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Abstract

Results from simulation experiments are important in applied spatial
econometrics to, for instance, assess the performance of spatial estimators
and tests for finite samples. However, the traditional tabular and graphi-
cal formats for displaying simulation results in the literature have several
disadvantages. These include loss of results, lack of intuitive synthesis,
and difficulty in comparing results across multiple dimensions. We pro-
pose to address these challenges through a spatial visualization approach.
This approach visualizes model precision and bias as well as the size and
power of tests in map format. The advantage of this spatial approach
is that these maps can display all results succinctly, enable an intuitive
interpretation, and compare results efficiently across multiple dimensions
of a simulation experiment. Due to the respective strengths of tables,
graphs and maps, we propose this spatial approach as a supplement to
traditional tabular and graphical display formats.

Keywords spatial visualization; Monte Carlo simulation experiments;
spatial econometrics.
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1 Introduction

Insight about the relative performance of different spatial econometric tests,
estimators, weights and specification strategies in finite samples is frequently
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obtained from Monte Carlo simulation experiments (see Anselin and Rey, 1991
and Florax and de Graaff, 2004 for summaries). Such knowledge is relevant
to guide choices in applied spatial research where theoretical spatial econo-
metric assumptions of asymptotics might not hold. Results from simulation
experiments are inherently multi-dimensional as they reflect dimensions such as
different spatial tests or estimators, spatial parameters, sample sizes, data gen-
erating processes, and weights matrices. However, standard existing formats of
reporting this multi-dimensionality are associated with several key challenges:
1) Many results are not displayed because the output far exceeds an article’s
allowable space limit (e.g. Baltagi et al, 2003 p.132 footnote 2 and Anselin and
Moreno, 2003, p. 605, footnote 19); 2) the generally overwhelming volume of
results reported in traditional tabular format hinders an immediate intuitive
interpretation; and 3) traditional tabular and graphical reporting formats make
it difficult to efficiently compare results across tables and graphs, respectively.

The purpose of this article is to propose a spatial visualization approach to
mapping simulation results that address these three challenges. Although spatial
econometric simulation results pertain to spatial methods, spatial approaches
have rarely been used to display these results. What a spatial approach adds to
the traditional table and graph display formats is that data can be visualized
in a more compressed format through lattice (or area) maps. Hence, if needed,
all simulation results can be displayed succinctly (as opposed to only subsets
of results). Further, area maps visualize spatial patterns of results on the same
scale. Thus the results’ meaning becomes immediately transparent through the
use of proximity and color shading (including in black and white). Finally, the
joint display of multiple micro maps makes it possible to efficiently compare
simulation results visually across multiple dimensions. Specifically, we propose
to visualize the size and power1 of spatial tests as well as the precision and bias
of model estimates by mapping deviations of beta values and standard errors.

The remaining article is structured as follows. In the next section, display
formats that are commonly used in spatial econometric simulation experiments
are presented. Following is a more detailed introduction of the proposed spatial
visualization approach, which includes several examples from spatial simulation
experiments. The article closes with a conclusion that discusses limitations of
the proposed approach and contextualizes it.

2 Common Displays of Simulation Results

Results from the extensive number of spatial econometric studies that have ap-
plied simulation experiments since the 1970s are summarized in Anselin and Rey
(1991) and Florax and de Graaff (2004). By contrast, the focus here is on typi-
cal display formats from selected examples of this literature. The most common

1The size of a test is the probability of rejecting the null hypothesis when it is actually
true, whereas the power of a test is the probability of rejecting a false null hypothesis. The
null hypothesis of the LM Error, LM Lag and Moran’s I is that there is no spatial dependence,
i.e., ρ = 0 for the lag case and λ = 0 for the error case (Anselin, 1988).
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formats to display simulation results include tables, line graphs (such as QQ
plots, discrepancy plots, and size-power curves), and surface response regres-
sions (displayed as tables or graphs). Very recently, studies have begun to use
spatial visualizations such as lattice maps, contour line micro plots (2D and 3D),
and heat maps. However, these examples differ from the spatial visualization
approach proposed in this article in that they often visualize simulated spatial
data distributions rather than simulation results related to bias and precision
of estimators or size and power of tests. Examples of these more traditional
display formats are highlighted next (Table 1 and Figure 1).

Tables remain by far the most commonly used tool to display spatial econo-
metric simulation results. The advantage of tables is that they present numeric
results that can be compared at a given precision level, either qualitatively
(Anselin and Rey, 1991) or quantitatively through meta-analysis (Florax and
de Graaff, 2004). More theoretical spatial econometric articles tend to primarily
use tables and statistical summary methods such as response surface analysis
to synthesize simulation results (for examples, see Anselin, 1986, Kelejian and
Robinson, 1998, Lee, 2004, Kelejian and Prucha, 2007, Baltagi et al, 2007, Lam-
bert et al, 2010, Lee and Liu, 2010). In their basic form, tables are limited to
a three-dimensional display of data by categorizing a variable’s values by fields
and rows. However, in most examples of displaying spatial simulation results,
nested tables are used that further subdivide the x- and/or y-axis. A typical
example of displaying simulation results for the properties of spatial dependence
tests is a rejection frequency table to demonstrate size and power of tests for
different spatial parameter values and sample sizes (e.g. Table 1 for the power
of statistical tests). Sometimes the results from different tests are nested in the
same table. Multiple tables are often used to present additional dimensions,
e.g. the results for different data generating processes. Since these tables span
multiple pages, it is difficult to efficiently compare results between tables.

Graphs that are commonly used to display spatial simulation results are
generally limited to a three-dimensional display of data by plotting a variable’s
values on an x- and y-axis. While tables display values in discrete row and
column categories, one of the strengths of graphs is that they can visualize
the distribution of values on continuous x- and/or y-axes. Typical examples
of graphical displays in studies that assess the properties of diagnostic tests
for spatial dependence include rejection frequency plots, p value plots, p value
discrepancy plots and size-power curves (e.g., Anselin and Moreno, 2003 or
Baltagi et al, 2003). QQ plots are also used frequently to compare quantiles of
hypothesized and observed distributions (e.g., Anselin and Kelejian, 1997 and
Lee and Liu, 2010).

Line graphs are most frequently used to compare the performance of spatial
estimators, for instance, by plotting the root mean square error against the size
of a spatial parameter for different estimators or weights matrices (e.g., Kelejian
and Prucha, 1999 or Stakhovych and Bijmolt, 2009). Prominent examples of
more statistical summary methods of simulation results include response surface
analysis (e.g. Kelejian and Robinson, 1998, Anselin and Moreno, 2003, Egger
et al, 2009, Mur and Angulo, 2009) and meta-analysis (Florax and de Graaff,
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2004). These results are usually displayed in tabular or line graph format.
Although the graphical display of results makes cross-graph comparisons easier
than for tables, the constraint to three dimensions within a graph remains.

Some very recent studies are applying maps in the context of simulation
studies. However, these visualizations primarily pertain to the generated or
estimated distribution of simulated data values for each grid cell on a lattice
(where the lattice is the map used to define spatial connectivity in the simula-
tions). For instance, Fingleton and Le Gallo, 2010 (p. 65) use a heat map (or
”spatially autocorrelated quadratic surface”) to visualize the spatial correlation
of their simulated X values on a 15x15 grid. López et al (2010) also visualize
the distribution of simulated data values on a grid. Yu et al (2010) (p. 82)
apply 10x10 lattice maps to visualize the values of a simulated random field
and estimated fields. Going beyond these more standard mapping applications,
several other recent spatial simulation studies use visualizations more abstractly
to map variations in estimated parameters or probabilities. For instance, López
et al (2010)’s 2D and 3D contour maps display the spatial distribution of locally
estimated spatial parameters while Mur and Angulo (2009)’s contour maps vi-
sualize the probability of correctly selecting different data generating processes.

Our proposed spatial visualization approach combines elements from both
these heat map and contour map examples. We use heat maps more abstractly
to display and compare simulation results such as estimated parameters, stan-
dard errors or rejection rates (as opposed to heat mapping simulated values for
a lattice that is part of the simulation design, which is more common). In this
sense, the proposed spatial visualization approach supplements common graphi-
cal formats like discrepancy plots or size-power curves by, for instance, mapping
the bias of spatial estimators or the power of spatial tests. Finally, as different
map formats are starting to be used in simulation studies, one of the purposes of
this article is to focus attention on the utility of these formats to promote their
wider use beyond the still rare examples discussed above. This is a discussion
that is absent in these examples.

3 A Spatial Visualization Approach

The contribution of our proposed spatial visualization of simulation results is
that it improves the intuitive comparison across simulation dimensions versus
the typical table and graph displays discussed above. As Tufte (2001) points
out, our eyes can make a remarkable number of distinctions within a small area
[p. 161]. However, (. . . ) Maps routinely present even finer detail [p.162]. We
take advantage of this and conceptualize the visualization of simulation results
abstractly as a spatial map rather than as the more commonly used geospatial
(i.e. geographically referenced) map. In this sense, the notion of a spatial map
refers to the visual representation of simulation results in terms of location and
color. Simulation results are represented through the different intensities of a
color’s tone, thus turning a table into a choropleth map. Each cell of the table
becomes a polygon that is colored following a gradient scheme: the lightest tone
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represents the smallest value and the darkest one the largest (this also works
in black and white). To ensure comparability, values in the original table need
to be reported in the same scale. Then the resulting map makes easy pattern
recognition of the spatial distribution of simulation results possible.

In this context, location is not defined geographically but instead reflects an
observation that corresponds to two dimensions of the simulation (such as spatial
estimators and autoregressive parameters). The color value of a given location
adds a third dimension (such as RMSE values). By mapping simulation results
in terms of a range of colors and locations, spatial patterns can become visible
through the proximity of similar values in nearby locations (this is especially
likely when the x- and/or y-axis are ordered as is the case in the two map
examples presented below). As in the graphs described above, the starting point
for our spatial visualization remains a variable mapped onto an x- and y-axis
(three dimensions). Two dimensions are then added by nesting these maps in a
2x2 display that allows for an additional x- and y-axis. For instance, in Fig. 3,
β discrepancy values reflecting deviations form the true parameter (Dimension
1) are mapped onto an x-axis of spatial parameter values (Dimension 2) and a
y-axis of estimators (Dimension 3). Then these micromaps are replicated for
different weights matrices (Dimension 4) as an additional dimension on the y
axis and spatial regression model specifications (Dimension 5) as an additional
dimension on the x axis. Nesting additional layers onto the x and y axes allows
5 dimensions to be displayed in the nested spatial map format

While this approach is comparable to a nested table, the advantage of the
nested map display is that the visual comparison of the simulation results in map
format immediately reveals patterns that are not similarly apparent in nested
tables or across tables or graphs. Further, these patterns are revealed at different
scales: Within a micromap (3 dimensions), within a map (5 dimensions), and
across maps with 5 dimensions each, such as for β discrepancies with different
weights specifications or for the latter and standard errors. In short, while
tables can also nest results, they are unable to efficiently reveal patterns in
nested ways, which is made possible by the proposed spatial visualization of
simulation results.

The following two subsections illustrate how this technique can add efficient
pattern detection to traditionally applied methods. We use two examples: First,
a spatial visualization of properties of tests for spatial dependence in linear
regression models and second, a map of the precision and bias of non-spatial
versus spatial estimators.

3.1 Maps for Test Size and Power

As an illustration of mapping tests properties, we consider the simulation results
presented in Anselin and Rey (1991)2. The authors compare the properties of
Moran’s I and Lagrange Multiplier (LM) tests for spatial dependence. They

2The results presented here are based on a replication of the experiment undertaken by
Anselin and Rey (1991). Due to the randomness of any Monte Carlo experiment, the results
may differ.
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consider size and power of the tests for both spatial error autocorrelation and
spatially lagged dependent variables3. Six sample sizes are considered, ranging
from 25 to 225 observations. Although they describe results for different spatial
weights matrices based on regular lattices, here we present the properties of the
tests using only a spatial rook matrix – named W1 in Anselin and Rey (1991).

Table 1 shows the results of a replication of the simulation in Anselin and
Rey (1991) for a sample of 25 observations and considering a nominal Type I
error (i.e. significance criterion/nominal size) of 0.05. LM Error and LM Lag
indicate the Lagrange Multiplier test for the true spatial process – whether it
be error (λ) or lag (ρ). The terms MI Error or MI Lag represent the results of
the Moran’s I test, also according to the true spatial process.4

N λ or ρ LM Error MI Error LM Lag MI Lag
25 -0.9 0.984 0.98 1 1

-0.8 0.934 0.924 1 0.995
-0.7 0.824 0.804 1 0.937
-0.6 0.684 0.656 1 0.746
-0.5 0.509 0.479 0.998 0.513
-0.4 0.343 0.313 0.974 0.33
-0.3 0.227 0.202 0.871 0.202
-0.2 0.125 0.114 0.554 0.117
-0.1 0.067 0.065 0.192 0.065
0 0.042 0.054 0.055 0.054

0.1 0.028 0.059 0.133 0.061
0.2 0.044 0.103 0.442 0.105
0.3 0.084 0.179 0.781 0.171
0.4 0.154 0.286 0.953 0.275
0.5 0.249 0.417 0.995 0.427
0.6 0.396 0.579 1 0.619
0.7 0.567 0.727 1 0.82
0.8 0.724 0.839 1 0.955
0.9 0.861 0.931 1 0.996

Source: Based on Anselin and Rey (1991)

Table 1: Power of statistical tests over different values for the true spatial
parameters (λ,ρ) when significance level is 5%, sample size is 25, and a rook
contiguity matrix is used

Another approach is the use of line graphs to represent the properties of the
tests. Fig. 1 shows the power of the LM Error test when the nominal size of
the test is 5%. These graphs facilitate the comparison between size or power of
different test statistics. The case of Fig. 1 emphasizes the distribution of the
power of the tests for different sample sizes.5 The lines represent large amounts
of information that are easy to interpret and compare. However, when precision

3More information on the tests and the spatial error and lag models can be found in Anselin
(1988).

4While LM Error and LM Lag are two different tests, the MI Error and MI Lag represent
the results of the same Moran’s I test for different models. The former is related to a spatial
error model, whereas the latter indicates a spatial lag model.

5 Another graph alternative is the percent plot, or p-p plot where the rejection rate of a
test is plotted against its nominal size (Wilk and Gnanadesikan, 1968).
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Source: Based on Anselin and Rey (1991).

Figure 1: Power of LM Error test when nominal size is 5%, under different
sample sizes and values for the true spatial error parameter (λ), when using a
rook contiguity matrix

is needed, such as in the evaluation of the size of tests, graphs such as p-value
or discrepancy plots (Davidson and MacKinnon, 1998) are preferred.

One of the limitations of graphs is related to the number of lines shown. Too
many lines make it hard to distinguish patterns or colors, and lines crossing each
other are difficult to track. Line graphs do facilitate the visualization of results
but at the cost of precision and they display little more information than a
table.

In comparison, the spatial visualization of test properties can represent in-
formation more compactly than tables or graphs, thus facilitating readability
and a comparison of results between different tests or sample sizes. Fig. 2
shows the statistical power or ’Rejection Rate’ (with increased power indicated
by darker shading in the vertical bar to the far right of the graphic) of all the
tests considered in this section – LM Error and Moran’s I for a spatial error
model and LM Lag and Moran’s I for a lag model. The figure uses the nested
spatial map features to layer on additional information, adding the slider bar
to the right and using a second layer of information on the x axis to show the
results for all 6 different sample sizes considered in Anselin and Rey (1991).

The nested spatial map in Fig. 2 shows that the power of the tests increases
with sample size and with the absolute value of λ or ρ as expected (recall that
statistical power increases with greater discrepancy between the true parameter
and its hypothesized value). Figure 2 shows that power increases in a more or
less symmetric fashion whether the spatial dependence is positive or negative.
For the error model, the power curve is steep, indicating that the power of the
tests increases rapidly with bigger sample sizes. The figure also shows that
Moran’s I and LM Error have similar performance in the presence of spatial
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Figure 2: Power of LM Error, LM Lag and Moran’s I (Error and Lag model)
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dependence in the error. In contrast, the LM lag statistic has clearly superior
power in the presence of a spatial lag process. The LM lag achieves a high re-
jection frequency even for small sample sizes such as N=25 for values of ρ ≥ 0.3
6.

If the same amount of information were to be presented in the format of
Table 1, six similar tables, or a larger version of the table, would be required:
one for each sample size. Or else, if a graph as in Fig. 1 were to be used, four
similar graphs would be needed to avoid stacking lines on the same graph.

3.2 Maps for Model Bias and Precision

The next example is based on research by Anselin and Arribas-Bel (2011), which
assesses the claim that spatial fixed effects can account for spatial autocorre-
lation. As an empirical illustration, the authors provide evidence from several
Monte Carlo experiments; they simulate different scenarios 10,000 times each
and average the values of the coefficient estimates (“Betas”) and their standard
errors (“SEs”) across simulations to study the influence of several types of spa-
tial data generating processes on different estimation methods. In particular,
they consider the following specifications for two different datasets: two spatial
configurations (assumed queen or block-wise dependence); and two processes,
spatial error or spatial lag, operating at eight different degrees of spatial au-
tocorrelation (λ and ρ respectively). For each of them, they estimate three
models, namely OLS, OLS with fixed effects (“FE”) and a spatial model (“KP”
for Kelejian and Prucha (1998)). This setup results in 192 (2 x 2 x 2 x 8 x 3
= 192) combinations. Since the focus is on looking at the estimation bias in
the betas and precision induced by the spatial autocorrelation in the data, they
report the average value for each case.

Fig. 3 shows three possible options to present the results. The first one
(a) depicts the traditional table for the spatial error case. The second one (b)
displays the density distribution of the coefficient estimate values (horizontal
axis) for OLS with fixed effects by the extent of spatial autocorrelation for the
queen contiguity case. In this case, larger deviation from the true value (1,0)
implies larger bias, as ρ increases. The maps in Fig. 3 (c) show the results
for the parameter estimates (average deviation from the true value) and the
standard errors (SEs) for the two spatial weights, the three estimation methods
(OLS, FE and KP) and the eight values of spatial autocorrelation. Each lattice
covers one type of value (beta estimates on the left and SEs on the right). For
each map, the horizontal axis represents different sizes of spatial autocorrelation
for the spatial error (λ) or spatial lag (ρ) generating processes. The vertical axis
shows each of the methods for the two assumed spatial dependence processes.
An additional nested dimension across the horizontal axis allows the display of
both types of spatial models (“Sp. Error” or “Sp Lag”). And an additional
dimension on the side of the graphic makes the display of two types of spatial

6For more information on the results and comparison between LM Error and LM Lag,
please see Anselin and Rey (1990).
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Rho Values
0.0 0.01 0.1 0.25 0.5 0.75 0.9 0.99

OLS
Beta 1.0 1.0 1.002 1.013 1.059 1.182 1.388 2.01
SE 0.013 0.013 0.013 0.014 0.015 0.021 0.035 0.123
MSE 0.0 0.0 0.0 0.0 0.004 0.033 0.151 1.025

FE
Beta 1.0 1.0 1.001 1.01 1.051 1.16 1.328 1.689
SE 0.013 0.013 0.013 0.014 0.015 0.02 0.031 0.077
MSE 0.0 0.0 0.0 0.0 0.003 0.026 0.108 0.477

KP
Beta 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SE 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014
MSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(a) Table
(b) Distribution density

(c) Simulation map

Figure 3: Comparisons of table, line graph and nested spatial map display of
simulation results

dependence processes possible (“State Block”, “Queen”). Finally, the bar at
the bottom of the graphic displays the degree of deviation of beta from the true
value (left) as well as the standard error (right).

Among the three, the map allows for a quick visualization and presents in a
clear way the main “message” of the data. It is also the device that condenses the
largest amount of information: note that, in order to represent the information
in Fig. 3 (c), it would take four tables like the one in (a) or twelve plots as in
(b).

4 Conclusion

We propose spatial visualization of simulation results as a useful supplement to
tables and graphs rather than as alternative substitute for them. Each device
has its benefits and disadvantages. Tables excel at accuracy, but do poorly at
showing the main message in a succinct way. Density graphs intuitively inform

10



about the estimates beyond the mean but do not condense information very well
as the space needed increases rapidly with the number of dimensions to portray.
Maps condense much in little space, visually communicating statistical informa-
tion and displaying the main picture at once; however, they are not optimal for
displaying particular values or distribution of values. Because simulation mod-
eling approaches to assess statistical properties of estimators inherently contain
many dimensions, enhanced visualization methods are particularly useful. We
showed using a nested spatial map (Figure 1) the superior power inherent in
spatial lag models, as compared to spatial error models, all else the same –which
is a powerful visual reminder of this important statistical property which would
otherwise remain obscure. The nested spatial maps presented in this article
are only two examples of how one might spatially visualize simulation results.
Many other extensions are possible, e.g. mapping root mean squared errors
(RMSEs) instead of beta deviations or combining other simulation dimensions
in the visualization. This work complements efforts begun by Tufte (2001) and
others, to use powerful visualization techniques to enhance translation of com-
plex information.
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