Jan Babecký, Luboš Komárek and Zlatuše Komárková

Integration of Chinese and Russian stock markets with world markets: National and sectoral Perspectives
Jan Babecký, Luboš Komárek and Zlatuše Komárková:
Integration of Chinese and Russian stock markets with world markets:
National and sectoral perspectives

This paper can be downloaded without charge from

Suomen Pankki
Helsinki 2012

All opinions expressed are those of the authors and do not necessarily reflect the views of the Bank of Finland.
Contents

Abstract... 4
1 Introduction... 5
2 Literature review ... 7
Application to China .. 9
Application to Russia ... 11
3 Development of Chinese and Russian stock markets: stylized facts................................. 12
 National stock market indices .. 12
 Sectoral stock market indices ... 15
4 Approaches to measuring stock market integration ... 22
 The concept of beta-convergence ... 22
 The concept of sigma-convergence ... 23
5 Empirical results ... 24
 Beta-convergence ... 25
 Sigma-convergence ... 26
6 Conclusions .. 32
References .. 35
Appendix 1 .. 39
Jan Babecký, Luboš Komárek and Zlatuše Komárková

Integration of Chinese and Russian stock markets with world markets: National and sectoral perspectives

Abstract

Interest in examining the financial linkages of economies has increased in the wake of the 2008/2009 global financial crisis. Applying the concepts of beta- and sigma-convergence of stock market returns, we assess changes over time in the degree of stock market integration between Russia and China as well as between them and the United States, the euro area and Japan. Our analysis is based on national and sectoral data spanning the period September 1995 to October 2010. Overall, we find evidence for gradually increasing stock market integration after the 1997 Asian financial crisis and the 1998 Russian financial crisis. Following a major disruption caused by the 2008/2009 global financial crisis, the process of stock market integration resumes between Russia and China, and with world markets. Notably, the episode of sigma-divergence from the 2008/2009 crisis is stronger for China than Russia. We also find that the process of stock market integration and the impact of the recent crisis have not been uniform at the sectoral level, suggesting potential for diversification of risk across sectors.

JEL classification: C23, G15, G12.
Keywords: Stock market integration, beta-convergence, sigma-convergence, China, Russia, sectoral and national analysis

* Jan Babecký: Czech National Bank and CES, University of Paris-1 Sorbonne (email: jan.babecky@cnb.cz).
Luboš Komárek: Czech National Bank, Faculty of Economics of the Technical University Ostrava and University of Finance and Administration, Prague (e-mail: lubos.komarek@cnb.cz).
Zlatuše Komárková: Czech National Bank (e-mail: zlatuse.komarkova@cnb.cz).

This work was supported by the Bank of Finland’s Institute for Economies in Transition (BOFIT) and the Grant Agency of the Czech Republic within project No. 402/08/0067. The text incorporates some of the results from Project IGA University of Finance and Administration No. 7720/2010. We thank our colleagues at BOFIT (especially Iikka Korhonen, Aaron Mehrotra, Zuzana Fungáčová, Laura Solanko and Laura Vajanee) and the Czech National Bank (especially Jan Frait, Tomáš Holub, and Michal Hlaváček) for their valuable comments and data support. The paper benefited from comments at the seminar in BOFIT and the ESCB Eighth Emerging Market Workshop. The views presented in this paper are solely those of the authors and do not necessarily represent those of the Czech National Bank or other affiliated institutions.
1 Introduction

The economic and financial crisis of 2008/2009 brought wider awareness that financial integration bundles considerable non-negligible costs with the much-touted benefits. Assessment of the costs and benefits of financial integration dates back the work of Agénor (2003), who proposes that the benefits of financial integration outweigh the costs when mechanisms for maintaining financial stability are in place. (Examples of these mechanisms are discussed in Agénor et al., 2011). When these mechanisms are overlooked, however, the costs of financial integration generated by a crisis can be considerable. Therefore, monitoring the degree of financial integration is useful in both good times, when the long-run benefits of economic growth are realized, and in bad times, when the costs of financial integration (e.g. through contagion) are manifest. Even leading policymakers now note the importance of assessing financial integration in both normal and crisis times (e.g. Trichet, 2010, 2008, 2007; Papademos 2010, 2008a, 2008b; and Yam 2006).

While this topic is vast, the objectives of our study are modest. Acknowledging the importance of assessing the cost-benefit aspects of financial integration and the effects expressed in various crises, we focus on quantifying the degree of stock market integration for China, Russia, and key world markets, as well as the time dynamics of this integration over the period 1995–2010. Stock markets continue to grow in size, yet these linkages represent an increasingly important, but mostly ignored, aspect of the financial system.

There is no consensus in the literature on the extent of stock market integration of China and Russia with world markets. In the view of some scholars (e.g. Groenewold et al., 2004; Li, 2007; and Koźluk, 2008), Chinese stock markets move largely independently from global movements, while Russian stock markets shown evidence of rising integration with global (particularly EU) stock markets (Koźluk, 2008). Other studies reach an opposite conclusion, i.e. Chinese stock markets continue to integrate with the global financial system, while the Russian stock market remains isolated. Chow et al. (2011) argue that China’s stock market has become “more and more integrated” into the world market. Rizavi et al. (2011) report stock market integration has deepened among China its Asian neighbors. The claim of Verchenko (2000) that the Russian stock market is not integrated with the stock markets of neighboring countries is backed by the assessment of Tirkkonen (2008) on a set of benchmark countries made up of the US, China, Japan, and several EU countries.
To help fill in the gap in the existing literature, we focus on China and Russia to examine stock market integration among these two countries, as well as their integration with global benchmarks including the US, the euro area, and Japan. Deepening of trade, economic and financial Chinese-Russian ties raises questions as to the extent the two countries’ stock markets are interrelated, as well as how these links have evolved over time in absolute terms and relative to world stock markets. As we discuss in the literature review, there is substantial empirical evidence on Chinese and Russian stock markets, but few studies that compare links between the two countries’ stock markets, and even fewer works that present disaggregate evidence from sectoral or regional perspectives. Indeed, to our knowledge, there is no study on Chinese and Russian stock market links based on sectoral data. This study also is novel in its examination of stock market integration of China and Russia over time at both national and sectoral levels, and in quantifying the impact of the 2008/2009 crisis.

According to Baele et al. (2004), financial integration, particularly stock market integration, can be assessed using three types of measures: (1) price-based, (2) news-based, and (3) quantity-based measures. The first class of measures could be viewed as a direct check of the law of one price on the condition that the compared assets have similar characteristics. The second class of measures makes possible identification of existing market imperfections such as frictions and barriers; in the integrated area, new information of a local character should have less impact on particular assets than global news. The third class of measures quantifies the effects of legal and other non-price frictions and barriers from both the supply and demand sides of the investment decision-taking process. We focus on the first dimension, the price-based indicators of stock market integration. They can be operationalized and the required stock market data are available, opening possibilities for cross-country comparisons. Price-based measures can also be quantified by means of beta- and sigma-convergence. As applied to stock markets, beta-convergence characterizes the speed at which differences in stock market returns between individual markets are eliminated, while sigma-convergence captures the dispersion of return differentials and its change over time.
This study addresses three questions:

1. Is there convergence of stock market returns on the national and sectoral level between China and Russia, or conversely, with the US, the euro area and Japan? And if there is convergence, how fast is it?

2. How does the degree of stock market return convergence change over time? In particular, are Chinese and Russian stock markets becoming more integrated between themselves or are they integrating with the major global markets such as the US, Japanese or euro area stock markets?

3. What are the effects of the current financial crises on analyzed stock markets integration?

The structure of the paper is as follows. Section 2 discusses the relevant literature focusing on the integration of stock markets generally and studies that deal mainly with the Chinese and Russian stock markets. Section 3 provides stylized facts on the development of the Chinese and Russian stock markets at the national and sectoral levels. The fourth section provides a discussion of the theoretical approaches to estimating stock market integration. Section 5 gives an empirical evaluation of stock market integration and compares our findings with previous results in the literature. The last section concludes.

2 Literature review

This section provides an overview of the general studies on stock market integration and some specific works on China and Russia. A variety of alternative techniques is used, ranging from beta- and sigma-convergence of stock market returns to cointegration analysis of stock prices, variance decomposition, and conditional correlations of returns. With regard to Western Europe, an analysis of capital market integration on national levels is reported by the European Commission (1997) and Hartmann et al. (2003); examples of national- and sectoral-level analysis are studies by Baca et al. (2000) and Heston and Rouwenhorst (1995). Portes and Rey (2005) employ the gravity equation framework to describe the determinants of cross-border equity flows.

1 Solnik (1974) addressed a similar issue in the 1970s in determining optimum trends in international capital diversification.
A new feature – change of integration over time – is introduced by Bekaert and Harvey (1995), who construct a time-varying measure of financial integration. Their results show that world capital markets overall are becoming increasingly integrated, but that delinkage is also occurring for some individual countries. Applying an alternative time-varying approach, Ayuso and Blanco (2000) find that financial market integration between the stock markets of the euro area countries increased during the 1990s. Bekaert et al. (2000) also find that the degree of integration among emerging equity markets is higher than earlier thought when structural breaks in the series are taken into account. Hardouvelis et al. (2006), for example, examine the impact of the introduction of the euro on capital markets. The degree of integration is found to have increased with the formation of the European Monetary Union (EMU), particularly since 1995. In contrast, Ekinci et al. (2007) report evidence of a low degree of capital market integration among the mature EU members relative to both their theoretical prediction and judged against the US. Berger and Pozzi (2011) revisit time-varying integration of stock markets among the US, Japan and selected European countries in 1970–2010, deriving the country-specific risk premia upon a capital asset pricing model and a GARCH-type estimation technique. They find evidence of rising stock market integration among all countries, except Japan.

A number of studies evaluate the extent of stock market integration in non-OECD countries. Applying the co-integration approach, Azman-Saini et al. (2002) find limited evidence of long-run relationships among five Asian equity markets. Yang et al. (2003) present further evidence on co-movements among ten Asian emerging stock markets and in relation to the US and Japan. They distinguish long- and short-run linkages, and explicitly control for the Asian financial crisis of 1997–1998. The degree of integration among the Asian countries is found to increase for the post-Asian-crisis period. Phylaktis and Ravazzolo (2002) simultaneously examine financial and economic linkages for the Pacific Basin countries. They find financial that integration occurs along with economic integration. This observation has particular relevance for China and Russia as they strengthen economic ties between themselves and with the rest of the world.
Application to China

The research applied to China’s stock market integration can be divided into four categories:

1. Integration within mainland China (mainly between Shanghai and Shenzen market),
2. Integration within greater China (mainland China, Hong Kong and Taiwan),
3. Integration of mainland or greater China compared to other countries, and

Studies in the first two categories commonly find evidence of stock market integration. There is no consensus as to whether Chinese stock markets are integrated with world stock markets or not, and the evidence from sectoral analysis is quite limited. Our paper, therefore, concentrates on empirical analysis of the third and fourth categories. However, a brief overview of all four categories may be useful before proceeding to our analysis.

Mainland China: Huang et al. (2000) report co-integration linkages between Shanghai and Shenzen stock exchange market and their significant feedback relationships. Los and Yu (2008) apply advance signal processing aimed at detecting the degree of persistence, stationarity, and independence of Chinese A- and B-share Shanghai and Shenzen mainland markets. The gradual improvement in these characteristics found is in line with the process of deregulation. Mainland Chinese stock markets are shown to behave efficiently and integrated into a single Chinese stock market.

Greater China: Huang et al. (2000) analyze causality and co-integration relation among the US, Japan and greater China. It is shown that the dynamics of returns on the US market has stronger influence on greater China than on the Japanese market. US stock market returns are found to be useful predictors for Hong Kong and Taiwan returns. Gronenewold et al. (2004) focus on integration among greater China’s stock exchange markets, i.e. mainland China, Hong Kong and Taiwan, using a VAR approach and Granger-causality tests. Their results reveal mainland China’s markets are strongly interconnected, while the Hong Kong and Taiwan stock markets are relatively isolated. Evidence of rising links between the mainland markets and Hong Kong, however, is noted after the 1997 Asian crisis. Hatemi and Roca (2004) also study integration among greater China and Singapore using the causality test based on the bootstrap method. The authors find a gradually
rising interdependency of mainland China, Hong Kong, and Taiwan after the 1997 Asian crisis.

Cross-country comparisons: There is a broad group of studies that investigate integration of the stock markets of mainland China or greater China vis-à-vis other stock markets. Using VAR models, Bahng and Shin (2003) test for the existence of asymmetric responses among national stock exchange indices of China, Japan, and South Korea, finding pattern asymmetry among all three indices. The variance decomposition of the forecast errors reveals that the Chinese index is least explained by variations of the other two markets. When the US index is incorporated into this analysis, however, the US stock market appears to significantly affect the Chinese market. Hsiao *et al.* (2003) use pair-wise and VAR analyses to identify financial linkages in daily variations in stock prices indices between the US and Asia-Pacific region, and then test for the Granger-causality of these linkages. The authors report that a drop in the US stock market does not Granger-cause similar behavior in the Chinese mainland stock market, but does cause a drop in stock markets in Japan, Korea and Taiwan, suggesting a certain degree of isolation of the Chinese mainland stock market.

These early conclusions are supported by the more recent literature. Girardin and Liu (2007), for example, investigate whether China’s A-share market is integrated at the national level with the European, US, and Hong Kong markets. Application of the co-integration method to daily, mid-week, and average week data for 1992–2005 yields different results. There is no co-integration for daily and mid-week data, but evidence of co-integration between the Chinese Shanghai A-share market and the European S&P500. Groenweold *et al.* (2004) and Li (2007) point out the relative isolation of Chinese stock markets from world markets. Kožluk (2008) concludes that Chinese stock markets are “almost completely separated from global affairs,” but “strongly inter-related” themselves. More recently, Chow *et al.* (2011) find evidence of rising integration of the Chinese and world stock markets, measured in terms of co-movements of Shanghai and New York Stock exchange prices. Rizavi *et al.* (2011) also report beta- and sigma-convergence of stock market returns between the Shanghai stock exchange and nine Asian markets with respect to a global benchmark (proxied by the Merrill Lynch Major 11 International Index).

Sectoral analysis: The sectoral analysis of Chinese stock markets is much less elaborated in comparison with analysis of national stock exchange indices. To our knowl-
edge, the study of Demirer and Lien (2005) is the only one that examines firm-level returns across 18 sectors. The authors employ a Granger-causality test and correlation analysis to detect stock market correlations during the periods of rising and declining returns. When a majority of investors were buying stocks, the correlation was markedly higher compared to the case of selling stocks.

Application to Russia

Evidence on integration of Russian stock markets with other countries’ stock markets is mixed. Studies of Russian stock markets can be broken into three groups:

1. Russian stock markets extensively interconnected with global (particularly European) stock markets,
2. Russian stock markets are isolated, and
3. There are one-way spillovers from or into Russian stock markets.

Koźluk (2008) provides one of the rare studies that includes the stock markets of both Russia and China as part of a much broader analysis (135 indices for 75 countries in total from the early 1990s to 2007). The results of the approximate factor model (which allows the identification of global versus regional factors) show that while Russian stock markets behave like a “typical” emerging market, i.e. characterized by rising integration with world markets, China’s A-share and B-share markets move largely independently from global markets. Employing a VAR-GARCH-type model, Caporale and Spagnolo (2011) identify stock market volatility spillovers running one direction from Russia to three Central and Eastern European countries.

Using correlation and cointegration analysis, Verchenko (2000), in contrast, finds no interconnection between stock market returns in Russia and nine neighboring transition economies. Similarly, employing VAR and cointegration methods, Tirkkonen (2008) argues that Russian stock markets are relatively isolated from the global markets such as the US, China, Japan, UK, Germany, as well as nearby Poland and the Czech Republic.

One-way stock market spillovers, from Russia to the Central and Eastern European countries, are found by Jochum et al. (1999) by means of variance decomposition. However, this result is obtained in relation to the effects of the Russian crisis of 1998,
which is not surprising. Employing a rolling regression analysis, Anatolyev (2008) finds evidence for rising spillovers from the US stock markets, and also from European stock markets when considering a larger set of countries (Anatolyev, 2005) to the Russian stock market in 1995–2004. There is no robust indication for rising bilateral stock market integration, however, at either regional or sectoral levels.

3 Development of Chinese and Russian stock markets: stylized facts

National stock market indices

Table 1 provides information on the national stock market indices used in our study. Daily stock market indices for the period September 1995 to October 2010 were downloaded from Thomson Reuters and converted to weekly averages. The weekly indices were then expressed in USD equivalents to account for nominal exchange rate changes and rescaled using the first observation of 2007 as the 100 value. Figure 1 illustrates the resulting stock exchange indices for China and Russia compared with our three benchmark countries: the United States, the euro area, and Japan.

<table>
<thead>
<tr>
<th>Country Code</th>
<th>Country</th>
<th>Stock Market Price Index</th>
<th>Thomson Reuters Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>China</td>
<td>SHANGHAI SE A SHARE</td>
<td>CHSASHR</td>
</tr>
<tr>
<td>EA</td>
<td>Euro Area</td>
<td>DJ EURO STOXX $</td>
<td>DJEURS$</td>
</tr>
<tr>
<td>JAP</td>
<td>Japan</td>
<td>NIKKEI 225 STOCK AVERAGE</td>
<td>JAPDOWA</td>
</tr>
<tr>
<td>RU</td>
<td>Russia</td>
<td>RUSSIA RTS INDEX</td>
<td>RSRTSIN</td>
</tr>
<tr>
<td>US</td>
<td>USA</td>
<td>S&P 500 COMPOSITE</td>
<td>S&PCOMP</td>
</tr>
</tbody>
</table>

Source: Thomson Reuters.

Figure 1(a) shows that the Chinese stock exchange index grows ahead of the Asian crisis of 1997, revives in 1999–2001, and then enjoys robust growth in 2006–2007. A massive drop takes place between September 2007 and November 2008, with gradual recovery thereafter. The Russian stock exchange index in Figure 1(b) rises until 1997. Growth re-
turns after the Russian crisis of 1998 and continues until the global crisis in 2008. After a sharp drop in 2008, growth resumes in 2009. A comparison of national stock market indices among the five countries under review highlights the role of the recent crisis, which clearly affected all stock markets. However, the magnitude of impact and the timing differ from country to country. The Chinese stock market shows particularly high growth prior to 2007, so its plunge is proportional. The Russian stock market index is the last to fall after the arrival of the global crisis.

Figure 1 National stock market indices (Sept. 1995 to Oct. 2010, weekly)

(a) China with benchmark countries
(b) Russia with benchmark countries

Note: The stock market indices are first expressed in USD equivalents to account for nominal exchange rate changes, then rescaled with the first observation of 2007 as the 100 value.
Source: Thomson Reuters.

A complementary indicator that characterizes the importance of stock markets to the economy is stock market capitalization. Figure 2 shows that the highest market capitalizations (as a percentage of GDP) are observed for the United States, Japan and the euro area. Since 2004–2005, the market capitalization for both China and Russia sharply increased. By the end of 2008, the levels of market capitalization were to the US level (and exceeding the euro area and Japanese benchmarks). Other characteristics of stock markets studied here are summarized in Figures 11–13 in Appendix 1 (total number of listed domestic companies, total value of traded stocks as a percentage of GDP, and turnover ratio of stocks traded in percent). These indicators cover the period 1996–2009 at yearly frequency.
Figure 2 Stock market capitalization (as a percentage of GDP, 1996–2009)

(a) China with benchmark countries
(b) Russia with benchmark countries

Figure 3 shows the trends in the returns of the national stock market indices. Returns Y_t are calculated as weekly growth rates of stock market indices according to the expression:

$$Y_t = 100 \times \left[\ln SE_t - \ln SE_{t-1} \right],$$

where SE_t denotes the stock exchange index at time t, taken in USD equivalent to account for nominal exchange rate changes. Trend values are obtained by means of the Hodrick-Prescott filter with the smoothing parameter $\lambda = 270$ 400, which corresponds to the weekly data. While original stock market indices are found to be integrated of order one, the returns of these indices appear to be stationary according to standard unit root tests (ADF and PP) and non-stationarity test (KPSS).

Figure 3 reveals that the global financial crisis of 2008 resulted in a somewhat lower drop of Russian stock market returns that in Russian 1998 financial crisis. In contrast, the recent global crisis has had much stronger effects for China and other monitored countries that the earlier turbulent episodes during the examined period, including the 1997 Asian crisis. This will be formally tested in our analysis. Moreover, the dynamics of returns (and indices) among the United States, euro area and Japan are more similar than with respect to either China or Russia, which implicitly gives an indication of higher stock market integration among our three benchmark countries.
Figure 3 National stock market returns (Sept. 1995 to Oct. 2010, weekly)

(a) China with benchmark countries

(b) Russia with benchmark countries

Note: Trend values obtained by means of the H-P filter with the smoothing parameter λ = 270 400.
Source: Authors’ calculation based on Thomson Reuters data.

Sectoral stock market indices

Table 2 describes data sources of the sectoral stock market indices used in our analysis. The index trends relative to the US, euro area and Japan during 1995–2010 are presented in Figure 4 (China) and Figure 5 (Russia). An immediate impression is the large variation of indices across sectors, even if the 2008 crisis impacts all sectoral stock market indices without exception. In several sectors, the stock market indices fully recover by the end of 2010, reaching or even exceeding their pre-crisis levels. These include Beverages, Brewers, Pharmacy and Software for China, and the sectors Banks, Mining, Pharmacy and Telecom for Russia.
Table 2 Sectoral stock market indices (Sept. 1995 to Oct. 2010)

<table>
<thead>
<tr>
<th>Sector Code</th>
<th>Sector</th>
<th>Thomson Reuters Code</th>
<th>China</th>
<th>Euro Area</th>
<th>Japan</th>
<th>Russia</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td>Airlines</td>
<td>AIRLNCH*</td>
<td>AIRLNEM</td>
<td>AIRLNJP</td>
<td>AIRLNRS*</td>
<td>AIRLNUS</td>
<td></td>
</tr>
<tr>
<td>AUTO</td>
<td>Automobiles</td>
<td>AUTOSCA*</td>
<td>AUTOSEM</td>
<td>AUTOSJP</td>
<td>AUTOSRS*</td>
<td>AUTOSUS</td>
<td></td>
</tr>
<tr>
<td>BANK</td>
<td>Banks</td>
<td>BANKSCA</td>
<td>BANKSEM</td>
<td>BANKSJP</td>
<td>BANKSRS*</td>
<td>BANKSUS</td>
<td></td>
</tr>
<tr>
<td>BEV</td>
<td>Beverages</td>
<td>BEVESCH</td>
<td>BEVESEM</td>
<td>BEVESJP</td>
<td>BEVESRS*</td>
<td>BEVESUS</td>
<td></td>
</tr>
<tr>
<td>BREW</td>
<td>Brewers</td>
<td>BREWSCH</td>
<td>BREWSEM</td>
<td>BREWSJP</td>
<td>BREWSRS*</td>
<td>BREWSUS</td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemicals</td>
<td>CHMCLCH</td>
<td>CHMCLEM</td>
<td>CHMCLJP</td>
<td>CHMCLRS*</td>
<td>CHMCLUS</td>
<td></td>
</tr>
<tr>
<td>ELEC</td>
<td>Electricity</td>
<td>ELECTCH</td>
<td>ELECTEM</td>
<td>ELECTJP</td>
<td>ELECTRS*</td>
<td>ELECTUS</td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td>Financials</td>
<td>FINANCH</td>
<td>FINANEM</td>
<td>FINANJP</td>
<td>FINANRS*</td>
<td>FINANUS</td>
<td></td>
</tr>
<tr>
<td>INDU</td>
<td>Industrials</td>
<td>INDUSCH</td>
<td>INDUSEM</td>
<td>INDUSJP</td>
<td>n.a.</td>
<td>INDUSUS</td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>Mining</td>
<td>MNINGCH*</td>
<td>MNINGEM</td>
<td>MNINGJP</td>
<td>MNINGRS*</td>
<td>MNINGUS</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td>Oil & Gas</td>
<td>OILGSCH</td>
<td>OILGEM</td>
<td>OILGSJP</td>
<td>OILGSRS*</td>
<td>OILGSUS</td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>Pharmacy</td>
<td>PHRMCCA*</td>
<td>PHRMCEM</td>
<td>PHRMCP</td>
<td>PHRMCRS*</td>
<td>PHRMCUS</td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>Real Estate</td>
<td>RLESTCH</td>
<td>RLESTEM</td>
<td>RLESTJP</td>
<td>n.a.</td>
<td>RLESTUS</td>
<td></td>
</tr>
<tr>
<td>SOFT</td>
<td>Software</td>
<td>SOFTWCA*</td>
<td>SOFTWAREM</td>
<td>SFTCSJP</td>
<td>n.a.</td>
<td>SOFTWAREUS</td>
<td></td>
</tr>
<tr>
<td>TELE</td>
<td>Telecom</td>
<td>TELCMCA</td>
<td>TELCME</td>
<td>TELCMJP</td>
<td>TELCMRS*</td>
<td>TELCMUS</td>
<td></td>
</tr>
<tr>
<td>UTIL</td>
<td>Utilities</td>
<td>UTILSCH</td>
<td>UTILSEM</td>
<td>UTILSJP</td>
<td>UTILSRS*</td>
<td>UTILSUS</td>
<td></td>
</tr>
</tbody>
</table>

Note: The acronyms stand for the Thomson Reuters codes of the series (Bloomberg LP code for the pharmacy sector in the case of China).
* Periods shortened due to data unavailability.
Source: Thomson Reuters (all sectors except pharmacy in China) and Bloomberg LP (pharmacy, China).
Figure 4 Sectoral indices – China with benchmark countries (Sept. 1995 – Oct. 2010)

Note: The stock market indices are first expressed in USD equivalents to account for nominal exchange rate changes, then rescaled with the first observation of 2007 as the 100 value.

Source: Authors’ calculation based on Thomson Reuters data.
Figure 5 Sectoral indices – Russia with benchmark countries (Sept. 1995 – Oct. 2010)

Note: The stock market indices are first expressed in USD equivalents to account for nominal exchange rate changes, then rescaled with the first observation of 2007 as the 100 value. Russian data for three sectors (Industrials, Real Estate and Software) are unavailable.

Source: Authors’ calculation based on Thomson Reuters data.
Figure 6 illustrates the development of sectoral returns for the Chinese stock market against our benchmark territories. The Russian case is shown in Figure 7. Similar to the dynamics of national returns, sectoral stock market returns are stationary in levels in the unit root tests (ADF, PP) and the stationarity test (KPSS). Figure 6 and Figure 7 have several notable features: (1) an opposite cyclical behavior of Chinese and Russian stock market returns in some periods and sectors (e.g. Airlines, Automobile and Brewers sectors) compared to the sectoral returns of the three benchmark countries; (2) a lower alignment of some sectors, not only between Chinese and Russian markets, but also among sectors of the euro area, US and Japanese stock markets (e.g. Real estate and Mining sectors); and (3) a clear impact of past crises (the 1997 Asian crisis, the 1998 Russian crisis, and the global financial crisis of 2008/2009) and bubbles (the 2000 dot-com bubble and the run-up to the 2008/2009 crisis) on sectoral returns.
Figure 6 Sectoral stock market returns – China with benchmark countries

Note: Trend values are obtained by means of the H-P filter with the smoothing parameter $\lambda = 270,400$. Source: Authors’ calculation based on Thomson Reuters data.
Figure 7 Sectoral stock market returns – Russia with benchmark countries

Airlines Automobiles Banks

Beverages Brewers Chemicals

Electricity Financials Mining

Oil_and_Gas Pharmacy Telecom

Utilities

Note: Trend values are obtained by means of the H-P filter with the smoothing parameter $\lambda = 270 400$. Russian data for three sectors (Industrials, Real Estate and Software) are unavailable.

Source: Authors’ calculation based on Thomson Reuters data.
4 Approaches to measuring stock market integration

We explore a price-based approach to measuring financial integration that involves estimating beta- and sigma-convergence as advocated by Adam et al. (2002) and elaborated in Babecký et al. (2010). The terms beta-convergence and sigma-convergence originate from the literature on dynamics of economic growth (e.g. Barro and Sala-i-Martin, 1992, 1995).

As discussed in Adam et al. (2002), any proper measure of financial integration of stock markets should account for asset pricing, which is empirically difficult to operationalize. We follow a common practice (Ayuso and Blanco, 2000; European Commission, 1999; Hartmann et al., 2003) of examining links between stock market returns that leaves asset pricing aside. Strictly speaking, our results for the stock market should be interpreted as evidence of beta- and sigma-convergence of returns rather than integration as we are unable to distinguish whether there is an underlying process of financial integration, whether financial shocks become stronger, or whether risk premia change. Even with this caveat, assessment of stock market convergence in returns (synchronization) provides valuable, new evidence on the interdependencies among the economies discussed.

The concept of beta-convergence

Beta-convergence enables identification of the speed at which differences in returns are eliminated on individual stock markets (selected against a benchmark). A negative beta coefficient indicates the existence of convergence. The closer the value of the beta coefficient is to -1, the higher the speed of convergence. To quantify beta-convergence, the following regression is estimated:

\[\Delta R_i = \alpha + \beta_i R_{i-1} + \sum_{l=1}^L \gamma_l \Delta R_{i-1} + \varepsilon_i \] (1)

where \(R_i = Y_i - Y_i^B \) represents the difference between the stock market return of country (or sector) \(i \) and the selected reference territory (a benchmark, \(B \)) at time \(t \), \(\Delta \) is the difference operator, \(\alpha \) is the constant term, \(l \) is the lag length and \(\varepsilon_i \) is the white-noise disturbance. The stock market return \(Y_i \) is calculated as period-to-period growth rate of the underly-
ing stock market index: \(Y_t = 100^*\left[\ln(SE_t) - \ln(SE_{t-1})\right] \), where \(SE_t \) denotes the stock exchange index at week \(t \) taken in USD equivalent to account for nominal exchange rate changes. The lag length \(l \) is based upon the Schwarz information criterion; the maximum lag length \(L \) is taken as four as we are using weekly data and the memory of stock markets is short.

The size of coefficient \(\beta \) is a direct measure of the speed of convergence. A negative beta coefficient indicates the occurrence of convergence. The \(\beta \) coefficient can take values ranging from -2 to 0. The closer the \(\beta \) coefficient to -1, the faster the rate of convergence. If \(\beta = 0 \) or \(\beta = -2 \), no convergence is observed. \(\beta \) values from -1 to 0 indicate monotonous convergence, while oscillating convergence occurs for \(\beta \) values from -2 to -1.

The concept of sigma-convergence

Sigma-convergence focuses on the cross-sectional dispersion of returns on individual stock markets at a given moment of time. It thus identifies the degree of integration vis-à-vis the benchmark country achieved at that moment among the selected national (or sectoral) markets. Sigma-convergence increases as the sigma parameter falls to zero. If the cross-sectional dispersion converges to zero, full integration is achieved. To quantify sigma-convergence, a calculation is used of the (cross-section) standard deviation (\(\sigma \)), according to the formula:

\[
\sigma_t = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\log(Y_{it}) - \log(\bar{Y}_t) \right]^2}
\]

(2)

\[
\Delta R_t = \alpha + \beta_t R_{t-1} + \sum_{l=1}^{L} \gamma_l \Delta R_{t-l} + \epsilon_t
\]

where \(Y_{it} \) is the stock market return \(i \) at time \(t \), and \(\bar{Y}_t \) is the cross-section mean value of the return at time \(t \), and \(i \) stand for the individual countries or sectors (\(i = 1, 2, \ldots, N \)). For the purposes of this analysis, we use \(N = 2 \), i.e. we examine, at the national level or by sector, the evolution of sigma-convergence over time between our benchmark countries (the
US, euro area, and Japan) and China or Russia.\(^2\) By definition, \(\sigma\) takes only positive values. The lower the \(\sigma\) value, the higher the level of convergence. In theory, full integration is achieved when the standard deviation falls to zero, while high (several digit) \(\sigma\) values reflect a very low degrees of integration. For graphical illustration, the results are normalized over the full time period and filtered using a Hodrick-Prescott filter with the recommended weekly time series coefficient \(\lambda = 270400\).

Note that the two convergence indicators contain different information: beta-convergence does not imply sigma-convergence. There could be cases of beta-convergence along with sigma-divergence, of course.\(^3\) However, the essential idea here is that both aspects of convergence need to be assessed to make an inference about stock market integration. Beta- and sigma-convergence are estimated for the China and Russia on the national and sectoral level, in comparison with the three benchmark territories.

5 Empirical results

In this section, we examine whether, and how quickly, the national (and sectoral) stock markets of China and Russia are integrated with each other and with our three global benchmarks (the US, euro area, and Japan). To analyze stock market integration over time, our estimation period is divided into three sub-periods for beta-convergence, while in the case of sigma-convergence the estimations are by definition available at each moment of time. For beta-convergence, the sub-periods are September 1995 to December 1998, January 1999 to December 2008, and January 2007 to October 2010. The first sub-period includes the 1997 Asian crisis and the 1998 Russian crisis. The second sub-period could be described as a relatively tranquil episode. The last sub-period includes the 2008/2009 global financial crisis.

\(^2\) For country pairs, the calculated sigma values in each period are essentially equal to half the square of the return differential.

\(^3\) See Quah (1993) for details.
Beta-convergence

Table 3 shows the beta-convergence analysis results for the national stock markets. Equation (1) was estimated by OLS with robust standard errors. All beta-coefficients are negative and significant; hence there is convergence of stock market returns between China, Russia and the corresponding benchmarks. The values of the β coefficient are close to minus one, which means that the leveling of newly arising differences in stock market returns between the relevant national economy and the reference country can be labeled as fast. Indeed, the shock half-life, defined as the period during which the magnitude of a shock to the return differential between two countries becomes half of the initial shock, is between about one to two days, as indicated in the shaded areas in Table 3.4 A comparison of the sub-periods 1995–1998, 1999–2006 and 2007–2010 suggests no clear systematic pattern in the rate at which shocks to return differentials dissipate.

Table 3: Beta-convergence of national returns: coefficients and half-lives of shocks

<table>
<thead>
<tr>
<th>Country i</th>
<th>China vis-à-vis country i</th>
<th>Russia vis-à-vis country i</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>-0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Euro Area</td>
<td>-1.00</td>
<td>0.6</td>
</tr>
<tr>
<td>Japan</td>
<td>-0.90</td>
<td>2.1</td>
</tr>
<tr>
<td>Russia</td>
<td>-1.01</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Note: Estimations of equation (1) on weekly data. Half-lives of shocks (number of days) in shaded areas. All beta coefficients are statistically significant at the 5% level. Beta coefficient equaling -1 corresponds to full convergence. The half-life (H-L) of a shock to the return differential between two countries is a period during which the shock declines to one half of its initial value. Lower H-L values correspond to faster beta-convergence. Source: Authors’ calculations based on Thomson Reuters data.

Similarly, on the sectoral level (Table 4 in Appendix 1), the beta coefficients are close to minus one for most sectors; the corresponding shock half-lives vary between one and three days, and there are cases of both rising and declining half-lives over time that lack any clear systematic pattern. However, the sectoral dimension brings more variety into the results. In the case of China, the slowest speed of convergence in the return differential is observed for the sectors Electricity and Utilities (both with respect to the US) during the 2007–2010 period. The corresponding half-life of shocks is six days. For Russia, there are

4 The half-life is calculated as $H-L = \ln(0.5)/\ln(|\beta + 1|)$ and expressed in number of days.
two sectors characterized by the slowest convergence (both in the 1995–1998 period): Automobiles (15.9 days, vis-à-vis Japan) and Telecom (15.4 days vis-à-vis the United States and 11.6 days vis-à-vis the euro area).

A finding of beta-convergence on national and sectoral levels suggests that Chinese and Russian stock markets can hardly be labeled as “isolated.” Indeed, the shock half-life, typically much less than a week, means that there could not be persistent differences in returns among the stock markets of these two countries or with respect to the three global benchmarks. This finding is broadly in line with evidence on beta-convergence of stock markets at the national level for China and other Asian economies (Rizavi et al., 2011) and among European countries (Babecký et al., 2010, 2011). Studies of beta-convergence on the sectoral level also find higher heterogeneity of outcomes, among e.g. West European countries (Erdoğan, 2009) and New EU Member States (Babetskii et al., 2007). Note that a finding of beta-convergence is generally not granted for any type of financial markets. For example, regarding real estate markets, Srivatsa and Lee (2010) report cases of beta-divergence in rents and yields among the office markets in seven European capitals during 1982–2009.

Sigma-convergence

For each period of the sample, cross-section standard deviation (σ) was calculated according to formula (2) Sigma-convergence occurs if the cross-section deviation declines over time. We make four observation about Figure 8, which presents the sigma-convergence analysis for the Chinese and Russian national stock markets.

First, the Chinese and Russian stock markets share common dynamics; there is an increase in return dispersion ahead of the 1997 Asian crisis and the 1998 Russian, followed by a trend convergence that lasts through the mid-2000s. We then see a sharp increase in dispersion after 2006/2007 that corrects back toward convergence in 2009.

Second, the Chinese stock market had much lower dispersion with respect to the stock markets of the US, euro area, and Japan prior to 2001 than Russia (Figure 8a). This situation reverses around 2002. For most of 2002–2010, the dispersion of Chinese-Russian stock market returns is lower than in benchmark countries. The development of stock market indices and returns displayed in Figures 1 and 3 helps interpret this result. In the early
sample years, the 1997 Asian crisis and the 1998 Russian crisis were the main reasons for an increase in dispersion between the Chinese and Russian stock market returns. After 2002, the dynamics of Chinese and Russian stock market indices are characterized by substantial co-movement. We see a common rise in indices through 2003, moderation (and decline) in 2004, robust growth in 2006–2007, and a massive fall during the global crisis.

Third, a comparison of the left and right charts in Figure 8 shows the relative importance of the global crisis of 2008/2009 against the earlier Asian and Russian crises of 1997–1998. For China vis-à-vis the US, euro area, and Japan (Figure 8a), the dispersion of returns was somewhat higher in 2008 (1.50–1.60) compared to the 1997 Asian crisis (1.30–1.50). For Russia, the 2008 global crisis of 2008 is accompanied by much lower dispersion (1.15–1.33) than during the 1998 Russian crisis (1.85–1.90).

Fourth, the Chinese stock market is characterized at the end of our sample (October 2010) by the lowest dispersion with respect to the stock markets of Russia (0.39) and the US (0.53), followed by the euro area (0.82) and Japan (0.88). The Russian stock market has an overall lower dispersion (i.e. higher sigma-convergence) with all reference countries, in particular the US (0.18) and euro area (0.30), followed by China (0.39) and Japan (0.48).

Figure 8 Sigma-convergence on the national level (Sept. 1995 to Oct. 2010)

(a) China vis-à-vis other countries (b) Russia vis-à-vis other countries

Note: Trend values are obtained by means of the H-P filter with the smoothing parameter $\lambda = 270 400$.
Source: Authors’ calculation based on Thomson Reuters data.
Figures 9 and 10 show the sigma-convergence analysis of Chinese and Russian stock markets respectively on the sectoral level, in 1995–2010. The results are illustrated for sixteen sectors in the case of China and the three reference countries (the United States, euro area and Japan), while thirteen sectors are available for the Russian stock market (the data are unavailable for Industrials, Real Estate and Software), and the periods for which Russian sectoral data are available are shorter. We offer four observations on the development of sectoral σ.

First, all sectors have been affected by the financial crisis of 2008/2009. There is also a clear evidence of substantial impacts of the previous (Asian and Russian) crises and the burst of bubbles (for example, the dot-com bubble) preceding the unfolding of crisis events in 2008. However, the relative importance of the previous and recent crisis differs across sectors. At the national level, the Russian stock market experienced higher dispersion in 1998 compared to 2008. At the sector level, however, one can identify industries that were affected to a comparable degree by both crises (e.g. Airlines and Automobiles). The impact of the 2008 crisis on dispersion was also much milder compared to the 1998 crisis for several sectors in Russia (e.g. Banks, Financials, and Telecom).

Second, the magnitude of the dispersion varies substantially across sectors. Overall, the most integrated sectors (i.e. lowest dispersion) appear to be Software for China, and Oil & Gas and Telecom for both China and Russia). An interesting sector-specific example is the Automobiles in the case of Russia (Figure 10). During the 2008 crisis, the lowest dispersion of sectoral returns was observed between Russian and Chinese markets (1.15), followed by the pairs Russia-US (1.29), Russia-euro area (1.37) and Russia-Japan (1.54). Arguably a strong decline in stock markets indices in the automobile industry in both China (Figure 4) and Russia (Figure 5) contributed to the observed synchronicity in stock market returns between these two countries.

Figures 9 and 10 present evidence of sigma convergence on the level of sectors: cross-sectional dispersions of returns exhibit a downward-sloped trend over time; the effects of the 2008/2009 crisis fade out by the end of 2010. Heterogeneity of the results at the sectoral level indicates potential for diversification of risk.
Figure 9
Sigma-convergence of China on the sectoral level

Note: Trend values are obtained by means of the H-P filter with the smoothing parameter $\lambda = 270 400$.
Source: Authors’ calculation based on Thomson Reuters data.
Figure 10 Sigma-convergence of Russia on the sectoral level

Note: Trend values are obtained by means of the H-P filter with the smoothing parameter $\lambda = 270,400$. In the case of Russia, data for three sectors (Industrials, Real Estate and Software) are unavailable.

Source: Authors’ calculation based on Thomson Reuters data.
Our finding of sigma-convergence between Russian and Chinese stock markets, as well as with respect to the stock markets of the US, euro area, and Japan in 1995–2010 corroborates with the similar conclusion of sigma-convergence among the stock markets of selected EU member states with respect to the US and euro area over the comparable period (Babecký et al., 2010, 2011). There is recent evidence for China of sigma-convergence among China and other Asian stock markets in 1999–2009 (Rizavi et al., 2011). This result, however, is sensitive to sample length. In fact, the Asian stock markets are characterized by sigma-divergence during 2004–2009. The assessment of sigma-convergence thus substantially depends on the time horizon considered. The results of our study illustrate that the sub-sample of 2004–2009 is characterized by sigma-divergence among China, Russia, and the three global benchmarks. This was a period of rising dispersion of returns among the analyzed countries: rising asset prices initially drive dispersion, then a fall in stock market indices during the global crisis. However, extending the sample to 1995–2010 leads to an overall finding of sigma-convergence as the effects of the 2008/2009 crisis fade and the downward-sloped trend in return dispersion re-emerges. A declining trend in return dispersion (i.e. sigma-convergence) is particularly clear-cut when considering an even longer period such as the 1973–2008 observation period at both national and industry levels for the stock markets of seven Western European countries reported in Erdogan (2009).

Why do we observe sigma-convergence in stock market returns worldwide? Apparently globalization (and related deepening of economic and financial links) is a key factors for sigma-convergence of such distinct stock markets as those of China, Russia, the euro area, EU countries outside the euro area, the US, and Japan. Quantification of the determinants of global convergence of stock market returns could be a prospective avenue for future research.

The evidence of sigma-convergence, on the one hand, means decreasing opportunities for risk diversification. On the other hand, as our results suggest, there is still a room for risk sharing in the short- to medium-term horizon, when sigma-divergence could happen. This was in particular the period from 2004 to 2009, characterized by substantial sigma-divergence. A non-negligible potential for risk-sharing also exists at the level of industries as sectoral stock markets do not necessarily follow the dynamics of national indices.
6 Conclusions

In this paper, we investigated financial integration of stock markets of China and Russia in comparison with the United States, the euro area, and Japan at both national and sectoral levels from September 1995 to October 2010 using weekly averages of daily indices. We tested for an existence and analyzed the dynamics of stock market integration based on a price-based approach. Our measures of financial integration were built upon the two complementary concepts: beta-convergence (measuring the rate at which differences in returns are eliminated between the selected stock markets) and sigma-convergence (measuring cross-sectional dispersion of return differentials at a given moment).

We find evidence of beta-convergence of stock market return differentials between China and Russia, as well as with respect to the US, euro area, and Japan. Convergence is observed at both national and sectoral levels. Beta-convergence means that return differentials are not persistent. That is, stock market returns in China or Russia cannot permanently deviate from the returns in other analyzed countries. The results of beta-convergence could be alternatively formulated in more intuitive terms of shock half-lives. Our results imply that stock market shocks, which are represented by deviations of returns vis-à-vis benchmark countries, dissipate with a half-life of about one to three days.

We do not find a systematic effect of the 2008/2009 crisis on beta-convergence nor clear sectoral patterns. The rate at which shocks dissipate can be labeled as fast, both between China and Russia and with respect to our global benchmarks. This suggests that stock markets offer limited arbitrage possibilities, contrary to, for example, real estate markets where beta-divergence of rents and yields is not uncommon (Srivatsa and Lee, 2010).

Contrary to beta-convergence, sigma-convergence clearly changes over time and the effects of the recent (and past) financial crises are well tracked. We find overall evidence of sigma-convergence in 1995–2010 at both national and sectoral levels. However, the assessment of sigma-convergence critically depends on the period analyzed. For example, our results indicate sigma-convergence of the Chinese and Russian stock markets with respect to the world markets after the 1997 Asian crisis and the 1998 Russian crisis until about 2005/2006, when we see sharp sigma-divergence and a return to convergence after the 2008/2009 crisis.
Sigma-convergence exhibits strong sector-specific patterns. At the sectoral level in particular, the difference in sigma-convergence becomes pronounced during crisis episodes, suggesting potential for diversification of risk across sectors.

The answer to the question of whether Chinese and Russian stock markets become more integrated among themselves or with respect to the global benchmarks ultimately depends on the assessment of sigma-convergence and, thus, the period considered. This is because in terms of beta-convergence, we do not find any systematic differences. Shocks to return differentials dissipate rapidly, with half-lives less than a week. The assessment of overall convergence is therefore driven by the sigma-convergence results.

In terms of sigma-convergence, we find that the Chinese stock market is more integrated with the US, euro area, and Japanese stock markets than with the Russian stock market during 1998–2000. The situation reverses from the second half of 2001 until the end of our sample in October 2010. During that period, return dispersion between the Chinese and Russian stock markets was lower than between the Chinese-US, Chinese-euro area, and Chinese-Japanese stock markets. The reasons for this finding require examination of stock market indices and their returns. In 1998–2000, when Russia was largely affected by the 1998 crisis, its stock markets experienced substantially different dynamics compared to the stock markets in China and the three benchmarks. On the other hand, China’s WTO in December 2001 membership enhanced similarity in stock market dynamics between China and Russia (that is lower return dispersion) than with respect to the US, euro area, and Japan. In the aftermath of the 2008/2009 crisis, there is also an indication of rising sigma-convergence between the Chinese and US stock markets, although these are only just marginally lower than for the Chinese-Russian duo.

From the viewpoint of Russia, its stock market integration was higher with the US, Western Europe and Japan during 1996–1997 than with China, as Chinese stock markets were affected by the Asian crisis. Since about 1998 through 2006 the Russian-Chinese stock market return dispersion was somewhat lower compared to the cases of Russia versus the three global benchmarks. Starting from the second half of 2006 and to mid-2010, the lowest dispersion emerged between the Russian and euro area stock markets, reflecting strong bilateral exchanges. Sectoral patterns of sigma-convergence bring more diversity. For some sectors, (e.g. Automobiles after 2008), the highest degree of sigma-convergence is observed between the Russian and Chinese stock markets, followed by such pairs as Russia-Japan, Russia-euro area and Russia-US, which stresses the role of sector-specific
factors. It can be also that the low trading volumes in many sectors in the Russian stock markets may lead to spurious correlations for some sectors.⁵

Returning to the comparison of our results with findings from the literature discussed at the end of the previous section, one salient fact emerges: a global convergence in stock market returns over the past decades measured in terms of beta- and sigma-convergence. A finding of convergence among stock markets of Asian economies, EU countries, the US, China and Russia suggests the presence of common global factors.

One should also keep in mind the limitations of the considered price-based measures of financial integration. Such price-based measures, present the results in terms of stock market convergence (or synchronicity) which only characterize an upper bound of the underlying financial integration. It remains a challenge for future research to understand whether the finding of stock market convergence is driven by (1) effects of global shocks (whose incidence for the national economies becomes stronger in the globalized world), (2) changes in asset pricing (which is empirically difficult to operationalize), or (3) changes in country (sector) risk premia.

⁵ We thank Laura Solanko for this suggestion.
References

Appendix 1

Table 4 Beta-convergence of sectoral returns: coefficients and half-lives of shocks

<table>
<thead>
<tr>
<th>Sector</th>
<th>Country</th>
<th>China vis-à-vis country i</th>
<th>Russia vis-à-vis country i</th>
<th>Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airlines</td>
<td>United States</td>
<td>-1.12</td>
<td>2.3</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.13</td>
<td>2.3</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.09</td>
<td>0.9</td>
<td>-0.96</td>
</tr>
<tr>
<td>Automobiles</td>
<td>United States</td>
<td>-0.98</td>
<td>1.3</td>
<td>-1.03</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.09</td>
<td>1.3</td>
<td>-1.20</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-0.98</td>
<td>1.3</td>
<td>-1.06</td>
</tr>
<tr>
<td>Bank</td>
<td>United States</td>
<td>-0.80</td>
<td>2.9</td>
<td>-1.05</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-0.82</td>
<td>2.9</td>
<td>-1.01</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-0.83</td>
<td>2.8</td>
<td>-0.98</td>
</tr>
<tr>
<td>Beverages</td>
<td>United States</td>
<td>-1.14</td>
<td>2.5</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.14</td>
<td>2.4</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.14</td>
<td>2.4</td>
<td>-0.99</td>
</tr>
<tr>
<td>Brewers</td>
<td>United States</td>
<td>-1.17</td>
<td>2.7</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.17</td>
<td>2.4</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.13</td>
<td>2.4</td>
<td>-0.96</td>
</tr>
<tr>
<td>Chemicals</td>
<td>United States</td>
<td>-1.09</td>
<td>2.0</td>
<td>-0.91</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.06</td>
<td>1.8</td>
<td>-0.88</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.13</td>
<td>1.3</td>
<td>-0.92</td>
</tr>
<tr>
<td>Electricity</td>
<td>United States</td>
<td>-1.22</td>
<td>3.2</td>
<td>-1.05</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.28</td>
<td>3.8</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.25</td>
<td>3.5</td>
<td>-1.00</td>
</tr>
<tr>
<td>Financials</td>
<td>United States</td>
<td>-1.07</td>
<td>1.8</td>
<td>-1.08</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.02</td>
<td>1.3</td>
<td>-1.05</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.17</td>
<td>1.7</td>
<td>-1.07</td>
</tr>
<tr>
<td>Industrials</td>
<td>United States</td>
<td>-1.14</td>
<td>2.5</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.13</td>
<td>2.3</td>
<td>-0.98</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.17</td>
<td>2.7</td>
<td>-0.93</td>
</tr>
<tr>
<td>Mining</td>
<td>United States</td>
<td>-1.13</td>
<td>2.3</td>
<td>-1.11</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.17</td>
<td>2.7</td>
<td>-1.08</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.17</td>
<td>2.7</td>
<td>-1.08</td>
</tr>
<tr>
<td>Oil & Gas</td>
<td>United States</td>
<td>-1.20</td>
<td>3.0</td>
<td>-1.18</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-0.76</td>
<td>3.4</td>
<td>-1.12</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.19</td>
<td>2.9</td>
<td>-1.18</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>United States</td>
<td>n.a.</td>
<td>n.a.</td>
<td>-1.10</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>n.a.</td>
<td>n.a.</td>
<td>-1.10</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>n.a.</td>
<td>n.a.</td>
<td>-1.10</td>
</tr>
<tr>
<td>Real Estate</td>
<td>United States</td>
<td>-1.06</td>
<td>1.7</td>
<td>-1.01</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-0.99</td>
<td>1.1</td>
<td>-1.03</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.08</td>
<td>1.9</td>
<td>-1.01</td>
</tr>
<tr>
<td>Software</td>
<td>United States</td>
<td>-0.94</td>
<td>1.7</td>
<td>-1.11</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-0.93</td>
<td>1.8</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.08</td>
<td>1.7</td>
<td>-0.96</td>
</tr>
<tr>
<td>Telecom</td>
<td>United States</td>
<td>-1.08</td>
<td>1.7</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.04</td>
<td>1.5</td>
<td>-0.98</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.08</td>
<td>1.9</td>
<td>-1.00</td>
</tr>
<tr>
<td>Utilities</td>
<td>United States</td>
<td>-1.23</td>
<td>3.3</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>-1.27</td>
<td>3.7</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td>Euro Area</td>
<td>-1.24</td>
<td>3.4</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

Note: Estimations of equation (1) on weekly data. Half-lives of shocks (number of days) in shaded areas. All beta coefficients are statistically significant at the 5% level. A beta coefficient of -1 corresponds to full convergence. The half-life (H-L) of a shock to the returns differential between two countries is the period in which the shock declines to half its initial value. A lower H-L value means faster beta-convergence.

Source: Authors’ calculations based on Thomson Reuters and Bloomberg LP data.
Figure 11 Total number of listed domestic companies (1996–2009)

(a) China with benchmark countries

(b) Russia with benchmark countries

Figure 12 Stocks traded, total value (as a percentage of GDP, 1996–2009)

(a) China with benchmark countries

(b) Russia with benchmark countries

Figure 13 Stocks traded, turnover ratio (as a percentage, 1996–2009)

(a) China with benchmark countries

(b) Russia with benchmark countries

2012

No 1 Walid Marrouch and Rima Turk-Aris: Bank pricing under oligopsony-oligopoly: Evidence from 103 developing countries

No 2 Ying Fang, Shicheng Huang and Linlin Niu: De facto currency baskets of China and East Asian economies: The rising weights

No 3 Zuzana Fungáčová and Petr Jakubík: Bank stress tests as an information device for emerging markets: The case of Russia

No 4 Jan Babecký, Luboš Komárek and Zlatuše Komárková: Integration of Chinese and Russian Stock Markets with World Markets: National and Sectoral Perspectives