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Abstract 

Data from an IKONOS image acquired over Dallas was used to demonstrate the use of an 

operational wavelet-based algorithm to examine the performance of different texture measures and 

window sizes at various resolutions in connection to characteristic scales. It was found that a 63x63 

window was the optimal window size, and energy measure produced the highest accuracy. Results 

from this study suggest that the choice of window size in wavelet-based classification affects the 

accuracy. Larger window sizes significantly improve the overall accuracy when using homogeneous 

samples. In the real-world situation, a larger window may not necessarily produce higher accuracy 

since a larger window tends to cover more land-use and land-cover classes and therefore may miss 

smaller regions of classes that could lead to poorer accuracy. On the other hand, a smaller window 

tends to be incomplete in its coverage of texture features that represent a complex class. The 

classification accuracy can be improved by using more combinations of sub-images at different 

scales. However, smaller sub-images at the last two levels may lower the classification accuracy. 

The characteristic scale of the most complex feature among all selected classes could be the optimal 

local window size necessary to achieve the highest accuracy. 
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1. Introduction 

Despite the widespread availability, frequency of updates, fine spatial resolution, and cost 

efficiency of the recent generation of remotely sensed data (e.g., IKONOS from April 1999 - 

http://www.geoeye.com/products/imagery/ikonos/default.htm; QuickBird from October 2001 - 

http://www.digitalglobe.com/about/quickbird.html), the use of remote sensing technology for urban 

mapping still remains a challenging task. It is generally accepted that higher spatial resolution is 

more desirable than higher spectral resolution in urban mapping (Jensen and Cowen, 1999). 

However, with higher spatial resolution, spectral responses from smaller objects and features (e.g., 

rubber, plastic, shingle, metal, concrete, asphalt, wood, brick, soil, vegetation) become 

distinguishable. As a result, these high spatial resolution images over urban areas contain many 

edges and small objects, and appear complex and noisy, making the classification of urban land-

covers (and subsequent inference of urban land-use classes) using the traditional per-pixel 

classification approaches (e.g., maximum likelihood classifier, Mahalanobis decision rule) difficult. 

There is a growing need for more accurate image processing techniques to analyze and classify 

these high-resolution data sets (Chen and Stow, 2003). 

In land-use and land-cover classification, the objective is to identify a class that may be 

composed of many small objects and features but not any individual objects and features within that 

class (Campbell, 2002). In other words, we are interested in identifying the composite (e.g., 

residential, commercial) of different features and objects (e.g., cement roads, tar roads, houses, 

grasses, shrubs, trees, bare soil, driveways, swimming pools, parking lots, and sidewalks) rather 

than attempting to have a collection of those many small components that may be of little or no 

interest to researchers, policy makers, or planners for consequent analysis or planning and decision 

making. 

In the study of pattern recognition and interpretation, one of the key elements that the 

human visual system uses to recognize most spatial objects is their texture (Bergen and Julesz, 
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1983). Even though human eyes can recognize complex patterns in images and distinguish between, 

for example, residential and commercial classes, the commonly used classification approaches that 

employ the original spectral bands encounter serious problems in identifying urban classes since 

they primarily use spectral information instead of the spatial association of surrounding objects and 

elements. This is because urban land-use classes generally show high variation in the spectral 

response of their component land-cover types (Foster, 1985; Gong and Howarth, 1990; Barnsley et 

al., 1991) and the training statistics of these classes exhibit very high standard deviation or 

variances (Sadler et al., 1991). The data distribution of these classes may also violate one of the 

important assumptions of the traditional statistical classifiers (e.g., Maximum likelihood decision 

rule) that the pixel values follow a normal distribution (Barnsley et al., 1991; Sadler et al., 1991). 

The classification accuracy of images is the result of a trade-off between two main issues: class 

boundary pixels and within-class variances (Metzger and Muller, 1996). Hence, the spectral per-

pixel classification approaches (e.g., Maximum likelihood classifier using the original spectral 

bands) my not be capable of handling a training sample containing many land surface categories. 

Baatz and Schape (2000) noted that important semantic information for understanding an image is 

necessary through analyzing their mutual relations rather than single pixels. 

All types of image features are textured in two ways. One is texture within a land-cover 

class (e.g., textures of grass, trees, roads, soil, water, and rooftops), and the other is the detailed 

land-cover objects and features from which a land-use can be inferred (e.g., the texture of a 

residential class) (Myint, 2006a; Myint et al., 2006). They both represent micro and macro textures 

that need to be considered at multiple scales. It is widely known that procedures for image 

segmentation using texture features are one of the main research topics in the area of image 

processing (Dong, 2000; Ferro and Warner, 2002; Chen et al., 2004).  

It has been observed that several geospatial techniques have emerged as an alternative to 

spectral-based traditional classifiers: the image spatial co-occurrence matrix (Franklin et al., 2000); 
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local variance (Woodcock and Harward, 1992; Ferro and Warner, 2002; Stow et al., 2003); the 

variogram (De Jong and Burrough, 1995; Brown, 1998; Walsh et al., 2003); fractal analysis (Lam 

and Quattrochi, 1992; Bian and Walsh, 1993; Crews-Meyer, 2002; Read, 2003); and spatial auto-

correlation (Emerson et al., 1999; Purkis et al., 2006). These approaches have demonstrated some 

improvements in the classification accuracy of urban land-covers and subsequent inference of urban 

land-use from land-cover classes. However, most of the geospatial approaches take spatial 

association of features at single scale and do not transform images into different spatial features 

and/or analyze texture features at multiple scales. 

During the last decade, a powerful mathematical transformation technique called wavelet 

transforms has received a lot of attention by researchers in image processing because it analyzes 

signals at multiple scales. A number of researchers have demonstrated the power of wavelet 

transforms in image texture analysis and processing (Chang and Kuo, 1993; Zhu and Yang, 1998; 

Sheikholeslami et al., 1999; Bian, 2003). Myint et al. (2002) explored the effectiveness of a wavelet 

transform approach in discriminating urban land-use and land-cover samples. However, these 

studies used small subsets of pure land-use and land-cover classes without an operational algorithm 

for classification of the remotely sensed images. In other words, these studies did not deal with real-

world situations, and samples used in the studies were all homogeneous classes of small subsets. In 

the previous study, there was no single sample that covered two or more land-use or land-cover 

classes in the way a local window moves throughout the image to identify the classes. In the real-

world situation, operational texture-based algorithms employ a local window to classify real 

satellite images instead of treating some training samples as local windows to examine the 

effectiveness of potential classification algorithms in the preliminary stages of testing (Myint et al., 

2006). 

Myint (2006b) developed a number of operational algorithms and a wavelet-based 

classification framework to recognize spatial objects in satellite images. The objective of this study 
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is to examine and demonstrate the importance of level of scales (texture features at different spatial 

resolutions) in connection to consideration of a characteristic scale that can be defined as a 

minimum distance between two pixels to characterize a texture feature (Lark, 1996) using the 

algorithms developed by Myint (2006b). This study also demonstrates the impact of a local window 

on the classification accuracy when dealing with real-world situations in remotely sensed images 

instead of dealing with training samples or image subsets. Hence, different texture measures, 

different window sizes, and combinations of different decomposition levels using operational 

wavelet-based algorithms were tested in the study. 

 

 

2. Study Area and Training Samples 

A pan sharpened IKONOS image was acquired for Dallas, Texas on October 3, 2004. The image 

data are at 1-m spatial resolution with four channels: blue - B1 (0.45 – 0.52 µm), green - B2 (0.52 – 

0.60 µm), red - B3 (0.63 – 0.69 µm), and near infrared (NIR) - B4 (0.76 – 0.90 µm). A subset of 

IKONOS data (1191x1478 pixels) covering a portion of the central part of the Dallas metropolitan 

area (Figure 1) was then used to examine and demonstrate the effectiveness of wavelets using 

different texture measures, local window sizes, and combinations of different decomposition levels.  

An area covering five classes was subsequently selected to develop training samples, 

including commercial, grassland, forest, residential, and water. One training sample per class was 

selected for all classes. The selected training samples and their descriptive statistics are presented in 

Table 1. The standard deviation and coefficient of variation for the homogeneous classes (e.g., 

forest) were relatively low while the heterogeneous classes (e.g., residential) were much higher. 
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3. Methods 

3.1. The Wavelet Approach 

Mallat (1989) developed the multiresolution analysis theory using the orthonormal wavelet basis. 

The approximation and details of a two-dimensional image f(x,y) at resolution 2j
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where integer j is a decomposition level, m, n are integers, )(xφ  is a smoothing function which 

provides low frequency information (low-pass filter), and )(xψ  is a differencing function which 

provides high frequency information (high-pass filter).  

)(xφ  and )(xψ  can be defined as: 

Dilation equation ∑ −=
k
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Wavelet equation ∑ −=
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For example, Haar wavelet transform has coefficients: 
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1)1( −=d . Thus, its dilation equation and wavelet equation can be expressed as: 
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(Strang and Nguyen 1997). 
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Using multi-resolution wavelet decomposition, four different types of texture information 

(four different sub-images) can be extracted from an image or from a local moving window of an 

image using low-pass (L) and high-pass (H) filters (Mallet, 1989). These are approximation (LL), 

horizontal detail (LH), vertical detail (HL), and diagonal detail (HH) sub-images. The 

approximation sub-image is a low-pass filtered image. The other sub-images known as detail sub-

images contain high frequency information. The approximation sub-image (LL) is expressed as 

fAd
j2 , horizontal detail sub-image (LH) as fD j

1
2 , vertical detail sub-image (HL) as fD j

2
2 , and 

diagonal detail sub-image as fD j
3
2  in the above formulae 1, 2, 3, and 4 respectively. An example 

illustrating wavelet decomposition at level 1 using a hypothetical image is shown in Figure 2. In the 

next level, the approximation sub-image is decomposed. We used Haar wavelet to extract four 

different types of texture information. 

A low-pass filtered coefficient in a sub-image is obtained by dividing the sum of two 

adjacent pixel values by 2  whereas the high-pass filtered coefficient is obtained by dividing the 

difference between two adjacent pixel values by 2 . This procedure can be applied to any of the 

sub-images for the next level of decomposition. In this study, decomposition was done iteratively to 

the approximation sub-images at each level. This is referred to as pyramidal multi-resolution 

decomposition (Strang and Nguyen 1997). The filtered versions of the sub-images are down-

sampled by a factor of two, and the approach is known as dyadic transform. The down-sampled 

sub-images are a quarter of the original approximation image, and there is neither loss nor 

redundancy of information between the levels since it is an orthogonal wavelet. A simple procedure 

for computing one approximation and three detail sub-images of a 4x4 image using Haar wavelet 

transform is illustrated in Figure 3.  

 In applying the wavelet approach, there are four considerations: the wavelet function, the 

textural measures used to describe the decomposed images, the level of decomposition, and the 
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local window size. All four factors could affect the performance of the wavelet approach in 

identifying land-use and land-cover classes. In this paper, the wavelet function selected was Haar 

and the textural measures were log energy, Shannon’s index, and energy, which allowed us to focus 

on the effects of scale (local window size and decomposition level) on the classification accuracy. 

 

Three spatial measures below: log energy (LOG), Shannon’s index (SHAN), and energy (ENG, also 

known as angular second moment), were used to identify the spatial arrangements of the selected 

land-use and land-cover classes at different scales.  

Texture Measures 
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where ),( jic is a wavelet coefficient of a sub-image with M rows and N columns at location i and j 

at one level. 

Wavelet decomposition and computation of feature vectors were done for all selected 

training samples before starting the decomposition of the local window at the top left corner of the 

image and computing texture measure values of sub-images of that local window. If a sample image 

or a local window of an image is decomposed up to level m, the feature vector used in this study can 

be described as 

T
mHHmHLmLHmLHHHHLLHLL ffffffff ],,,....,,.........,,,[ 1111 −−−−−−−−  

The distance between the feature vector of a local window and a set of certain texture samples of 

their feature vectors will lead to the supervised classification using Euclidean distance classifier. 
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More levels of decomposition can be expected to increase the overall accuracy because more 

decompositions can extract a larger number of sub-images that obtain texture information in 

different directions at different scales but in the real-world application this may not be the case 

because texture features in a small sub-image may not provide any useful information that would 

increase the accuracy. In some cases this situation will create signature confusion that could lead to 

deterioration in accuracy. For example, if we decompose a 32x32 image to four levels, the last sub-

image at the fourth level will contain 2x2 pixels. There may be no significant texture information in 

a 2x2 image, and inclusion of this sub-image in the classification may lead to lower overall 

accuracy.  

Level of Scale 

A 95x95 window was used to test the accuracy of the combination of different scale levels 

(i.e., level 1, level 1–2, level 1–3, level 1–4, level 1–5, level 1–6) since it allows more 

decomposition levels than in 31x31 and 63x63 images but could be expected to have fewer 

problems with mixed boundaries than larger windows (i.e., 127x127, 159x159). 

 

Windows are commonly used in digital image processing to determine the local information content 

around a pixel. It could be expected that the accuracy should increase with a larger local window 

size since it contains more information than a smaller window size and therefore provides more 

complete coverage of spatial variation, directionality, and spatial periodicity of a particular texture. 

If our objective is to identify residential classes a local window should be large enough to cover 

single-family houses, lawns, shrubs, trees, tar roads, and cement roads, concrete sidewalks, 

swimming pools, etc. 

Local Window Size 
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Gong and Howarth (1990) generated edge-density images with the use of sizes varying 

from 7x7 to 31x31. The most common approach for determining the appropriate window size is 

based on empirical results using automated classifications (Hodgson, 1998). The seminal works on 

second-order texture statistics by Haralick et al. (1973) were based on windows of 64x64 or 20x50. 

Pesaresi (2000) experimented with 47 different square window sizes, ranging from 5x5 to 99x99. It 

is important to note that the identification of a method for determining optimal window size a priori 

classification is ambiguous (Gong and Howarth, 1992). 

In this study, the evaluation of different window sizes was performed in order to determine 

the optimal window size and examine the impact of classification specificity on the selection of 

local window size in real-world applications. It should be noted that larger local window sizes 

might provide higher accuracies since they cover more features and objects. In general, information 

contained in a 159x159 local window (159x159=25,281 pixels) is about 26 times greater than a 

31x31 window (31x31=961 pixels). However, the above statement may only be true if a particular 

technique can be used effectively to characterize spatial arrangements of features at multiple scales. 

Some spatial analysis methods may not improve accuracy while using a larger window size since 

they focus primarily on coupling between features and objects at single scale and cannot determine 

the effective representative index of particular texture features (Myint et al., 2004). 

There have been some attempts to improve the traditional spectral-based classifiers by 

using texture transforms in which some measure of variability in digital number (DN) values is 

estimated within local windows, for example, in the contrast between neighboring pixels (Edwards 

et al., 1988). One commonly used statistical procedure for analyzing texture uses the image 

standard deviation or variance (Woodcock and Harward, 1992; Arai, 1993; De Jong and Burrough 

1995; Ferro and Warner, 2002; Stow et al., 2003). It should be noted that different texture features 

may share the same standard deviation or variance, and the same spatial index (e.g., fractal 

dimension value) (Dong, 2002). These texture algorithms may also share the same or similar index 
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values for different window sizes of the same texture class. For example, different window sizes of 

a deterministic texture will give the same standard deviation value. A larger window size may not 

improve classification accuracy while using a simple statistical measure to characterize texture 

features. In this study, we used some texture samples of land-use land-cover classes to demonstrate 

the effectiveness of a commonly used statistic (i.e., variance) to characterize spatial arrangements of 

features and objects when dealing with different window sizes of homogeneous texture features (a 

subset or a region does not contain more than one texture feature). We also attempted to determine 

if larger windows improve classification accuracy while using the wavelet technique.  

To demonstrate the impact of local window sizes on the classification accuracy when using 

homogeneous texture features, linear discriminant analysis approach was employed. The texture 

measures (i.e., energy values of the decomposed sub-images) from the wavelet analysis and the 

variance values of the samples generated above were subject to discriminant analysis. SPSS 

software package was used to perform discriminant analysis for the classification of land-use and 

land-cover samples. The procedure generates a discriminant function (or, for more than two groups, 

a set of discriminant functions) based on linear combinations of the predictor variables, which 

provide the best discrimination between the groups. 

To understand the nature of the choice of a local window to identify selected land-use and 

land-cover classes, image samples covering 16x16, 32x32, 64x64, 128x128, and 256x256 pixels or 

local window sizes are provided in Figure 4. It can be observed that the larger the local windows, 

the higher the chance of covering more land-use and land-cover classes, and objects.  

The smallest window size used in this study was 31x31 since it was anticipated that data 

obtained from a local window size of less than 31x31 (31 m) for an IKONOS 1 m resolution may 

not be large enough to cover and identify a residential class since the window size needs to cover 

land surface features within a residential area (e.g., rooftops, lawns, shrubs, trees, tar roads, cement 

roads, sidewalks, driveways, and swimming pools). The local window sizes (w) used in this study 
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include 31x31, 63x63, 95x95, 127x127, and 159x159. To examine the relation between local 

window sizes and classification accuracy when dealing with homogeneous texture features we 

generated five samples each of the selected land-use and land-cover classes for the above local 

window sizes (31x31, 63x63, 95x95, 127x127, and 159x159) using IKONOS band 3 data. 

The difference between each window and its consecutive window is 32 pixels since it is 

understood that there is no significantly different information contained in an area of less than 

32x32 m on the ground. We added 32 to make the number of pixels in successive windows odd 

since the identified class needs to be assigned to the center of the window. However, the algorithm 

automatically adds one row and one column for odd number windows or sub-images of the selected 

windows using mirror extension during computation since wavelet decomposition procedure is 

done with even number signals (i.e., rows or columns). Hence, during the wavelet computation the 

actual local windows used will be 32x32, 64x64, 96x96, 128x128, and 160x160. 

The extension is done only during the computation process and the identified class is 

assigned to the center of the original local window. Since (w-1)/2 pixels are lost at the top, bottom, 

left, and right of the entire image, the algorithm automatically extends (w-1)/2 pixels all around the 

image (e.g., 16 pixels for a 33x33 local window) before starting the whole process. The extension is 

done using the mirror extension. 

 

The Euclidean distance classifier was employed for texture classification using the computed 

texture feature vector of a local window and training samples. Each pattern class C

Classifier 

k is represented 

by a prototype pattern Pk. If decomposition was done up to three levels for four bands, we would 

obtain 48 different sub-images for one training sample or one local window and hence, Pk (k = 1, 

2… 48) were total feature vectors of the training samples. The Euclidean distance classifier assigns 

an unknown class pattern Q (local window) to the class (one of the training samples) if the distance 
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Rj between Q and Pk

∑ −=−= 2
, )( jkkkj pqPQR

 is the minimum among all possible class prototypes. The Euclidean distance is 

defined as 

.       (12) 

where j was a class sample (i.e., j = 1, 2 , 3, 4, 5). 

 

3.2. Accuracy Assessment 

It is generally accepted that a minimum of 50 sample points for each land-use land-cover category 

in the error matrix should be collected (Congalton, 1991; Congalton and Green, 1999). For 

example, if we had selected 50 sample points per class, the total points selected would have been 

only 0.014% of the whole image (i.e., 250 out of 1191 x 1478 = 1,760,298 points). Uncertainty of 

the overall picture does not allow us to assume that the sample points (0.014% of the entire scene) 

perfectly represent the whole image for accuracy assessment. For an ideal evaluation and a precise 

comparison, especially when dealing with the evaluation of different classification approaches, it is 

generally accepted that such “wall-to-wall” comparisons of checking every pixel in an image is the 

best approach (Lillesand et al., 2004). 

Hence, the classes were accurately delineated using manual interpretation with heads-up 

digitizing using the ERDAS Imagine raster tool option. All points or pixels (i.e., 1191 x 1478 = 

1,760,298 pixels) in the visually interpreted map were used to assess the accuracy instead of 

selecting a certain number of pixels using random, stratified random, or systematic sampling 

approaches. This is to accurately determine which one of the decision rules, window sizes, 

combination of levels, and texture measures in comparison to geospatial and traditional approaches 

employed in the study can effectively identify the urban land-use and land-cover classes that we can 

easily recognize with our eyes. 
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The output map for accuracy assessment generated from manual interpretation is assumed 

to be error-free or at least highly accurate with negligible error because of the thorough digitization 

procedure done with the help of sound local area knowledge and a comprehensive ground survey. 

The manually digitized map (Figure 5) was treated as the reference data (ground truth data). 

A diagram illustrating the research design employed in this study is presented in Figure 6. 

Image display, training sample selection, statistical analysis, layer stack, band split, image subset, 

and data import/export were accomplished using ERDAS Imagine software. However, all wavelet-

based approaches for texture analysis and image classification were developed using C++ 

programming language. 

 

 

4. Results and Discussion 

It can be observed from Table 2 that larger window sizes do not improve classification accuracy 

while using variance measure to characterize homogeneous texture features. In general, all window 

sizes produced very low accuracies and overall accuracies for all window sizes are inconsistent with 

varying window sizes. The overall classification accuracy for 31x31, 63x63, 95x95, 127x127, and 

159x159 homogeneous land-use and land-cover samples were found to be 24%, 20%, 48%, 24%, 

and 40% respectively (Table 2). The 95x95 local window size achieved the highest overall accuracy 

(48%) and the highest Kappa coefficient (0.35). It is difficult to interpret the producer’s and user’s 

accuracies since they range from 0% to 100%, and all local window sizes produced at least two 0% 

producer’s or user’s accuracy for all windows. For example, producers’ and users’ accuracies for 

forest, grass, and residential classes were found to be 0% for a 31x31 local window. The resulting 

overall accuracies have no relationship with the local window sizes used. Like many other texture 

and spatial analysis approaches, variance of land-use and land-cover classes in texture analysis 

Local Window with Homogeneous Texture Training Samples 
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focuses only on coupling between features and objects at single scale and is not capable of splitting 

signals into different transformed features in different directions at multiple scales. The variance 

measure cannot characterize particular texture features according to their directionality, spatial 

arrangements, variations, edges, repetitive nature of objects and features within a texture set, and 

contrasts.  

 As anticipated, the wavelet approach with the use of energy measure consistently improved 

the overall accuracy of 76%, 88%, 88%, 96%, and 100% for 31x31, 63x63, 95x95, 127x127, and 

159x159 local window sizes respectively (Table 3). The kappa coefficients for 31x31, 63x63, 

95x95, 127x127, and 159x159 window sizes were found to be 0.70, 0.85, 0.85, 0.95, and 1.00 

respectively. This is the result for the different window sizes of the samples using energy measure 

of wavelet sub-images at 2 levels and a discriminant function. This clearly demonstrates that the 

overall accuracy and Kappa coefficient increase as the local window sizes increase for 

homogeneous textures of land-use and land-cover classes for wavelet transforms (Table 3). This is 

because the wavelet technique extracts four different spatial features at each scale level from images 

and the selected samples are homogeneous texture features of land-use and land-cover classes that 

contain only one class per sample. A larger window size for all classes resulted in constantly 

increasing producer’s and user’s accuracies. There may be some signature confusion between forest 

and grassland since producer’s and user’s accuracies of these classes were relatively low for smaller 

window sizes. However, this is not the case for larger window sizes, and the 159x159 produced 

100% producer’s and user’s accuracies for all classes. Hence, this study confirms that larger 

windows improve the classification accuracy. 

 

63x63 training samples (or local windows) were used to test the accuracy of different texture 

measures (Table 4). This classification was carried out with the use of the entire image under study 

Texture Measures 
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using the wavelet algorithm developed in this study for the real-world situation. From Table 4 it can 

be observed that energy is probably the most effective measure since it gave the highest overall 

accuracy (81.84%). The same measure got the highest Kappa coefficient (0.68), which implies that 

an observed classification is on average 68% more accurate than one resulting from chance. 

Shannon’s index was the least accurate measure since it gave the lowest overall accuracy (30.17%). 

The Kappa coefficient for Shannon’s index is 0.17. 

The lowest producer’s accuracy (4.35%) and user’s accuracy (14.587%) were given by 

residential class and grassland respectively, and Shannon’s index yielded the lowest producer’s and 

user’s accuracies. This may be due to some signature confusion between the classes since there is a 

lot of grass in residential areas, and their spatial arrangements in some cases might be similar. The 

other classes that produced very low producer’s accuracies were commercial (22.99% for log 

energy) and grassland (36.55% for log energy), and very low user’s accuracies for forest (47.51% 

for Shannon’s index) and residential (25.95% for Shannon’s index). This could be due to the fact 

that Shannon index my not be effective in characterizing complex spatial features.  

 

 

The best texture measure (i.e., energy) obtained from the 63x63 samples was used to test the 

accuracy of different window sizes (i.e., 31x31, 63x63, 95x95, 127x127, 159x159). It can be 

observed from Table 5 that the 63x63 window was the optimal window for this study since it 

produced the highest overall accuracy (81.84%) and the highest Kappa coefficient (0.68). This is 

because the minimum distance between two pixels to cover a texture (the characteristic scale) is 

approximately 60 m on the ground for the residential class. The residential class contains the most 

complex texture since residential areas are composed of a diversity of spectrally different materials 

concentrated in a small area (e.g., plastic, metal, rubber, glass, cement, wood, shingle, sand, gravel, 

Local Window with Real-world Images  
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brick, stone, soil, vegetation, water, etc.). For example, tar roads, cement roads, rooftops with 

different materials (e.g., tile roof, wood, shingle roof, metal roof, tar roof, glass roof, plastic roof, 

light-gray asphalt roof), grasses, trees, bare soil, shrubs, swimming pools, driveways, sidewalks, 

may have a completely different spectral response, but together they are considered as a residential 

class. Apparently, this is not the case for all other classes. This indicates that the characteristic scale 

of the most complex class is the optimal window to achieve the highest classification accuracy. The 

output map of energy measure using a 63x63 window (Figure 7) looks informative and similar to 

the reference map (Figure 6). This study suggests that a larger window does not necessarily produce 

higher accuracy when dealing with a real-world situation. 

In general, the accuracy should increase with a larger local window size since it contains 

more information. This condition is true when dealing with homogeneous texture features 

(deterministic texture). However, in the real-world situation we are dealing with two or more 

different land-use and land-cover classes (two or more different texture features) in most cases 

while the local window moves throughout the image for classification. From a computational 

perspective, the ideal window size is the smallest size that also produces the highest accuracy 

(Hodgson, 1998). It is important to note that minimization of local window size is also important in 

image texture and pattern recognition techniques since larger window size tends to cover more land-

use and land-cover features and it consequently creates mixed boundary pixels or mixed land-use 

and land-cover problems. This may be partly because characteristic scales of different land-use and 

land-cover classes could be greatly different (e.g., characteristic scales of residential and water). 

It can be observed from Table 5 that the overall accuracy consistently decreases with 

increasing window sizes (77.39% for 95x95, 76.66% for 127x127, 74.32% for 159x159), but only 

after it reaches its maximum accuracy at the optimum window (63x63). Another problem of using 

larger window size is the fact that smaller land-use and land-cover features will be lost in 

classification. In other words, the larger the window size the smaller the number of segmented 
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regions or land-use and land-cover features identified in the image. It will also maximize the 

number of missing pixels around the edges of the image. In this study, the largest window (i.e., 

159x159) gave the lowest overall accuracy (74.32%) and the lowest Kappa coefficient (0.50). 

The second lowest accuracy was produced by a 33x33 local window. This was because a 

33x33 local window may not be large enough to completely cover heterogeneous classes (e.g., 

residential, commercial). It was found that the commercial class produced the lowest producer’s 

accuracies (31.16% for a 127x127 window and 20.67% for a 159x159 window) and grassland 

yielded the lowest user’s accuracy (34.14%). In fact, the second lowest accuracy was the producer’s 

accuracy given by the commercial class when using a 127x127 window (31.16%). In general, 

commercial and grassland classes were again found to be weak in using different window sizes 

since they gave relatively low producer’s and user’s accuracies. The local window needs to be large 

enough to cover spatial features that represent selected land-use classes. However, it is important to 

note that there is no optimal window size that is suitable for all applications. 

 

We employed the 95x95 window using the best texture measure (i.e., energy) to test the accuracy of 

different combinations of decomposition levels. It was found that a combination of level 1–4 

produced the highest overall accuracy for the 95x95 window in this study. From Table 6, it can be 

observed that the accuracy increases with the increase in the number of levels until it reaches four 

levels (76.60% for 1 level, 77.39% for 2 levels, 78.20% for 3 levels, 78.89% for 4 levels), and 

accuracy decreases with increasing number of levels after that (77.76% for 5 levels, 75.06% for 6 

levels). It implies that sub-images at level five (6x6 pixels) and level six (3x3 pixels) do not contain 

useful information on textures of selected land-use and land-cover classes. The lowest Kappa 

coefficient (0.55) was given by a combination of level 1–6. This is because a smaller image has less 

texture information. For example, 2x2 pixel images of grassland, woodland, and water could be 

Combination of Scale Levels 
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similar or closely related. The lowest producer’s accuracy was again given by the commercial class 

(43.11% for L1-6) and the lowest user’s accuracy was given by grassland (36.94% for L1-6) (Table 

6). It was observed from Table 6 that commercial and grassland areas generally gave low 

accuracies. 

 

 

5. Conclusion 

The energy measure gave the highest accuracy among all texture measures computed from the 

wavelet-decomposed images. Results from this study show that the choice of window size affects 

the classification accuracy. The selection of local window size depends on several factors such as 

image resolution, nature of the study area, number of classes, training sample selection, spectral 

resolution, spatial techniques, and decomposition level employed. The highest overall accuracy for 

the 95x95 window was achieved by a combination of level 1–4 in this study. This implies that 

smaller sub-images at the last two levels (two steps before reaching its maximum level) do not 

contain useful information on textures of selected land-use and land-cover classes. This finding is 

not consistent with the results from the previous study (Myint et. al., 2004) since this study 

employed the original image instead of using homogeneous texture samples. It may not be 

appropriate to consider a local window size smaller than the minimum distance between two pixels 

to characterize the most heterogeneous class (e.g., residential). The 63x63 window size (~ 60 m) for 

an IKONOS 1 m resolution data was found to be the optimal window for urban land-use and land-

cover classification. This distance is the approximate characteristic scale (minimum distance 

between two pixels to cover a texture) for the residential class that is considered the most 

heterogeneous class among the selected land-use and land-cover classes. 

 

Some of the crucial findings of the study can be summarized as follows. 
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The classification accuracy can be improved by using more combinations of sub-images at 

different scales. It should be noted that larger window sizes allow more combinations of scale levels 

and hence, produce more texture-transformed sub-images. Myint et. al. (2002) demonstrated that 

the combination of more levels improve the classification accuracy significantly when using 

homogeneous texture samples. However, a higher level of decomposition may not always improve 

the overall accuracy. This is because a very small sub-image does not contain enough information 

to represent texture features of selected classes, and this could consequently degrade the overall 

accuracy. It is important to note that decomposition should not exceed a level of scale at which the 

sub-image is less than eight pixels. This could be a general rule of thumb for most applications. 

The variance measure not only gave very low classification accuracy but also showed no 

relation with the increasing window size. This study demonstrates that variance values of texture 

features are ineffective in characterizing land-use and land-cover classes. This could also be true for 

some other spatial measures such as spatial autocorrelation and fractals that focus only on coupling 

between features and objects at single level and are not capable of transforming signals at multiple 

scales. 

Larger window sizes consistently and significantly improve the overall classification 

accuracy when dealing with homogeneous texture samples (one texture class per sample). This 

result does not concur with other studies that small window sizes yield higher classification 

accuracies in urban land cover classification (Gong and Howarth, 1992; Chen et al., 2004). This is 

because this study includes complex land-use classes (i.e., residential, commercial) the other studies 

consider land covers only. 

In the real-world situation, a larger window may not necessarily produce higher accuracy, 

and hence, an optimal window needs to be determined. A larger window tends to cover more land-

use and land-cover classes and therefore may miss smaller regions of classes that could lead to 
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poorer accuracy whereas a smaller window tends to be incomplete in its coverage of texture 

features that represent a class. 

The characteristic scale (minimum distance between two pixels to cover a particular class) 

of the most complex class (texture feature) among all selected land-use and land-cover classes could 

be an important factor to be considered for a better classification accuracy. 
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Figure 1. A false color composite of IKONOS 1 meter resolution data displaying channel 4 (0.76 – 

0.90 µm) in red, channel 3 (0.63 – 0.69 µm) in green, and channel 2 (0.52 – 0.60 µm) in blue. 

Positions of the selected training samples (i.e., 95x95): (a) commercial; (b) forest; (c) grassland; (d) 

residential; (e) water. 

 

0 100 m

N

(d)

(a)
(c)

(e)

(b)
0 100 m

N

0 100 m0 100 m

N

(d)

(a)
(c)

(e)

(b)

(d)

(a)
(c)

(e)

(b)



 1 

 

Table 1. Descriptive statistics of the training samples displayed in Figure 2. Note: CV = coefficient 

variation; C = commercial; F = forest; G = grassland; R = residential; W = water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C F G R W

Band1

Mean 521.09 338.96 417.95 396.09 321.34
Standard Deviation 112.26 44.00 20.91 74.62 6.29
CV 21.54 12.98 5.00 18.84 1.96

Band2

Mean 618.23 350.32 492.21 433.79 323.87
Standard Deviation 157.69 65.52 35.47 114.88 8.72
CV 25.51 18.70 7.21 26.48 2.69

Band3

Mean 523.59 228.86 448.32 325.05 145.37
Standard Deviation 158.20 73.33 38.02 129.41 9.80
CV 30.21 32.04 8.48 39.81 6.74

Band4

Mean 527.57 733.41 611.74 597.32 75.97
Standard Deviation 145.59 136.66 61.44 184.45 10.75
CV 27.60 18.63 10.04 30.88 14.15
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Figure 2. An example illustrating wavelet decomposition at level 1 using a hypothetical image: (a) 

original image; (b) approximation sub-image (LL); (c) horizontal detail sub-image (LH); (d) vertical 

detail sub-image (HL); (e) diagonal detail sub-image (HH). Note. down sampled sub-images (b, c, 

d, e) are a quarter of the preceding image (a). 
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Figure 3. An example illustrating a procedure for computing approximation and three detail sub-

images of a 4 by 4 image at level 1 using Haar wavelet transform: LL = approximation sub-image; 

LH = horizontal detail sub-image; HL = vertical detail sub-image; HH diagonal detail sub-image. 
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Figure 4. Image samples covering (a) 16x16, (b) 32x32, (c) 64x64, (d) 128x128, and (e) 256x256 

pixels or local window sizes. 
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Figure 5. Manually interpreted and digitized map. 
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Figure 6. Research design. Note: Sha = Shannon’s index; Ene = energy; Log = log energy; C = 

commercial; F = forest; G = grassland; R = residential; W = water; Output 1 to 5 = evaluation of 

window sizes; Output 6 to 8 = evaluation of texture measures; Output 15 to 20 = evaluation of scale 

levels. 
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Table 2. Overall, producer’s, and user’s accuracies of different window sizes of samples (i.e., 

31x31, 63x63, 95x95, 127x127, 159x159) using variance measure and a discriminant function. 

Note: C = commercial; F = forest; G = grassland; R = residential; W = water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover

C F G R W
31x31

Producer's Acc 27.00% 0.00% 0.00% 0.00% 23.00%
User's Acc 60.00% 0.00% 0.00% 0.00% 60.00%

Overall Acc = 24.00% Kappa = 0.05
63x63

Producer's Acc 0.00% 22.00% 0.00% 0.00% 30.00%
User's Acc 0.00% 40.00% 0.00% 0.00% 60.00%

Overall Acc = 20.00% Kappa = 0.01
95x95

Producer's Acc 56.00% 0.00% 100.00% 75.00% 60.00%
User's Acc 100.00% 0.00% 20.00% 60.00% 60.00%

Overall Acc = 48.00% Kappa = 0.35
127x127

Producer's Acc 22.00% 0.00% 50.00% 0.00% 33.00%
User's Acc 40.00% 0.00% 20.00% 0.00% 60.00%

Overall Acc = 24.00% Kappa = 0.05
159x159

Producer's Acc 50.00% 0.00% 20.00% 60.00% 50.00%
User's Acc 60.00% 0.00% 20.00% 60.00% 50.00%

Overall Acc = 40.00% Kappa = 0.25
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Table 3. Overall, producer’s, and user’s accuracies of different window sizes of samples (i.e., 

31x31, 63x63, 95x95, 127x127, 159x159) using energy measure of wavelet sub-images at 2 levels 

and a discriminant function. Note: C = commercial; F = forest; G = grassland; R = residential; W = 

water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover

C F G R W
31x31

Producer's Acc 75.00% 80.00% 57.00% 80.00% 100.00%
User's Acc 60.00% 80.00% 80.00% 80.00% 80.00%

Overall Acc = 76.00% Kappa = 0.70
63x63

Producer's Acc 100.00% 100.00% 80.00% 83.00% 83.00%
User's Acc 80.00% 80.00% 80.00% 100.00% 100.00%

Overall Acc = 88.00% Kappa = 0.85
95x95

Producer's Acc 100.00% 100.00% 80.00% 71.00% 100.00%
User's Acc 80.00% 80.00% 80.00% 100.00% 100.00%

Overall Acc = 88.00% Kappa = 0.85
127x127

Producer's Acc 100.00% 83.00% 100.00% 100.00% 100.00%
User's Acc 100.00% 100.00% 80.00% 100.00% 100.00%

Overall Acc = 96.00% Kappa = 0.95
159x159

Producer's Acc 100.00% 100.00% 100.00% 100.00% 100.00%
User's Acc 100.00% 100.00% 100.00% 100.00% 100.00%

Overall Acc = 100.00% Kappa = 1.00
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Table 4. Overall, producer’s, and user’s accuracies of different texture measures using 63x63 

window with a combination of level 1 to 3. Note: C = commercial; F = forest; G = grassland; R = 

residential; W = water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover

C F G R W
Sha

Producer's Acc 52.19% 84.79% 73.75% 4.35% 99.39%
User's Acc 65.61% 47.51% 14.58% 25.95% 73.35%

Overall Acc = 30.17% Kappa = 0.17
Ene

Producer's Acc 73.05% 94.70% 34.93% 89.98% 95.59%
User's Acc 96.29% 62.51% 80.63% 82.80% 100.00%

Overall Acc = 81.84% Kappa = 0.68
Log

Producer's Acc 22.99% 65.56% 36.55% 96.17% 90.37%
User's Acc 50.63% 78.56% 87.61% 75.16% 100.00%

Overall Acc = 74.94% Kappa = 0.50
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Table 5. Overall, producer’s, and user’s accuracies of different window sizes (i.e., 31x31, 63x63, 

95x95, 127x127, 159x159) using energy measure and a combination of level 1 to 3. Note: C = 

commercial; F = forest; G = grassland; R = residential; W = water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover

C F G R W
31x31

Producer's Acc 79.29% 89.87% 45.13% 74.92% 97.76%
User's Acc 80.81% 46.18% 58.99% 83.53% 96.80%

Overall Acc = 74.43% Kappa = 0.59
63x63

Producer's Acc 73.05% 94.70% 34.93% 89.98% 95.59%
User's Acc 96.29% 62.51% 80.63% 82.80% 100.00%

Overall Acc = 81.84% Kappa = 0.68
95x95

Producer's Acc 45.45% 67.40% 48.81% 93.09% 92.35%
User's Acc 93.86% 92.55% 46.03% 79.58% 100.00%

Overall Acc = 78.19% Kappa = 0.60
127x127

Producer's Acc 31.16% 60.05% 45.42% 96.18% 89.73%
User's Acc 93.09% 95.41% 59.21% 75.18% 100.00%

Overall Acc = 76.66% Kappa = 0.54
159x159

Producer's Acc 20.67% 65.61% 35.33% 96.03% 89.03%
User's Acc 97.36% 96.40% 34.14% 76.57% 100.00%

Overall Acc = 74.32% Kappa = 0.50
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Figure 7. Classified map generated by energy measure using 63x63 window size with a 

combination of level 1 to 3. 
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Table 6. Overall, producer’s, and user’s accuracies of different scale level of decompositions (i.e., 

L1, L1-2, L1-3, L1-4, L1-5, L1-6) using energy measure and 95x95 window size. Note: C = 

commercial; F = forest; G = grassland; R = residential; W = water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover

C F G R W
L1

Producer's Acc 44.72% 66.86% 49.84% 90.55% 92.26%
User's Acc 94.29% 93.05% 39.62% 79.59% 100.00%

Overall Acc = 76.61% Kappa = 0.57
L1-2

Producer's Acc 45.08% 66.99% 49.42% 91.80% 92.30%
User's Acc 94.09% 92.87% 42.47% 79.60% 100.00%

Overall Acc = 77.39% Kappa = 0.68
L1-3

Producer's Acc 45.45% 67.40% 48.81% 93.09% 92.35%
User's Acc 93.86% 92.55% 46.03% 79.58% 100.00%

Overall Acc = 78.19% Kappa = 0.60
L1-4

Producer's Acc 45.41% 67.49% 47.87% 94.40% 92.26%
User's Acc 93.41% 92.53% 50.34% 79.38% 100.00%

Overall Acc = 78.89% Kappa = 0.60
L1-5

Producer's Acc 45.93% 69.22% 47.81% 92.15% 91.94%
User's Acc 93.20% 91.87% 43.87% 79.55% 100.00%

Overall Acc = 77.76% Kappa = 0.59
L1-6

Producer's Acc 43.11% 73.85% 49.92% 87.48% 88.50%
User's Acc 90.49% 89.34% 36.94% 79.19% 100.00%

Overall Acc = 75.06% Kappa = 0.55


