Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

- GeoDA CENTER
FOR GEOSPATIAL ANALYSIS
AND COMPUTATION

ARIZONA STATE UNIVERSITY

Working Paper 2008-12

Dynamic Manipulation of Spatial Weights Using Web Services

Sergio J. Rey, Luc Anselin, and Myunghwa Hwang

https://core.ac.uk/display/6654329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic Manipulation of Spatial Weights Using Web Services*

Sergio J. Rey
GeoDa Center
School of Geographical Sciences
Arizona State University

Luc Anselin
GeoDa Center
School of Geographical Sciences
Arizona State University

Myunghwa Hwang
GeoDa Center
School of Geographical Sciences
Arizona State University

Abstract

Spatial analytical tools are mostly provided in a desktop
environment, which tends to restrict user access to the tools.
This project intends to exploit up-to-date web technologies
to extend user accessibility to spatial analytic tools. The
first step is to develop web services for widely used spatial
analysis such as spatial weights manipulation and provide
easy-to-use web-based user interface to the services. Users
can create, transform, and convert spatial weights for their
data sets on web browsers without installing any specialized
software.

1. Introduction

Spatial lag operators, often referred to as weight matri-
ces, appear across many different areas of spatial analysis
and take on numerous forms. In general terms, a spatial
weight w; ; represents a spatial relation between two loca-
tions ¢ and j. That spatial relation is often defined in terms
of contiguity or distance, although these do not exhaust the
possibilities. The collection of all such weights for a system
of n locations forms the matrix W. Often these weights are
required in the initial phase of any type of spatial analysis.
For example, in spatial statistics the study of spatial auto-
correlation is concerned with various approaches towards
estimating the structure and strength of the covariance be-
tween a random variable measured at pairs of locations ¢
and j. Given a cross-sectional data set with n observations,

*This research was supported in part by a grant from the National Can-
cer Institute (IRO1CA126858) for the projects entitled “Geospatial factors
and impacts: measurement and use.” The content is solely the responsibil-
ity of the authors and does not necessarily represent the official views of
the National Cancer Institute or the National Institutes of Health.

there are (n? — n)/2 pairs of observations and associated

covariances which creates a degrees of freedom problem. A
spatial weights matrix is used to reduce the dimensionality
of the parameter space. In practice, the information embed-
ded in the weights matrix is not stored as such, but efficient
sparse formats such as linked lists or dictionaries are used
instead [6].

In the regionalization literature adjacency matrices are
key data structures in many algorithms for spatially con-
strained clustering [9]. Similarly, shortest path finding al-
gorithms make heavy demands on adjacency matrices [1].
Node-node and node-arc adjacency matrices are fundamen-
tal to representation of spatial objects and their connectiv-
ity in modern geographic information systems [24]. More
broadly, adjacency matrices are found throughout the fields
of computer graphics and visualization, pattern recognition,
and computational geometry [21].

The prominent role of spatial weights across the spec-
trum of spatial analytical methods creates a situation where
many specialized software efforts will tend to result in con-
siderable duplication in dealing with their construction, ma-
nipulation, and transformation. At the same time, the grow-
ing adoption of the methods of spatial statistics by substan-
tive researchers is constrained by the lack of facilities to
deal with spatial weights in most commonly used statistical
packages. This provides a major motivation for the devel-
opment and dissemination of spatial weights functionality
in the form of a readily accessible software library.

In this paper we describe a web services approach to ad-
dress these issues. We present an approach that builds upon
earlier efforts in the delivery of spatial analytical capabil-
ity through a web interface [4] and extend it by providing
a web interface to an underlying analytical library PySAL
[19]. This represents an open source library for spatial anal-
ysis written in the object-oriented language Python. PySAL

is designed to avoid duplication in effort in the development
of common core spatial analytical methods, and it covers a
wide set of areas of spatial analysis as summarized in Fig-
ure 1. PySAL is also designed to contribute to the rapidly
evolving area of scientific computing with Python [12], in
which spatial analysis is still largely absent.

Figure 1. PySAL

We have designed PySAL in a modular fashion with ac-
cess to the analytical functionality provided via a range of
interfaces. Examples include graphical user interfaces built
with toolkits such as wxPython [17] in the spatial economet-
rics toolkit PySpace [5] and Tklnter [10] in the exploratory
space-time data analysis package STARS [20]. At the same
time, users interested in using PySAL through the command
line can call PySAL as a standard python module or, using
other shells such as IPython [16] and even from the R [11]
interpretor via RPy [14].

Here, we focus on the design and implementation of a
web services interface to PySAL with particular emphasis
on the spatial weights core of the library. In the remainder
of the paper, we first describe the functionality offered by
these services. Next we present the architecture of the web
service system from both a component and an implemen-
tation perspective. We then describe some example illus-
trations of the system. The paper closes with an outline of
ongoing and future work.

2. Functionality

The functionality pertaining to the creation and manip-
ulation of spatial weights is organized into three core cate-
gories:

e weights creation

e weights transformation
e weights conversion

Each of these is conceptualized as a web service and to-
gether they are organized into a work flow which provides
the needed functionality. Each of these categories is now
briefly described in turn.

2.1 Weights creation

Weight creation consists of all the operations necessary
to build a spatial weights object from the geographic infor-
mation contained within a boundary file of polygons or a
collection of point coordinates. This includes reading this
geographic information, as well as processing it to derive
the topology of the data objects and converting it into an
efficient data structure.

Specifically, given a file source for the geographic in-
formation, the spatial weight creation service includes the
following operations:

1. read the geographic information (from a URL or from
a user’s desktop client),

2. identify neighbor relations for each observation ac-
cording to user-specified neighbor criteria,

3. generate an adjacency matrix,

4. apply a weighting method defined by the user to the
adjacency matrix and generate a spatial weights,

5. write the spatial weights to an output file

In its current implementation, the service supports neigh-
borhood definitions based on contiguity, distance, and near-
est neighbors. These criteria are used to dynamically de-
rive the neighbor relations from standard commercial for-
mat files such as ESRI’s shapefiles.

The original implementation of PySAL relied on the
shapelib library [23] for the reading of shapefiles. How-
ever, in the current version we have replaced shapelib with
a pure Python implementation of classes to read shapefiles.
This facilitated the developing of a binning algorithm to to
derive the topology and construct either rook (shared edge)
or queen (shared vertices) contiguity matrices on the fly as
part of the file reading stage. The algorithm also flags island
polygons (i.e., those without any contiguity to other poly-
gons) and offers several options for modifying the spatial
weights matrix for these observations, following the sug-
gestions in [8].

PySAL also supports the construction of spatial weights
from shapefiles that contain point data. This can be done us-
ing graph based topological criteria such as Gabriel, sphere

of influence and relative neighbor criteria. Similarly, a col-
lection of k—nearest neighbor algorithms are available for
point data. In cases where representative points (centroids)
are used to develop the topological relationships between
polygons, these same graph and distance based methods are
also applicable. These classes free the researcher from the
often tedious and error prone tasks involved with construct-
ing spatial weights by hand.

In addition to reading of point and polygon shapefiles to
dynamically derive the spatial arrangement of the data, the
spatial weights creation service can also directly read com-
mon spatial weights formats, including GAL, GWT, and full
matrices.

2.2 Weights transformation

Higher up in the processing stack, the transformation ser-
vice takes the weights from the creation service stage and
provides a series of transformations as well as descriptive
statistics of the characteristics of the weights. These include
measures of sparseness, distribution of contiguity cardinal-
ities, and various eigenvalue-based metrics of the weight
matrix structure.

The transformation functionality itself includes the con-
struction of higher orders of contiguity, row standardiza-
tion, conversion of general to binary weights, powering of
weights, inverse of weights, computation of general bound-
ary share based weights, algebraic operations on weights
and set based operations (e.g., union, intersection).

2.3 Weights conversion

With the proliferation of GIS and spatial analysis soft-
ware packages, a large variety of formats for spatial weights
have appeared. This creates the need to provide function-
ality to convert between these different formats and allow
weights constructed in one package to be applied in analy-
ses carried out in other packages.

Arguable the most population format for spatial weights
are the GAL format for binary contiguity and the GWT for-
mat for general weights. These formats were initially pro-
posed in the SpaceStat software [2, 3] and implemented in
the widely distibuted GeoDa package [7]. Subsequently,
they were adopted by the open source spdep R package as
well as the commercial ClusterSeer software.

Other formats include text file formats, such as DAT
(MatLab Econometrics Library), TXT (WinBugs) and
XML, as well as binary formats, including the original
SpaceStat matrix format, SWM (ArcGIS 9.3), DBF (Ar-
cGIS 9.3), MAT (MatLab), WK1 (MatLab Lotus format),
and WK (MLwiN).

The weights conversion component of our web services
includes functionality to move the information on the spa-

tial adjacency and the value of the weights from these input
formats into the internal data structures used by PySAL and
to output the weights values into a limited number of com-
monly used output formats.

3. Design
3.1 Architecture

Web services can be broadly classified into two distinct
groups, based on the protocols used to exchange and ac-
cess information. These categories are referred to as REST
(Representational State Transfer) and SOAP (Simple Ob-
ject Access Protocol) based services. Most web services de-
veloped according to the standards established by the Open
Geospatial Consortium (OGC) are weakly based on a REST
compliant architecture. However, they also support SOAP
binding for message exchange [13, 15]. Consequenlty, and
with an eye towards future expansion, we have selected a
SOAP-based architecture for our spatial weights web ser-
vices. This facilitates the composition of several distributed
services to accomplish new tasks, which meets the objec-
tives of modularity underlying the PySAL library.

Figure 2 depicts a three-tiered architecture of the planned
web services. This consists of a server, where the actual
web services are hosted, middleware to handle messages
and manage user accounts and data, and a client interface.
The PySAL library contains the core computing function-
ality to create, manipulate, transform and convert weights
and is contained within the server component. This func-
tionality is provided in the form of web services. Each web
service is tied to an XML-based document that describes its
interface (the so-called Web Service Description Document
or WSDL), and communicates with clients or other web ser-
vices through SOAP-based messages. WSDL documents
include information about the data types required for input
and output. By interpreting the WSDL documents, clients
can create service request messages that can be understood
by the system.

The middleware application mediates between the front-
end client interface and the back end service server. This
consists of receiving a simplified message encoded in
Javascript Object Notation (JSON) from the client, and cre-
ating and sending a request SOAP message to the service
server. Conversely it also receives a response SOAP mes-
sage from the server and creates and sends a simplified
JSON message to the client.

In addition, in our architecture, the middleware also pro-
vides user authentication and data management. The lat-
ter functionality is included to circumvent inefficiencies in
the transfer of data (such as geographic boundary files and
weights files) using SOAP-based XML messages. The mid-
dleware manages the data transfer by allowing users to up-

Figure 2. Architecture

Current Design | — Component perspective
|

: External Web Services
XML
HTTP
Message
Web Handler Web
Interface XMU) Service)

HTTP -Encoding _) Spatla.l
-GUI g -Form_ XML/ Weights (r?anon A?alysls
Result generating HTTP - Smoothing Library

Message -Parsing - - Geolinking
viewer ~Transport ~Choropleth mapping

Analysis Input/Output
Data storage

Client Middleware Service servers

load information from their desktop into a temporary data
store and returns results to the client. The middleware uses
JSON messages between itself and the client in order to re-
duce additional inefficiency that may be caused by double
messaging.

This architecture reflects our view that there are gen-
erally two types of end users who may interact with this
system. In a strict sense, the web services can be seen as
an external modular library that can be incorporated into
any existing application through the API (Application Pro-
gramming Interface). In this way, other programs, such as
web-aware GIS software, can access the specialized spa-
tial analytical functions included in PySAL through SOAP
based XML messaging. However, this limits use to a rela-
tive small audience of application developers.

In order to widen the dissemination of advanced spatial
analytical techniques, we see our analytical web services
as an alternative to a desktop application, by providing a
means to access this functionality through a browser, via a
desktop-like GUI. In contrast to our earlier implementation
through Java-applets that operated on the client desktop [4],
we now use a division of labor between the client and the
server, with efficient communication between the two.

The web client contains a graphical user interface that
dynamically generates input forms for each service opera-
tion based on WSDL definitions. Also, upon receiving a re-
sponse message from the middleware application, the client
creates a window to visualize the results message. By us-
ing a dynamic form generator we avoid repetitive client-side
modifications that are required whenever the web service
interfaces change. We also customize each result viewer
according to types of outputs generated by each analytical
operation.

The architecture outlined in Figure 2 is enabled by the
specific software programs illustrated in Figure 3. As men-

Figure 3.

Current Design | — Software perspective
|

< External REST-based
XML Web processing services
HTTP

Message

Web XMu Handler Web Processing
HTTP i
Interface —ry <6l it Services PySAL
-AJAX KSLT HITR - PyWPs

-Python 4suite | «—t—p

User data directory
(file-based)

Client Middleware Service servers

tioned, the computational core is provided by the mod-
ular PySAL library, which is contained in the server.
The functions in these modules are wrapped into a web
service application by using the Python soaplib library
(http://trac.optio.webfactional.com/). The main role of this
library is to serialize and de-serialize Python objects into
SOAP-based XML messages. In addition, it automat-
ically generates WSDL documents. In the middle-tier,
we develop several Python CGI programs to handle mes-
sage manipulation, user account and data management.
The Message Handler uses other helper Python libraries,
such as simplejson (http://code.google.com/p/simplejson/)
for parsing and encoding JSON messages and 4suite
(http://4suite.org/index.xhtml) for reformatting XML mes-
sages by using Extensible Stylesheet Language Transfor-
mations (XSLT).

In addition, to implement the web-based client program,
we exploit the Ext JS Javascript library (http://extjs.com/) to
a develop desktop-like user interface. We also utilize Asyn-
chronous Javascript and XML (AJAX) to exchange mes-
sages between server/middleware and client program.

Apart from the browser client interface, the analytical
services can also be accessed from within other programs.
For example, the services can be incorporated into a Java
application by means of the JAX-WS library or into a
Python application by means of the soaplib library. This
approach supports a variety of end users with different lev-
els of technical ability but similar analytical requirements.

3.2 Interface

In the current implementation, the web client application
is designed as a Javascript component that can be plugged
into a standard web page. When first invoked, this applica-
tion generates a service selection panel. As shown in the left

panel of Figure 4, this provides information on the types of
services available. Specific functionality can be reviewed
in a tree layout. Each service node contains a sub-list of
supported operations.

When a user selects a node in the service selection panel,
the dynamic form generator in the application creates an
input form for the selected operation, as illustrated in the
top right panel of Figure 4. Each such input form includes a
Request button. Upon pressing this button, a JSON message
is created that takes the user selections and passes this to the
message handler in the middleware application. After the
operation is carried out, a results viewer window is created
that allows the user to access the results, as shown in the
lower right panel of Figure 4.

In most practical situations, users will have the input file
with geographic information stored on their own desktop.
Functionality is included in the middleware (as a cgi ap-
plication) to upload these files to the temporary data store,
where authentication ensures that each user has a data space
that only they can access. The message handler then cre-
ates a SOAP message with information on the location of
the user files and sends it to the end-point URL of the ser-
vice. Upon receiving a response message from the service,
the message handler converts it into JSON message and de-
livers it back to the web client application which, in turn,
generates a results viewer.

An illustration of the user interface for the web client
is illustrated in Figure 5. This shows a more graphically
pleasing design for the service selection panel, input form
and results viewer. The output highlights the flexibility of
the system and its ability to interface with other web ser-
vices, showing panels listing summary descriptive charac-
teristics of the created weights, with the linkage structure
illustrated on a Google Map background. Alternatively, in-
teraction with the web services can be implemented in a
rudimentary fashion (using Web Processing Services), pro-
viding output in the form of lists, as illustrated in Figure 6.

4 Future Research

The web services spatial weights system described here
is an initial step in providing a network distributed inter-
face to the PySAL library. Designing it around the weights
core of PySAL reflects the central place of spatial weights in
much of spatial analysis. In subsequent research we intend
to continue to refine the web-based interface to the weights
core and eventually begin to extend the same architecture
to provide access to other components of the PySAL library
from Figure 1.

While we feel the computational components of PySAL
lend themselves very nicely to being integrated in the web
services system, we see a major challenge in extending
the system to support the kind of interactive and dynamic

Figure 4.

convert_Weights

Service Provider
v Source Local file v

e

© Provider: GeoDa Center
* Purpose: Support for web-based

* Contact: ;T];";:g:"ﬂ@l)’ ;;ail.com :;:gfe;’mm ECI;T(:;EZSI;:) S‘;T(A(Ailéll:)l)
1

Services vV =

+ Spatial Weights (reation

+ Spatial Weights Transformation Input form

+ Spatial Weights Conversion
+ convert_Weights

convert_Weights_Response

Your weights file conversion is done successfully.
You can download resul ting files from the following links:

weights GWT
weights DBF
Service selection panel

Results Viewer

Figure 5. Prototype

EHo Edt Vew Hgoy Bookmats ook Hep

o+ [T [Piootm e ssctlomygfoeblortiodo o - o

'] Web client to smoothing web ser... £

Huf~myurghwajags_datafus_counties2.shp
Lattng_wasas v
Rook =

1

Spatial Weights File

< patial Weights
~ | Neighbor Lt
Observat Latiude Longiuk # of Neil List of Neighbors
b ooy g3 nda
401788 11840

2 347

3 483349 179101 4 258471

4 apasE 19857 7 2283244577071
ans202 M7 4 3s2984

5 4B74E04 16568 3 5728

Weight Type Iformation + | Connectiviy Chart

graphics available in desktop top spatial analysis packages
such as GeoDa [7] and STARS [20]. Parallel to the work
reported here is ongoing research on efficient web-based
geovisualization methods [22] that we plan to explore in
addressing these challenges.

Finally, while much of the work described here focuses
on the anlytical dimensions of the interface, we are keenly
aware of the role that open source can play in facilitating
learning and advances in scientific communities. Spatial
analysis as a web service poses particular challenges in this
regard as it is the underlying functionality of PySAL that
is made available to the end user and not the source code
and implementation [18]. We are currently exploring ap-
proaches towards providing source code and documentation
browsing, along side the analytical functionality, as compo-
nents of the next generation of web services.

Fle Edt

Figure 6. Output Window

View Hgtory Bockmarks ook Help

|] hitp:/golem.dhe...client fest.htm 3 | =
= |

« Descriptian
+ Keywords: G5 | Spatial Smtistical Analysis | WPS |
orted versions: 100 |

 Supp:

Basic Info of Service Pravider
* Name,

o Linl
» Contact. Myunghwa Hwangnhwang4 @gmailcom

Supported Processes
get/eighiflle =

Basic Info of getWeightfile

« Title:

o Abstract
o Metada

* Outpuss

o

GeoDaCenter at Arizona Stats University

Gt a weights matrix fil

at. File format for a resulting waights flle
Description: xml, gal, or gut

u
utputieightile: Resulting autput weight matrix file
[n

net/schemas/ups/0. 4.0
status>
o Tivie mamdring
_>l_I

L

BN

References

(1]

2

—

3

—

[4

—_

[5

—

(6]

(7]

(8]

(9]

[10]

R. Ahuja, K. Mehlhorn, J. Orlin, and R. Tarjan. Faster al-
gorithms for the shortest path problem. Journal of the ACM
(JACM), 37(2):213-223, 1990.

L. Anselin. SpaceStat, a Software Program for Analysis of
Spatial Data. National Center for Geographic Information
and Analysis (NCGIA), University of California, Santa Bar-
bara, CA, 1992.

L. Anselin. Computing environments for spatial data analy-
sis. Journal of Geographical Systems, 2(3):201-220, 2000.

L. Anselin, Y.-W. Kim, and I. Syabri. Web-based analytical
tools for the exploration of spatial data. Journal of Geo-
graphical Systems, 6:197-218, 2004.

L. Anselin and J. Le Gallo. Panel data spatial econo-
metrics with PySpace, 2004. Department of Agricultural
and Consumer Economics, University of Illinois, Urbana-
Champaign, IL.

L. Anselin and O. Smirnov. Efficient algorithms for con-
structing proper higher order spatial lag operators. Journal
of Regional Science, 36:67-89, 1996.

L. Anselin, I. Syabri, and Y. Kho. GeoDa: An introduction
to spatial data analysis. Geographical Analysis, 38:5-22,
2006.

R. Bivand and B. Portnov. Exploring spatial data analysis
techniques using R: The case of observations with no neigh-
bors. In L. Anselin, R. J. G. M. Florax, and S. J. Rey, editors,
Advances in Spatial Econometrics: Methodology, Tools and
Applications, pages 121-142. Springer, 2004.

J. Duque, R. Ramos, and J. Surinach. Supervised regional-
ization methods: A survey. International Regional Science
Review, 30(3):195, 2007.

J. Grayson. Python and Tkinter Programming. Manning
Greenwich, CT, 2000.

(11]

[12]
[13]
(14]
(15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

R. Ihaka and R. Gentleman. R: A language for data analy-
sis and graphics. Journal of Computational and Graphical
Statistics, 5:299-314, 1996.

H. Langtangen. Python Scripting for Computational Sci-
ence. Springer, 2006.

R. Lucchi, M. Millot, and C. Elfers. Resource oriented ar-
chitecture and REST: Assessment of impact and advantages
on INSPIRE, 2008. EUR 23397 EN.

W. Moreira and G. Warnes. Rpy (r from python), 2006.
Open Geographic Consortium. Specification best practices,
2006.

F. Perez and B. Granger. IPython: A system for interactive
scientific computing. Computing in Science & Engineering,
9(3):21-29, 2007.

N. Rappin and R. Dunn. wxPython in action. Manning,
Greenwich, 2006.

S. J. Rey. Show me the code: open source and spatial anal-
ysis, 2008. Working paper, GeoDa Center for Geospatial
Analysis and Computation. Arizona State University.

S.J. Rey and L. Anselin. PySAL: A Python library for spa-
tial analytical methods. The Review of Regional Studies,
37:5-27,2007.

S.J. Rey and M. V. Janikas. STARS: Space-time analysis of
regional systems. Geographical Analysis, 38:67-86, 2006.
H. Samet. Foundations of multidimensional and metric data
structures. Morgan Kaufmann, San Francisco, 2006.

C. Schmidt and B. Dev. A scalable tile map service for dis-
tributing dynamic choropleth maps, 2008. Working paper,
GeoDa Center for Geospatial Analysis and Computation.
Arizona State University.

F. Warmerdam. Shapefile ¢ library v1. 2. Web site:
http://shapelib. maptools. org/(last visit February 2006),
2006.

M. Worboys and M. Duckham. GIS, A Computing Perspec-
tive, Second Edition. CRC Press, Boca Raton, 2004.

