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ABSTRACT 
Choropleth display of spatial information is a fundamental feature of mapping and 
geographic information system technologies. There has long been a desire to impart some 
spatial influence in the class selection and delineation process of choropleth display. This 
paper presents an approach for representing the spatial influence of neighboring areas in 
the creation of choropleth classes. The usefulness of this approach is explored using suburb 
level crime statistics for Brisbane, Australia. 
 
 
1. INTRODUCTION 
The study of any phenomenon across space invariably begins with a choropleth display of 
the attribute(s) of interest. As an example, if we are interested in the distribution of crime 
in a city like Brisbane, Australia, we would likely start by looking at the crime levels in 
suburbs of this city. A standard way to evaluate the spatial variation of crime statistics 
using a geographic information system (GIS) or mapping software would be to color each 
suburb based upon its crime rate in relation to other suburbs in the region. Figure 1 
illustrates the distribution of property crime per 1000 residents for 1996 in each suburb in 
the city of Brisbane. The legend gives some indication of the range of crime rates in this 
region. Figure 1 is known as a choropleth display. 

 
Substantial research has been devoted to choropleth display over the past 50 years (Jenks 
1963; Evans 1977; Coulson 1987; Dent 1990). The focus of this research has been to 
identify effective methods for depicting differences in displayed attributes. Developed 
choropleth methods take the range of attribute values, say total population in each suburb 
as an example, and use a significantly smaller number of groups or classes (typically 
between 4-7 as suggested in Dent 1990) to depict regional variation. Although spatial 
patterns and relationships may be inferred in the distribution observed in Figure 1, the 
classification process is aspatial. That is, classification groups (or break points) are 
determined by the distribution of the attribute being displayed, irrespective of their relative 
spatial location. 
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Figure 1. Choropleth display of property crime rates. 

 
There has long been interest in extending the basic attribute classification process to reflect 
spatial relationships between display units (Jenks and Caspall 1971). As an example, we 
might find upon further investigation that two neighboring units belonging to different 
classes in Figure 1 may actually be quite similar in attribute value. Thus, given the relative 
proximity of the units with similar attribute values, in this case property crime rates, it may 
be reasonable to have such units in the same class, because there is essentially no attribute 
variation in this local area. The significance here is that units may be in different classes, 
which suggests a change in the regional distribution of property crime, but they may in fact 
be somewhat similar. The power of choropleth display is obviously substantial given the 
ability to influence the interpretation of regional change. An initial attempt to incorporate 
space into the choropleth display process was devised to account for boundary 
relationships in order to alter class composition (see Jenks and Caspall 1971; Monmonier 
1972; Cromley 1996). This was a clever and interesting way to indirectly account for 
spatial relationships. There are, however, alternative approaches that may be worth 
pursuing. This is particularly true for cases where one is interested in local hot (or cold) 
spots. That is, both attribute similarity and spatial proximity have some significance in how 
units should be classified, displayed and interpreted. 
 
The paper explores the use of an indirect approach for including spatial relationships in the 
creation of choropleth classes. Specifically, we propose the traditional form of spatial lag 
used in spatial statistics as a means for altering the interpretation of attribute values in class 
delineation. Two multi-objective clustering models are proposed for integrating attribute 
and spatial lag. These approaches may be considered extensions to the median based non-
hierarchical classification problem. Comparative results are presented for the analysis of 
property crime in Brisbane, Australia. 
 



 3 

2. SPATIAL LAG 
In the analysis of spatial information it is often important, if not critical, to know what is 
happening around a particular location. The typical assumption of independence between 
observations of interest in classic statistical techniques has long been known to be 
problematic for spatially referenced objects (Griffith and Amrhein 1997). Specifically, the 
existence of spatial autocorrelation may in fact alter significance levels and reduce 
interpretation of results. One approach for dealing with spatial autocorrelation has been to 
utilize spatial lag in various statistical techniques such as multivariate linear regression. 
Spatial lag essentially represents an averaging of the attributes around a particular location. 
As an example, if we looked at one of the suburbs shown in Figure 1 (depicting property 
crime rates), the spatial lag for this suburb would be the average rate of property crime for 
all of the suburbs which are defined as neighboring this suburb. Typically, neighbors are 
those suburbs which share a common boundary with the suburb being considered. This is 
now formally specified. 
 
Consider the following notation: 
 

 
 

 
 

 
Areas correspond to suburbs in Figure 1 and the attribute measure is property crime. 
Neighbors are defined here as those suburbs sharing a common border or point, but 
alternative interpretations such within a specified distance could be utilized with any loss 
of generality. Using this notation, the spatial lag for an area i is as follows: 
 

  (1) 

 
Thus, the spatial lag is nothing other than an average value of the neighbors to a particular 
area. It is worth noting that the spatial neighbors of an area do not include the area itself. 
The spatial lag of an area is a summary indicator of what is happening in a relative location 
without tracking the exact relationships between neighboring areas. As such, it is a proxy 
for the spatial similarity or difference of an area and its neighbors (to the extent that one 
defines units as being neighbors of each other). 
 
3. SPACE AND ATTRIBUTE SIMILARITY 
It is now possible to define the similarity of two areas in terms of their attribute measures 
as well in terms of their spatial lag. This similarity is denoted as: 
 

 
 
One approach for integrating attribute and spatial lag differences between two areas is as 
follows: 
 
  (2) 



 4 

 
where 
 

 
 

 
This similarity measure utilizes weights to combine the attribute and spatial lag values for 
one area and compare it to another area. As we are interested in their relationship, we take 
the absolute values of their difference. 
 
An alternative approach for integrating attribute and spatial lag similarity involves 
weighting the two components after they have been compared. This would utilize two 
measures of similarity: 
 

 
 

 
These individual similarity measures may be formalized as follows: 
 
  (3) 

  (4) 
 
Integrating attribute and spatial lag similarity would then involve the use of the above 
weights. This will be formally detailed in the following section. It is worth noting that the 
integrated similarity measure defined in (2) obviously differs from a weighted combination 
of the attribute and spatial lag similarity measures defined in (3) and (4) respectively. 
Incorporating these measures in an optimization based classification model for choropleth 
display will now be developed. 
 
4. SPATIALLY LAGGED CLASSIFICATION 
The most widely advocated approach for choropleth display is the natural breaks method, 
which minimizes the variance of attributes within classes. The classes depicted in Figure 1 
were obtained using the natural breaks choropleth display option in ArcView (version 3.2). 
This approach is defined as being a single dimensional non-hierarchical 
classification/clustering problem and may be solved using the technique of Fisher (1958) to 
determine the appropriate classes for depicting an attribute in a choropleth display. A 
related classification approach is to utilize a median clustering model in order to minimize 
within class difference (Monmonier 1973; Cromley 1996; Murray and Estivill-Castro 
1998; Murray and Grubesic 2002). The developed classification models for choropleth 
display in this paper are based upon the use of the median clustering approach. The first 
model incorporates spatial lag in the classification of attributes in order to reflect the 
spatial variation around areas. 
 
Some additional notation will be utilized: 
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Decision variables: 
 

 

 

 

 
Using the above notation, it is possible to structure a class selection model with objectives 
that simultaneously maximize attribute and spatial lag homogeneity. 
 
Spatially Lagged Median Classification (SLMC) 
 
Minimize  (5) 

Subject to: 
 
  (6) 

 
  (7) 

 
  (8) 
 
  (9) 
  
 
The objective (5) of the SLMC is to minimize the total weighted within group difference of 
selected classes. The constraints of the SLMC are standard median model conditions which 
ensure that classes are structured in a meaningful way. Constraint (6) ensures that each 
area is included in a class. Constraints (7) and (8) require that only p classess be generated. 
Constraints (9) impose integer restrictions on decision variables. Other spatial clustering 
models, such as those discussed in Murray and Estivill-Castro (1998), could be readily 
adapted to include attribute and spatial lag as is done in the SLMC. 
 
A feature of this classification model is that the importance weights,  and , may be 
varied to alter . Doing this will result in pseudo-tradeoff solutions. More will be said 
about this point later in the paper. An alternative classification model may be structured to 
incorporate attribute and spatial lag similarity more distinctly. 
 
Bicriterion Spatially Lagged Median Classification (BSLMC) 
 
Minimize  (10) 

Subject to: 
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Constraints (6)-(9) 

 
The only difference between the BSLMC and SLMC is the objective (10). In the BSLMC 
the objective is to minimize the total weighted attribute similarity and to minimize the total 
weighted spatial lag similarity in selected classes. The constraints for the BSLMC are the 
same as those for the SLMC. The objective of the BSLMC is explicitly multi-objective. 
Thus, it is possible to analyze tradeoffs associated with varying the weights  and . 
 
A major interest in this paper is to explore the extend to which both of these classification 
models is capable of representing spatial variation in the creation of choropleth display 
classes. In addition, there is also interest in identifying performance differences between 
these two approaches. 
 
5. APPLICATION RESULTS 
As stated early in this paper, rates of property crime per 1000 residents in the 178 suburbs 
of Brisbane, Australia for 1996 are investigated. Lagrangian relaxation with branch and 
bound (see Murray and Gerrard 1997) was utilized for solving the Spatially Lagged 
Median Classification (SLMC) and Bicriterion Spatially Lagged Median Clustering 
(BSLMC) problems optimally on a Pentium III/600 personal computer. These models were 
implemented as dynamic link libraries (DLL) compiled using Digital Visual Fortran 
(version 6.0) and integrated in ArcView (version 3.2) using Avenue scripts. Reported 
results for the SLMC and BSLMC problems in this paper are optimal to within 0.1% using 
Lagrangian relaxation. The time required to solve these problems was generally between 0-
10 seconds, but there was an instance where 22 seconds was needed. 
 
A global measure of the degree of spatial association between area attributes is the 
Moran’s I statistic (see Griffith and Amrhein 1997). Using SpaceStat version 1.90, 
Moran’s I for property crime was found to be 0.102 with a standard normal z-value of 2.37 
(p<0.02). Given this, some amount of spatial similarity in crime rates does exist in 
Brisbane. This suggests that the use of the SLMC to influence class structure in order to 
better reflect spatial relationships is warranted. If a relatively low weight is given to spatial 
lag, then the attribute has a greater influence in class structure, but this may be altered 
somewhat depending upon attribute values in neighboring areas. An example of this is 
depicted in Figure 2, where the attribute weight is 1.0 and the weight for spatial lag is 0.1. 
Figure 2 shows some modification to the classes depicted in Figure 1. In addition to the 
suburbs noted in Figure 2, suburbs in the city center and in the far east have changed 
classes. The reason for this is that crime rates in these suburbs were relatively close to 
neighboring areas. Thus, the inclusion of spatial lag altered class delineation in order to 
account for rates in neighboring suburbs. The ability to alter weights in specifying 
similarity in the SLMC allows us to assess how class structure changes when spatial lag 
has greater influence. Figure 3 depicts the choropleth display for the SLMC using weights 
of 0.4 for the attribute and 1.0 for spatial lag. What may be inferred in Figure 2 is greater 
spatial contiguity of identified classes. In addition, a north-south corridor of relatively high 
property crime rates appears to be particularly pronounced in Figure 3. Figures 1-3 each 
appear to impart some insight in the patterns of property crime in Brisbane. 
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Figure 2. SLMC choropleth display of property crime rates (wa=1.0 and wd=0.1). 

 
 

 
Figure 3. SLMC choropleth display of property crime rates (wa=0.4 and wd=1.0). 
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The BSLMC is also structured to influence class creation in choropleth display by 
incorporating attribute and spatial lag for determining similarity between areas. As the 
BSLMC is explicitly multi-objective, tradeoff solutions may be identified and evaluated. 
One such tradeoff solution is shown in Figure 4 for a relatively low spatial lag weight. 
Also displayed in Figure 4 is the non-inferior tradeoff curve associated with varying the 
attribute and spatial lag weights. Thus, along the x-axis is the spatial lag contribution to the 
BSLMC objective function and on the y-axis is the attribute contribution to the objective 
function (property crime in this case). The highlighted tradeoff solution corresponds to the 
choropleth display depicted in Figure 4 using the indicated weights. One noteworthy 
change in suburb classes is Geebung (highlighted in Figure 4). The property crime rate is 
5.71 in Geebung and neighboring suburbs have somewhat similar rates (6.61 for Boondall; 
8.44 for Virginia; 8.46 for Chermside; and 9.69 for Zillmere). In Figure 1 these suburbs are 
in a different class than Geebung. Using the BSLMC, we find that there is in fact some 
basis to suggest that Geebung should actually belong to the same class as these other 
suburbs. Similar class changes may also be found in Figure 4. What is particularly 
interesting in this classification is that it is somewhat different to that found using the 
SLMC in Figure 2. To further explore this, we can evaluate an instance where the weight 
for spatial lag is greater than that for property crime. Another tradeoff solution is shown in 
Figure 5 for an attribute weight of 0.4 and a spatial lag weight of 1.0. The inserted tradeoff 
curve identifies the relationship of this solution to other solutions (the one shown in Figure 
4 in particular). As with Figure 3, we also see more spatial clustering in Figure 5 (as 
compared to Figures 1 or 4), but the patterns are different between Figures 3 and 5. Thus, 
although the resulting patterns produced by the SLMC and the BSLMC appear to be 
related, they are in fact different. 
 

 
 

Figure 4. BSLMC choropleth display of property crime rates (wa=1.0 and wd=0.3). 
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Figure 5. BSLMC choropleth display of property crime rates (wa=0.4 and wd=1.0). 
 
6. DISCUSSION 
The results of the SLMC and the BSLMC are both interesting and informative. Further 
analysis of each display highlights how property crime is distributed in Brisbane. From a 
planning and management perspective, the ultimate goal is to be able to make inferences 
about what is taking place and why. Are there geographic features which somehow 
correlate to either high or low property crime rates? Are there hot spots of crime activity? 
Identifying significant spatial clusters is part of being able to address these questions. Two 
relatively clear observations to be inferred from Figures 1-5 is the low rates of crime in the 
western and south-eastern suburbs as well as the high rates of property crime in and around 
the city center. 
 
The inclusion of spatial lag in choropleth classification provides the ability to alter class 
groups based upon attribute values in neighboring areas. This is an appealing feature of 
both the SLMC and the BSLMC models. A valuable property of the spatial lag measure is 
that totally contiguous and spatially compact class groupings are never produced, even 
when spatial lag receives a dominate weighting. This would not be the case if a distance 
proximity measure was used in place of spatial lag. Thus, spatial lag appears to lessen the 
impact and influence of space in class creation. 
 
A point raised earlier in the paper was that the SLMC does not produce non-inferior 
tradeoff solutions. This may be seen in Figure 6, which shows the attribute and spatial lag 
contributions to the objective function. These were obtained by varying attribute and 
spatial lag weights. In contrast to the tradeoff curves depicted in Figures 4 and 5, Figure 6 
illustrates that varying the weights in equation (2) does not result in non-dominated 
solutions. This may be explained by the non-linear form of equation (2), since an absolute 
value of the differences is utilized in similarity specification. The SLMC is probably the 
most representative of how spatial lag would be included in the traditional 1-dimensional 
classification process. Thus, it is important to recognize that it actually produces dominated 
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tradeoff solutions. That is, group classifications exist which have an equivalent average 
property crime rate (see Figure 6), as an example, but these classifications have varying 
average spatial lag. What we are interested in is only the minimum average spatial lag 
classification as this would represent the non-inferior tradeoff solution. Given that this 
happens, this may in fact be an unappealing feature of the SLMC. As a result, the BSLMC 
would likely represent a better choropleth display alternative. 
 

 
 

Figure 6. Tradeoff solutions associated with the SLMC. 
 
7. CONCLUSIONS AND FUTURE DIRECTIONS 
This paper has developed two alternative approaches for indirectly representing spatial 
relationships in choropleth class creation. This has been done using a median based 
clustering model which incorporates attribute and spatial lag similarities. To a certain 
degree, the inclusion of spatial lag may be viewed as a type of spatial filtering process for 
identifying group classifications. Previous research in choropleth display has noted the 
need for representing spatial significance in the classification process. Clearly this has been 
accomplished using spatial lag in the developed classification models. The application 
results illustrated the ability of both the SLMC and the BSLMC to alter class structure in a 
tempered way based upon the attribute values of neighboring areas. This is quite valuable 
for assessing the regional variation of crime rates as well as most other area attributes. 
 
A number of areas for future research may be identified based upon this research. There is 
clearly a need for more understanding of the relationship between the use of spatial lag 
versus the boundary type approach detailed in Jenks and Caspall (1971) and more recently 
in Cromley (1996). Further, similar comparative work is needed for the use of explicit 
spatial relationship measures such as distance between areas in choropleth classification. A 
final area for future research is to explore the relationship between these classification 
techniques and spatial statistical approaches like local indicators of spatial association (see 
Anselin and Bao 1997). 
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