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1. Introduction
Many financial variables (such as dividend yield, dividend-price ratio, price-earnings ratio,
term spread, default spread, etc) have been used to predict stock returns. However, empirical
studies have demonstrated that the evidence for the predictive ability of financial variables is
ambiguous. Specifically, empirical results have been highly related to the persistence of
financial variables and the non-constant impact of financial variables on stock returns. This
paper focuses on the dividend yield of the Dow Jones Industrials Average (DJIA) index and
investigates whether the adjusted dividend yield, which removes the persistence and
structural change simultaneously, acts as a predictor of future stock returns for the DJIA
index.

Researchers face two important difficulties when investigating stock return predictability.
The first difficulty is that the stationarity of the dividend yield or dividend-price ratio will
affect the explanatory power of dividend yield on the corresponding stock return. Although
previous studies support the evidence that an increase in dividend yield is conducive to
raising stock prices (Fama and French, 1988; Schwert, 1990), some recent studies have
shown that whether or not the dividend yield is stationary plays a vital role in determining the
intensity of predictability. For example, Lewellen (2004) points out that the predictive ability
of dividend-price will decrease when there is no difference in dynamics between the dividend
yield of the NSYE index and the unit root series. Park (2010) proves that the effect of
dividend-price on stock returns becomes insignificant if the dividend yield experiences
non-stationary dynamics. Campbell and Yogo (2006) find that the dividend yield of the
S&P500 index does not have a significant positive impact on stock returns as the dividend
yield follows a non-stationary process.

The second difficulty is in regard to the stability of parameter estimates representing the
predictive ability of dividend yield. When the selected sample period is longer, the
relationship between dividend yield and stock return may be dramatically changed. For
example, Pesaran and Timmermann (2002) show that the process of parameter estimate for
dividend yield shows dramatic changes when the rolling window method is utilized. Pay and
Timmermann (2006) provide evidence as to the unstable predictability of dividend yield; that
is, the impact of dividend yield on stock return differs among subsamples. Similarly, Rapach
and Wohar (2006) demonstrate that the magnitude of the predictive ability of dividend yield
is different among sub-periods, divided according to break dates identified by statistical
procedure.

Previous literature concerning the stationarity of dividend yield focuses on the unit root
tests. The traditional unit root tests, such as the Augment Dickey Fuller test (ADF), the
Phillips Perron test (PP) and the Kwiatkowski, Phillips, Schmidt and Shin test (KPSS), are
not suitable when data undergo structural breaks (Perron, 1989). To overcome this drawback,
this paper adopts the Markov regime switching technique, which allows structural changes in
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intercept, autoregressive terms and variance when investigating the local and global
stationarity of dividend yield. Specifically, the regime-switching mean-reversion specification
is used to detect the existence of stationarity or explosiveness in each regime. Whether or not
the dividend yield is locally stationary is determined by the speed of reversion to the
regime-dependent mean. The second-order stationarity condition derived by Francq and
Zakoian (2001) is used to verify the existence of global stationarity.

In order to alleviate the possibility that the predictive ability of the dividend-price ratio
may be misestimated, Lettau and Nieuwerburgh (2008) use the demeaned dividend-price
ratio, which removes the regime switches in mean to explore the predictive ability of the
demeaned variable. They find evidence in favor of the existence of the predictive ability of
the demeaned variable. However, Park (2010) uses the method of Lettau and Nieuwerburgh
(2008) to investigate whether the demeaned dividend yield can predict stock returns for many
stock markets. Park (2010) finds that predictive ability can not be preserved for some markets
even if a high persistence arising from regime switches in mean has been extracted. Park
(2010) further demonstrates that the persistence of dividend-price ratio is more important
than the regime switches. To take into consideration the insignificance of predictive ability
due to high persistent process and structural breaks, this paper adopts a filtered approach
extended from the method of Lettau and Nieuwerburgh (2008) to simultaneously remove the
possible high persistence and structural changes. To the best of my knowledge, this is the first
paper to investigate the local and global stationarity of dividend yield before analyzing stock
return predictability.

This paper also investigates the predictive ability of filtered dividend yield and performs
a test to determine whether the effect of filtered dividend yield on stock return is fixed; the
structural break test of Bai and Perron (2003) is used.

The remainder of this paper is constructed as follows. Section 2 presents the
regime-switching mean-reversion model and discusses the global stationary condition.
Section 3 reports the estimation results. The impacts of dividend yield and filtered dividend
yield on stock returns are examined in Section 4. The conclusions are presented in the final
section.

2. Empirical Specification and Stationarity
To investigate whether the dividend yield is stationary and to describe its dynamics at every
time period, this paper examines the stationarity from two different angles: local stationarity
and global stationarity. The regime-switching mean-reversion model derived from the
traditional ADF test model is used to explore the local stationarity. Following Hall et al.
(1999), Raybaudi et al. (2004), Kanas and Genius (2005) and Kanas (2008), the empirical
specification can be expressed as follows:
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where DYt is the dividend yield at time t ,  is the difference operator, ts is an

unobservable state variable with k different regimes and tu is the normally distributed

random error with mean 0 and variance 1. Note that all parameters are related to the state

variable, except for 2 . The parameter i refers to the intercept term in regime i . The

scale parameter 1 is normalized to 1. Consequently, 2 is the volatility in regime 1. The

coefficient , ti s denotes the autoregressive coefficient of order i under the regime ts .

The regime switching mean-reversion effect is captured by the parameter
ts . If mean

reversion parameter 0
ts  , the dividend yield shows a mean-reversion pattern. The smaller

the value of
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 , the higher the speed of convergence towards the corresponding

regime-mean.
The transition probabilities of the state variable can be represented as:
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Even though parameter
ts shows the evidence of local stationarity, the global

stationarity of the series itself is still unknown. The criterion derived by Francq and Zakoian
(2001) is utilized to examine whether or not the dividend yield is globally stationary.
Equation (1) is rewritten as a regime-switching autoregressive model of order p+1:
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Francq and Zakoian (2001) show that the series is a second-order stationary process if
the largest eigenvalue of matrix M is smaller than 1.

3. Empirical Results
3.1 Data
The monthly stock price and dividend yield for the DJIA index are discussed in this paper.
They are collected from the Datastream database. The time series data for dividend yield is
available from March 1978. The sample period selected here is from March 1978 to July
2007.1

In the empirical literature, some studies, including Campbell and Yogo (2006), Rapach
and Wohar (2006) and Lettau and Nieuwerburgh (2008), use the logarithm of financial

1Many studies use longer sample periods to explore the effect of dividend yield on stock returns. Based on the
Datastream database, the available data for the dividend yield of the DJIA index begins at March 1978. Hence,
the sample period is shorter. Similarly, Park (2010) uses the Datastream database and has a shorter sample
period.
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variable, while other studies, such as Fama and French (1988), Paye and Timmermann (2006),
Park (2010), Becker et al. (2010), use the level of financial variable. The time series plots for
stock returns, dividend yield and logarithm of dividend yield are illustrated in Figure 1. Table
1 reports the summary statistics for the variables used in this paper. The autocorrelation
coefficients for dividend yield and its logarithm are similar, and their correlation is 0.981. As
shown in Figure 1, the time series paths for the two variables show similar patterns. Due to
the similar patterns between dividend yield and the logarithm of dividend yield, this paper
only focuses on the behavior of dividend yield. The autocorrelation in stock returns is not
evident, but the dividend yield shows very strong autocorrelation. In terms of unit root tests
(ADF, PP and KPSS), the stock return is stationary, but the corresponding dividend yield is
non-stationary.
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Figure 1 Index, Return and Dividend Yield

Determining how to choose the number of states and the lags of autoregressive
parameters simultaneously is a troublesome problem. Psaradakis and Spagnolo (2006)
confirm that the Akaike information criterion (AIC) is an easy and useful method to use to
solve this problem. They also demonstrated that the AIC has a better identification

720



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 715-729

performance than either the Bayesian information criterion (BIC) or the Hannan-Quinn
criterion (HQC). In this paper, the maximum numbers for state and lag term are 3 and 5,
respectively.2 Table 2 shows the criteria. When 3k  and 0p  , the regime-switching

mean-reversion specification has the smallest AIC. The BIC and HQC determine that the
regime switching model with 2k  and 0p  is the best specification. There is no

consistent result.

Table 1 Summary statistics

Stock Return Dividend Yield Log(Dividend Yield) Adjusted Dividend Yield

Panel A: autocorrelation

1 0.006 0.988 0.990 0.840

4 -0.055 0.958 0.963 0.650

Panel B: unit root tests
ADF -18.547*** -2.028 -1.934 -4.986***
PP -18.549*** -2.055 -1.879 -6.457***
KPSS 0.059 0.361*** 0.268*** 0.089

Notes: *** indicates significance at 1%.

Table 2 Values for AIC, BIC and HQ

p=0 p=1 p=2 p=3 p=4 p=5

Panel A: AIC

k=2 -1.107 -1.096 -1.086 -1.076 -1.070 -1.063

k=3 -1.116 -1.099 -1.086 -1.073 -1.057 -1.050

Panel B: BIC

k=2 -1.019 -0.986 -0.955 -0.922 -0.895 -0.865

k=3 -0.973 -0.924 -0.877 -0.831 -0.782 -0.742

Panel C: HQC

k=2 -1.072 -1.052 -1.034 -1.015 -1.001 -0.984

k=3 -1.059 -1.029 -1.003 -0.977 -0.948 -0.928

This paper further adopts the regime classification measure (RCM) of Ang and Bakaert
(2002) to compare the fitting performance for different specifications. The measure can be
shown as:

2The reason that the maximum state number is 3 will be provided in subsection 3.2.
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where ( | )t TP s j  are the smoothed probabilities, and M is the number of sample
observations. The RCM is 0.006 for the specification where 3k  and 0p  and is 5.641
for the specification where 2k  and 0p  . This result indicates that three-state

specification is better than two-state specification; hence, this paper only focuses on the
three-state model.

Table 3 Estimation results

Parameter Regime 1 Regime 2 Regime 3

 1.142*** 0.171** 0.060**

(0.308) (0.076) (0.026)

 -0.188*** -0.051*** -0.032***

(0.050) (0.019) (0.012)
2 0.061*** 0.061*** 0.061***

(0.014) (0.014) (0.014)

 1.000 0.687*** 0.330***

 (0.096) (0.044)

Transition probability matrix

Regime 1 0.962*** 0.016 0.000

(0.029) (0.013) (---)

Regime 2 0.038 0.969*** 0.011

(---) (0.019) (---)

Regime 3 0.000 0.015 0.989***

(---) (---) (0.008)

Unconditional mean 6.074 3.353 1.882

Unconditional standard deviation 0.247 0.169 0.081

Expected duration 26.233 32.584 95.147

Unconditional probability 0.155 0.359 0.486

Log-likelihood function 209.371

AIC -1.116

Notes: Values reported in parentheses are standard errors. *, ** and *** indicate significance at
10%, 5% and 1%, respectively.
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3.2 Estimation Results
Table 3 shows the quasi-maximum likelihood results for the regime-switching
mean-reversion model. Three different types of dynamics in dividend yield are shown. The
unconditional mean is 6.074 for regime 1, 3.353 for regime 2 and 1.882 for regime 3. The
standard error is 0.247 for regime 1, 0.169 for regime 2 and 0.081 for regime 3. Accordingly,
regime 1 can be classified as a high dividend yield and high volatility regime. Regime 2 fits a
medium dividend yield and moderate volatility regime. Regime 3 has the properties of low
dividend yield and low volatility.

The transition probabilities for the same regime occurring are very close to 1. It is 0.962
for regime 1, 0.969 for regime 2 and 0.989 for regime 3, showing that the regime persistence
for regime 3 is strongest. The average durations for regimes 1, 2 and 3 are about 27, 33 and
96 months, respectively. The transition probability for 13p and 31p is zero, indicating that

the dynamics cannot shift between regimes 1 and 3.
Figure 2 displays the smoothed probabilities. The periods for the different regimes are

listed in Table 4. The two periods 1978:m6-1982:m9 and 1987:m11 belong to regime 1. The
four periods 1978:m4-1978:m5, 1982:m10-1987:m10, 1987:m12-1992:m8 and 2005:m7-
2005:m7 are classified as regime 2. The remaining dates are identified as regime 3.
Furthermore, the proportions of regimes 1, 2 and 3 are 15.05%, 35.80% and 49.15%,
respectively, and they are close to the unconditional probabilities (15.5% for regime 1, 35.9%
for regime 2 and 48.6% for regime 3).
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Figure 2 Smoothed Probabilities

This paper does not allow four or more states because three states do not mean that there
are only two structural change points. In the 3-state regime switching model, there are 8
sub-periods, implying that 7 break points are observed. As discussed above, two transition
probabilities are zeros in the 3-state model. When a 4-state structure is allowed, many
transition probabilities will be zero. Consequently, archiving convergence is an unfeasible
task.
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Table 4 The Periods for Each Regime

Regime Periods

Regime 1 1978M06-1982M09
1987M11

Regime 2 1978M04-1978M05
1982M10-1987M10
1987M12-1992M08
2005M07-2005M12

Regime 3 1992M09-2005M06
2006M01-2007M07

An interesting problem worth investigating is why the structural change points found in
this paper differ from those identified by the Rapach and Wohar (2006).3 Rapach and Wohar
(2006) investigate the dividend yield of the S&P500 for the period spanning from March
1965 to April 2000 and find a structural change point in March 1990. The first possible
reason for the difference is that a different sample and sample period are selected. This paper
uses the DJIA index, while Rapach and Wohar (2006) use the S&P500. Moreover, the sample
size is smaller in this paper. The second reason is that the mechanism to determine structural
changes is different. In the study of Rapach and Wohar (2006), structural changes are
determined by the sequential examination of the sum of the squared errors of different
partitions. Structural changes are determined by the transition probabilities in this paper.
When the number of states is restricted to 2, one structural point is observed. The break data
occurs in January 1992 and is close to that identified by Rapach and Wohar (2006).4

This paper turns to the issue of regime-switching mean reversion. The estimate of the
mean-reversion parameter is negative and significant at the 1% significance level for each
regime, showing an indication of regime-switching mean reverting behavior. Furthermore,
the adjustment speed of mean reversion is asymmetric and hinges greatly on the level and
volatility of dividend yield. The magnitude of mean-reversion is largest in regime 1 and
smallest in regime 3.

Although mean-reversion behavior of dividend yield has been established, until now the
global behavior of dividend yield has been unknown. The global stationarity condition will be
examined now. This paper finds that the dividend yield follows a globally stationary process
as the largest eigenvalue of matrix M is 0.068 and is less than 1, which is contrary to the
result obtained using traditional unit root tests. In summary, if the series has structural
changes in mean, autoregressive coefficients and variance as well as being global stationary,

3The author thanks an anonymous referee for providing this suggestion.
4 The period 1978:m3-1991:m12 is classified as the high-mean and high-variance state. The period
1992:m1-2007:m7 is classified as the low-mean and low-variance state. Empirical results are available upon
request.
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the traditional unit root tests for stationarity may draw incorrect conclusions.

3.3 Time-varying transition probabilities
In Equation (3), each transition probability is constant. This paper allows the transition
probabilities to change with the business variables by extending the specification of Diebold
et al. (1994), Filardo (1994) and Kanas (2008).5 The transition probability matrix is as
follows:

11, 21, 31, 11, 21, 31,

12, 22, 32, 11, 13, 21, 23, 31, 33,

13, 23, 33, 13, 23,

1- - 1- - 1- -
t t t t t t

t t t t t t t t t t

t t t t t

P P P

P P P P

P P P

    
 

        
     33,t

 
 
 
  

(6)

where , ij ij t-1=F(a +b z )ij t . Here, F represents the cumulative distribution of the standard

normal distribution and t-1z is the explanatory variable. The explanatory variable will be the

difference of the federal fund rate and the Chicago Fed National Activity Index (CFNAI) of
Federal Reserve Bank of Chicago. This first variable can be treated as the monetary policy
instrument while the latter one represents the business condition.6

Table 5 reports the effects of macroeconomic variables on the transition probabilities. It
is clear that neither the difference of federal fund rate nor the CFNAI can explain the process
of transition probabilities.

4. Stock Return Predictability
Although the dividend yield is a stationary series, there exists very strong persistence in each
regime. The autoregressive coefficient is 0.812 in regime 1, 0.949 in regime 2 and 0.968 in
regime 3. As emphasized in the introduction, the inconsistent conclusions regarding stock
return predictability can be attributed to a high degree of persistence. This paper employs the
concept derived by Lettau and Nieuwerburgh (2008) to alleviate the problem of high
persistence. The adjusted approach is given by

t t t
*
t t t t t

t t t t

DY E(DY|s =1) s 1

DY DY E(DY|s =2) s 2

DY E(DY|s =3) s 3

t if

if

if


 
 

－

－

－
(7)

Similar to the model of Lettau and Nieuwerburgh (2008), the specification used in this

paper is a generalized version of the regime switching model. Specifically, when , =0
tj s and

5The author thanks an anonymous referee for providing this suggestion.
6Many different variables can be used to represent monetary policy and business conditions. For simplicity, only
two common variables are adopted here.
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=1
ts , Equation (4) is collapsed to the specification of Lettau and Nieuwerburgh (2008).

Table 5 Estimation results for the time-varying transition probabilities

Parameter Difference of Federal Fund Rate CFNAI

11a 1.510**
(0.694)

1.796***
(0.412)

13a -5.226
(51299.930)

-5.736
(312046.909)

21a -2.528**
(0.994)

-2.804
(2.196)

23a -2.237***
(0.426)

-2.082***
(0.334)

31a -5.050
(11252.485)

-5.738
(415908.134)

33a 2.431***
(0.621)

2.532***
(0.684)

11b 0.720
(0.685)

0.055
(0.307)

13b -0.070
(29678.080)

0.012
(21588.915)

21b 2.257
(2.625)

0.815
(1.614)

23b -0.020
(2.118)

0.059
(0.508)

31b -0.010
(45709.572)

-0.006
(169574.112)

33b -2.153
(2.955)

-0.630
(0.980)

Notes: Values reported in parentheses are standard errors. ** and *** indicate significance at
5% and 1%, respectively.

The summary statistics and unit root tests for the adjusted dividend yield are shown in
the last column of Table 1. Compared to the original dividend yield, the autocorrelation
greatly declines for the adjusted series. The 4th-order autocorrelation coefficient is 0.958 for
the original series, and it is simply 0.650 for the adjusted series. Moreover, all of the unit root
tests find that the adjusted dividend yield is stationary.

Next, this paper examines whether the adjusted dividend yield can predict stock returns
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by incorporating the possible instability of parameters.7 The multiple structural change
model of Bai and Perron (2003) is:

0 1 1 , 1, 2, ...,t t td d X mR       － (8)

where tR is the stock return, -1tX refers to the adjusted dividend yield and m refers to the
number of structural changes. The sup ( 1| )TF   statistic is proposed to test the null
hypothesis 0 : breaksH  against the alternative hypothesis 1 : 1 breaksH  . Moreover,

Bayesian information criterion (BIC) and the modified Schwarz criterion (LWZ) are also
criteria to determine the number of breaks.

It is obvious from Table 6 that the all statistics support the hypothesis of no structural
change. Moreover, the adjusted dividend yield has a significant positive effect on stock
returns. Table 7 reports the results for the original dividend yield. The original dividend yield
cannot forecast stock returns. This is consistent with the findings of previous studies, such as
Goyal and Welch (2003), Lewellen (2004) and Ang and Bekaert (2007).

Table 6 Results for the adjusted dividend yield

Panel A: information criterion
m=0 m=1 m=2 m=3 m=4 m=5

BIC 2.830 2.871 2.887 2.928 2.954 2.988
LWZ 2.836 2.940 3.020 3.124 3.213 3.311

Panel B: sup F test
(2 |1)TF (3 | 2)TF (4 | 3)TF (5 | 4)TF

statistics 7.376 2.677 10.291 0.000

Panel C: result for stock return predictability

1d 1. .( )S E d 2R
parameter 1.308*** 0.367 4.132%

Notes: *** indicate significance at 1% level.

5. Conclusions
This study provides evidence that the dividend yield of the DJIA index is not only a regime
switching mean reversion, but is also global stationary. The regime switching mean reversion
signifies that the convergence speed is different in each regime. The convergence speed is
highest in the regime with the highest mean and highest variance. In addition to the existence
of local stationarity, the dividend yield is also globally stationary in terms of the covariance
stationary test. Compared to the insignificance of the original dividend yield, the adjusted
dividend yield, which removes structural change and persistence characteristics, can predict

7The author thanks an anonymous referee for providing this suggestion.
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future stock returns.

Table 7 Results for the original dividend yield

Panel A: information criterion
m=0 m=1 m=2 m=3 m=4 m=5

BIC 2.871 2.896 2.909 2.942 2.973 3.007
LWZ 2.877 2.965 3.042 3.138 3.232 3.330

Panel B: sup F test
(2 |1)TF (3 | 2)TF (4 | 3)TF (5 | 4)TF

statistics 0.166 0.021 0.002 0.019

Panel C: result for stock return predictability

1d 1. .( )S E d 2R
parameter 0.098 0.149 0.123%
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