SY)+L]; and EC
represents the ecological component which is defined as {(F*R) + [(D*(S+P)/2*3) + (Z*P*3) +
(B*P*5)]/3}.  Within those components:  DT is dermal toxicity; C is chronic toxicity; SY is
systemicity; F is fish toxicity; L is leaching potential; R is the runoff or surface loss potential; D
is bird toxicity; S is soil half-life; Z is bee toxicity; B is beneficial arthropod toxicity; and P is
surface plant half-life.  

The farm worker component is defined as the sum of applicator exposure (DT*5) plus
picker exposure (DT*P) times the long term health effect or chronic toxicity (C).  Chronic
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toxicity of specific pesticide is calculated as the average of the ratings from various long tern
laboratory studies conducted on small mammals.  These tests are designed to determine the
potential reproductive, teratogenic, mutagenic, and oncogenic effects of pesticides.  The farm
worker applicator exposure is determined by multiplying the dermal toxicity (DT) rating to small
mammals times a coefficient of 5 to account for the increased risk associated with handling
concentrated pesticides.  The picker exposure is equal to the dermal toxicity (DT) times the
rating for surface plant half-life (the time required for one-half of the chemical to break down). 
This factor takes into account the weathering of pesticides that occurs in agricultural systems and
the days to harvest restrictions that may have placed on certain pesticides.

The consumer component is calculated as the sum of consumer exposure potential
(C*(S+P)/2*SY) plus the potential ground water effects (L).  Ground water effects are included
into the consumer component because it is more of a human health issue (drinking contaminated
water) than a wildlife issue.  Consumer exposure is calculated as chronic toxicity (C) times the
average for residue potential in soil and plant surfaces (S+P)/2 times the systemic potential
rating (SY) of the pesticide (the pesticide’s ability to be absorbed by plants). 

The ecological component is composed of the potential impacts on aquatic and terrestrial
effects, and it is calculated as the sum of the potential effects on fish (F*R), and the average
impacts on birds (D*(S+P)/2*3), bees (Z*P*3) and beneficial arthropods (B*P*5).  The
environmental impact on pesticides on aquatic life is determined by multiplying the chemical
toxicity to fish (F) times the runoff potential of the specific pesticide (the runoff potential takes
into account the half-life of the chemical in surface water).

The impacts on pesticides on terrestrial systems is found by calculating the average
impact of the toxicity of the chemicals to birds (D*(S+P)/2*3), bees (Z*P*3) and beneficial
arthropods (B*P*5).  Because terrestrial organisms are more likely to occur in commercial
agricultural settings than fish, more weight is given to the pesticidal effects on these terrestrial
organisms.  Also, it is important to point out that because arthropod natural enemies spend most
of the life within agroecosystem communities (while birds and bees are somewhat transient)
their exposure to pesticides is expected to be greater, this is the reason why their exposure is
multiplied by a factor of 5 instead of a factor of 3.  For additional details on the calculation of
EIQ’s for over 120 pesticides please see the Kovach, et. al., 1992.  

In this study, based on the detailed crop budgets developed for all crops in all regions and
under all technology scenarios for Ecuador, along with published EIQ’s for all the pesticides
used in the production of the four crops analyzed (of course weighted for both the frequency and
amount of active ingredient used) EIQs field use ratings were derived for each crop by region
and by type of producer.  For example, for the case of corn production in the highlands region
for the traditional, semi-sophisticated and highly-sophisticated producers possibilities the
associated levels of EIQs field use ratings were 79.64, 128.75 and 180.74, respectively.  The
higher the EIQ field use rating is, the higher the chemical load on the environment would be. 
Once the EIQs field use ratings were derived for all production possibilities considered in the
model, a Degradation of the Environment Index (DEI) using the most environmentally degrading
production possibility as the unit was constructed.  The most environmentally degrading
production possibility was found to be the production of bananas with an EIQ field use rating of
4,731.84.  It is important to point out, that pesticide use in the production of bananas across all
regions and across all levels of technology was found to be the same in Ecuador.  This is because
regardless of location or type of producers, bananas’ producers use the same pesticide



6

package/practices.  Thus, the DEI used for bananas production was set equal to 1 and, for
example, for corn production in the highlands region at the highly-sophisticated level of
technology utilization the DEI was calculated to be 0.0382 (180.74/4,731.84).  That is, one
hectare in the production of bananas contributes over 96% more to environmental degradation
(pesticide load on the environment) than one hectare in the production of corn in the highlands
under the highly-sophisticated level of technology.  

Given the DEI information generated above, an additional constraint which added DEIs
across production of all crops was included in the optimization model.  Overall, the total DEI in
Ecuador associated with the optimal baseline solution depicted in Table 1 was found to be
175,613 DEI units, or approximately 831 million EIQ field use rating units (831 million EIQ
field use rating units = 175,613 * 4,731.84).  This level of pesticide load on the environment
provides a point of departure to find out what the impacts on welfare would be if a reduction of
this load is desired.  Given the interest of the Ecuadorian government in finding out more about
what the tradeoffs are between environmental degradation and social welfare, the optimization
model was solved for six alternative scenarios in which a 5, 10, 15, 20, 25, and 30 percent
reduction of DEI was imposed on the optimization model.

Upon solving the six models, under the assumption that reductions of the total pesticide
load on the environment would be desired, it was found that because of the extremely high
relative contribution of bananas production to the degradation of the environment in Ecuador
(see Table 1), it would be optimal to significantly reduce the production of bananas. 
Specifically, on the one hand, at all levels of DEI reduction analyzed, equilibrium prices,
production, imports, and consumers and producers surpluses of corn, rice, and African palm
were not affected.  On the other hand, however, equilibrium price, production, exports, and
consumers’ and producers’ surpluses associated with bananas were found to be increasingly
impacted by the DEI reduction levels analyzed.  Figures 1 to 4 depict the impacts on bananas’
equilibrium price, production and exports, and the impacts on consumers’ and producers’
surpluses and on total welfare across DEI reduction scenarios.  

From the baseline to the 30 percent reduction of DEI scenario, Figures (1) to (4) show
that:  (a) the equilibrium price of bananas would increase 15.29 percent (from US$ 137.63/ton to
US$ 158.68/ton); (b) both total production and exports of bananas would decrease slightly above
33 percent (production from slightly above 5 million tons to 3.34 million tons, and exports from
slightly above 2 million tons to 1.34 million tons); (c) surplus to bananas’ producers would
decrease 7.9 percent (from US$ 293.21 million to US$ 270.03 million - total producers’ surplus
from all crops would decrease from US$ 600.39 million to US$ 577.21 million); (d) surplus to
consumers from all crops would decrease 19.47 percent (from US$ 512.15 million to US$
412.45 million - it is important to note that all the consumer’s surplus reduction would take place
in the bananas’ market representing a loss of two-thirds of the initial surplus to consumers in that
market of US$ 149.53 million); and (e) total surplus would decrease 11.04 percent (from US$
1.112 billion to US$ 989.66 million).  

Conclusion

At this point, an important question to ask would be: Given the four major crops
analyzed, is the tradeoff of 11 percent of total surplus for a 30 percent reduction in the total load
of pesticides on the environment economically and politically feasible in Ecuador?  The answer
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to this question is critically dependent upon:  (a) what the potential gains of a decrease in the
load of pesticides on the environment would be on other economic activities, such as eco-
tourism which is increasingly becoming very important in Ecuador; and (b) the overall and
distributional impacts that this type of policy would have on both, producers’ and consumers’
welfare.  Furthermore, regional considerations in terms of where at, regionally speaking within
Ecuador, would be a priority for environmental damages from agriculture to be reduced is
critical in the decision making process because of the associated regional economic
consequences that these type of decisions could have.  Given the importance that these issues
currently play and are expected to continue to play in the enhancement and development of the
Ecuadorian agricultural sector in the future, many of these issues are currently being addressed
with the optimization model developed in this study.  It is felt that both, the model developed
and the procedures followed in this study represent a valuable attempt to evaluate the tradeoff
between social economic welfare and environmental degradation issues.  It is hoped that this
effort proves useful in the formulation of agricultural policies in the Ecuadorian agricultural
sector in the near future. 
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Figure 4.  Total Welfare
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Figure 1.  Bananas Equilibrium Price
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Figure 3.  Consumers' and Producers' 
Surpluses
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Figure 2.  Production and Exports 
of Bananas
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Table 1.  Baseline Results of the Optimization Model for Ecuador, 2002
Rice

Corn Bananas Winter Summer Total Palm Total

Equilibrium Price (US$/ton.) 150.68 137.63 249.50   297.03 62.25

National Production (1,000 ton.)    350    5,041   842     635   1,477   2,042
Exports (1,000 ton.)    2,016
Imports (1,000 ton.)   148     112 260

Producers’ Surplus (US$ mill.) 24.64 293.21 228.91 
          

53.63 600.39

Consumers’ Surplus (US$ mill.) 48.43 149.53 178.64 135.55 512.15

TOTAL Welfare (US$ mill.) 1,112.54

Degradation of the Environment 2.74 138.23 28.32 6.32 175.61
Index (1,000 uni.)


