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Herbert Eli Scarf (born on July 25, 1930 in Philadelphia, PA) is a distinguished 
American economist and Sterling Professor (Emeritus as of 2010) of Economics 
at Yale University. He is a member of the American Academy of Arts and 
Sciences, the National Academy of Sciences and the American Philosophical 
Society. He served as the president of the Econometric Society in 1983. He 
received both the Frederick Lanchester Award in 1973 and the John von 
Neumann Medal in 1983 from the Operations Research Society of America and 
was elected as a Distinguished Fellow of the American Economic Association in 
1991. 
 
Scarf never received formal training in economics. Both his undergraduate 
training at Temple University and his graduate work at Princeton University 
were in mathematics. For the past five decades, however, he has worked at 
the frontiers of both economic theory and operations research and has made a 
number of extraordinarily significant contributions to both of these fields. He is 
internationally famous for his early epoch-making work on ),( sS  optimal 

inventory policies and his highly influential study with Andrew Clark on optimal 
policies for a multi-echelon inventory problem, which initiated the important 
and flourishing field of supply chain management. Equally, he has gained world 
recognition for his classic study on the stability of the Walrasian price 
adjustment processes, his fundamental analysis (with Gerard Debreu) on the 
relation between the core and the set of competitive equilibria (the so-called 
Edgeworth conjecture, named after the Irish economist, Francis Ysidro 
Edgeworth, Feb 8,1845-Feb 13,1926), his remarkable sufficient condition (i.e., 
balancedness) for the existence of a core in non-transferable utility games and 
general exchange economies, his seminal paper with Lloyd Shapley on housing 
markets, and his pioneering study on increasing returns and  models of  

*I am deeply grateful to Herb Scarf for many enlightening conversations on the subject of this paper and 
for sharing his personal story of a remarkable journey.  



production in the presence of indivisibilities. All in all, however, the name of 
Scarf is always remembered as a synonym for the computation of economic 
equilibria and fixed points. In the early 1960s he invented a path-breaking 
technique for computing equilibrium prices. This method is nowadays known 
as Scarf’s algorithm and has made general equilibrium theory applicable to 
large, realistic economic problems. This work has generated a major research 
field in economics termed Applied General Equilibrium Analysis and a 
corresponding area in operations research known as Simplicial Fixed Point 
Methods (or Algorithms). Scarf’s algorithm and its subsequent refinements and 
alternatives have become practical tools for assessing the consequences for 
the entire economy of a change in the economic environment or a major 
change in economic policy – to engage in comparative statics when the model 
of equilibrium is too large to be solved graphically or by simple numerical 
calculations. 
 
Early life and Education 
 
Scarf was born on July 25, 1930, in Philadelphia, Pennsylvania, to parents of 
Ukrainian Jewish origins. His father Louis Harris Scarf immigrated to the United 
States in 1905 from Ukraine at the age of 18 and his mother Lena Elkman also 
came to the US in the same year at the age of 5. They married in 1929 and had 
two twin sons next year: Frederick Leonard Scarf and Herbert Eli Scarf. Herbert 
and Frederick went to the same public primary and high schools in 
Philadelphia. Herbert Scarf became very interested in mathematics in his early 
adolescence after reading the book: Men of Mathematics by E.T.Bell. He began 
to read calculus, geometry, number theory and theoretical mechanics by 
himself in high school. Herbert’s teachers at the South Philadelphia High 
School apparently did not know he had such avid mathematical interests, and 
were astonished when he was ranked first in the Pennsylvania Statewide 
Mathematical Tournament for high school students organized by Temple 
University in 1947. 
 
Herbert Scarf and his brother Frederick went to Temple University in 1948 for 
their undergraduate education. During their undergraduate studies, they lived 
with their parents and commuted by subway between their parents’ house and 
the university. Their father had a small business but was hit badly by the Great 
Depression and did not quite recover from it. 
 
At Temple University, Herbert Scarf chose mathematics as his major subject. 
He started to attend graduate courses on Real and Complex Variables, 



Analysis, Probability Theory, and Statistics in his sophomore year. He vividly 
remembers one of the faculty members of the mathematics department, 
Professor Marie Wurster, who was very kind to him, always encouraged him 
and spent an enormous amount of time talking to him about mathematical 
topics. In 1950, he placed in the top 10 of the 1950 William Lowell Putnam 
Mathematical Competition, the major mathematics competition among 
universities in the United States and Canada. 
 
In the fall of 1951, Herbert Scarf got a scholarship from Princeton University 
and went there for his graduate training in mathematics, whereas his brother 
Frederick went to MIT for graduate study in physics. Frederick ultimately 
became a distinguished space scientist – he unfortunately died in Moscow at 
the early age of 57. 
 
Among Scarf’s many classmates at Princeton were Ralph Gomory, Lloyd 
Shapley, John McCarthy, Marvin Minsky, Serge Lange and John Milnor. He also 
met Martin Shubik who was then a graduate student at the Department of 
Economics. At that time John Nash and Harold Kuhn had already left Princeton, 
but Scarf often saw them during their regular returns. At Princeton, Scarf 
became a close friend of Gomory – they remain friends after these many years 
and often meet each other. When Scarf was at Princeton, he did not study 
game theory or economics but knew Martin Shubik, Lloyd Shapley, and John 
Nash who were actively involved in the early development of game theory. 
 
After World War II, Princeton had become a sanctuary for a large number of 
world leading scientists who had escaped from Nazi occupied Europe. Among 
them were Albert Einstein, John von Neumann, and Kurt Gödel. Scarf often 
saw Einstein strolling with Gödel from Einstein’s office at the Institute for 
Advanced Studies to his house on Mercer Street. Einstein always smiled 
benignly but his friend Gödel rarely did. 
 
Scarf published his first scientific article ``Group invariant integration and the 
fundamental theorem of algebra” in the Proceedings of the National Academy 
of Sciences, in May, 1952. He attended Professor Saloman Bochner’s lectures 
about Haar Measure on Compact Topological Groups. One day Scarf made a 
sudden connection between this topic and a quite distant theme that he had 
been thinking about for quite some time.  As a result he proposed an entirely 
novel proof for the fundamental theorem of algebra, stating that every 
polynomial in a single variable has at least one complex root. 
 



Scarf’s academic adviser was Saloman Bochner. Scarf admired Bochner and 
maintained a good relationship with him until his death in 1982. Other 
professors in the Department of Mathematics were Emil Artin, William Feller, 
Ralph Fox, Solomon Lefschetz and Albert Tucker. Scarf wrote his PhD 
dissertation on partial differential equations over manifolds and received his 
PhD in 1954. 
 
Career at Rand, Stanford, and Yale 
 
Scarf worked at Bell Labs in the summer of 1953 and travelled every day 
between Princeton and the laboratory with John Tukey, an eminent 
statistician. At Bell Labs Scarf encountered Claude Shannon, the inventor of 
information theory. In June of 1954, Scarf left Princeton to join the Rand 
Corporation. He chose Rand instead a more conventional academic job, 
because he desired to be involved in applied rather than abstract mathematics. 
The Rand Corporation was founded by the US Defense Department in 1948 in 
order to apply a variety of analytical tools to the economic, political and 
strategic problems of the Cold War and provided an ideal environment for 
researchers with applied interests. 
 
Among his colleagues at Rand were Lloyd Shapley, George Dantzig, Richard 
Bellman, Ray Fulkerson and Lester Ford. Dantzig, the inventor of the simplex 
method, had arrived a bit earlier and was applying his methods to a large 
variety of basic problems. Bellman was trying to formulate and solve all 
possible optimization problems with a dynamic structure as dynamic 
programming problems. Fulkerson and Ford were working together on 
network flow problems which became the springboard for the flourishing field 
of combinatorial optimization. At Rand, Scarf worked with Shapley on games 
with partial information and differential games with survival payoffs and was 
occasionally joined by John Nash when he visited as a consultant. This activity 
resulted in two early papers of Scarf and Shapley on game theory. 
 
At Rand, Scarf was first assigned to the Mathematics Department but after a 
year the organization was visited by a budgetary crisis and Scarf was 
transferred to the Department of Logistics - a junior subset of the Department 
of Economics. His colleagues in the logistics group were mainly concerned with 
maintenance, repair, scheduling and inventory management which had little to 
do with the economic and strategic questions of the Cold War. Scarf was not 
assigned to any specific research topic. He learned about inventory problems 
by himself and wrote his first paper in this field. He met Samuel Karlin and 



Kenneth Arrow at Rand. They were both interested in inventory problems 
(Arrow had already written a remarkable paper on inventory theory with Harris 
and Marschak) and they invited Scarf to spend the academic year of 1956-1957 
at the Department of Statistics, Stanford University. 
 
At Stanford, Scarf worked intensively on inventory problems and 
demonstrated his extraordinary analytical skill and penetrating discernment on 
the nature of fundamental problems, when he published his two epoch-making 
papers on dynamic inventory problems: the first (1959) is on the optimality of 

),( sS policies and the second paper (1960), with Andrew Clark, on optimal 

policies for a multi-echelon inventory problem. Scarf also collaborated 
intensively with Arrow and Karlin on inventory problems. This collaboration 
resulted in three landmark volumes: Studies in Mathematical Theory of 
Inventory and Production, 1958, Contributions to the Theory of Inventory and 
Replacement, 1961, and Multistage Inventory Models and Techniques, 1963. 
Arrow and Karlin also became Scarf’s good friends and mentors. 
 
Scarf’s visit was originally for a single year but the invitation was extended and 
in the fall of 1957 he was appointed as assistant professor in the Department 
of Statistics and subsequently an associate professor until he left Stanford in 
1963. While working on inventory problems, Scarf became very interested in 
economics from discussions with Arrow and Hirofumi Uzawa and by attending 
the seminars on Mathematics in the Social Sciences organized by Arrow, Karlin 
and Patrick Suppes.  He was particularly fascinated by general equilibrium 
models which he considered to be the central paradigm of economic theory. 
 
In 1958 and 1959, Arrow and Leonard Hurwicz published two basic papers (the 
latter one with Robert Block) in Econometrica. They proved that the Walrasian 
price adjustment process formalized by Paul Samuelson (1941) converges 
globally to an equilibrium for exchange economies with divisible goods when 
all goods are gross substitutes. It was much speculated that such processes 
would converge in any reasonable economy with divisible goods. But Scarf 
(1960) soon dashed such hopes by producing a simple example with three 
consumers and three commodities that was globally unstable. This was Scarf’s 
first classic article in economic theory and was the very beginning of his 
remarkable career in the economics profession. 
 
On Charles Tjalling Koopmans’ invitation, Scarf spent the academic year of 
1959-1960 at the Cowles Foundation at Yale University.  Koopmans, whom 
Scarf had met earlier at Rand, became a very close friend and mentor of Scarf. 



During his visit Scarf gave a seminar talk on his counter-examples. The seminar 
was chaired by James Tobin who was then the director. Among his audience 
were Gerard Debreu, Donald Hester, Alan Manne, Art Okun, Edmund Phelps, 
Bob Summers, and Jascha Marschak. During the same academic year, Scarf was 
invited to give a talk at Columbia University on his counter-examples. His old 
colleague Martin Shubik was in the audience. After the talk Scarf and Shubik 
took a long walk from 125th street to Shubik’s apartment in Sutton Place, New 
York. During the walk, Shubik passionately talked about and tried to persuade 
Scarf to solve the so-called Edgeworth conjecture that the core of an exchange 
economy would converge to its set of competitive equilibria if the number of 
traders in the economy tends to infinity. 
 
Shubik’s enthusiasm sparked Scarf’s interest in this question and he started 
thinking seriously about the topic. He read von Neumann and Morgenstern’s 
book: The Theory of Games and Economic Behavior, Edgeworth’s analysis of 
the contract curve with two goods and two types of traders in his book: 
Mathematical Psychics, and Shubik’s 1959 paper on this subject. Several 
months later a decisive moment came when Scarf found a way, albeit 
extremely complicated, of proving the Edgeworth conjecture; see his 1961 
paper: ``An analysis of markets with a large number of participants”. Debreu 
subsequently improved Scarf’s argument and published it in his 1963 paper: 
``On a theorem of Scarf”. But a significant simplification of Scarf’s argument 
came when Scarf met Debreu on one occasion in December 1961, as Debreu 
eloquently described it in his 1983 Nobel Prize lecture: ``Associated with our 
joint paper is one of my vivid memories of the instant when a problem is 
solved. Scarf, then at Stanford, had met me at the San Francisco Airport in 
December 1961, and as he was driving to Palo Alto on the freeway, one of us, 
in one sentence, provided a key to the solution; the other, also in one 
sentence, immediately provided the other key; and the lock clicked open.” This 
collaboration yielded their 1963 paper: ``A limit theorem on the core of an 
economy,” which is one of the most fundamental results in general equilibrium 
theory. It is an important milestone for at least three reasons: First, it provides 
an important justification for the assumption of perfect competition that is 
fundamental in the treatment of neoclassical economic equilibrium models; 
second, it shows that competition and cooperation are just two sides of a coin 
for economic activities under the right circumstances; third, it became the 
starting point for a large literature on the core equivalence. 
 
In 1963, Scarf moved to the Cowles Foundation and the Department of 
Economics at Yale University and was appointed as a full professor. In 1979 he 



became a Sterling Professor--the highest recognition for academic staff at Yale. 
He was the Director of the Cowles Foundation for the periods of 1967-71 and 
1981-84. Since 1963 Scarf has remained at Cowles except for visiting 
appointments at Cambridge, Stanford and other institutes. He found the 
environment at Cowles extremely suited to him, as he describes it in the 
preface of his 1973 book: ``The standard of mathematical rigor and clarity of 
thought which prevail at Cowles are well known to the economics profession. 
But perhaps more important is the persistent though subtle suggestion that 
the highest aim of even the most theoretical work in economics is an ultimate 
practical applicability.” 
 
During his first few years at Cowles Scarf concentrated on the problem of 
finding a method for computing economic equilibria. His work on the core 
equivalence result had suggested a roadmap. If he could find a way to calculate 
a point in the core of a game based on a general equilibrium model, then this 
method would serve to find an approximate equilibrium allocation, at least in 
an economy with a large number of traders. This activity resulted in the first 
major core existence theorem for a large class of cooperative games without 
side payments. He proved that an N-person game has a nonempty core if the 
game is balanced. Scarf’s first proof of this theorem relied on Brouwer’s fixed 
point theorem, but his hope was to provide a numerical method for computing 
a point in the core, making no use of fixed point theorems. Good fortune loves 
those who are well-prepared. Robert Aumann was visiting the Cowles 
Foundation during the academic year 1964-65. Scarf described his problem to 
Aumann, who suggested that he take a look at a recent paper by Lemke and 
Howson (1964). In this article, they proposed an algorithm for computing a 
Nash equilibrium in a finite two person non zero-sum game. In a single 
evening, Scarf realized that he could directly translate the Lemke-Howson’s 
algorithm through a limiting process into an elementary and constructive proof 
of his core existence theorem. This result was reported in his 1967 classic 
article: ``The core of an N-person game,” and became one of the most 
important theorems in cooperative game theory. 
 
Having found an algorithm for the core, in November of 1965, Scarf finally 
realized that he could explore this technique to design a novel algorithm for 
approximating equilibrium prices directly, without relying on the relation 
between the core and the competitive equilibrium. This path-breaking work 
marked the successful culmination of his long battle for transforming abstract 
general equilibrium analysis into a practical tool for the evaluation of economic 



policy. The result is published in his 1967 article: ``The approximation of fixed 
points of a continuous mapping.” 
 
Since the early 1970s, Scarf launched his longest, hardest and most ambitious 
struggle: to tackle economies with indivisibilities, increasing returns and 
nonconvexity. In fact in 1963 he already wrote: ``Notes on the core of 
production economy,” which was widely circulated but was not published until 
1986. In this note, he studied economies where the production set exhibits 
increasing returns.  He showed that if the production possibility set satisfies 
customary properties, but is not a cone, then there is a collection of consumers 
with conventional preferences and specific initial endowments for which the 
core is empty. His seminal article with Shapley in 1974: ``On cores and 
indivisibilities,” marked the first victory in his battle tackling indivisibilities and 
has become a most-cited classic article in the field. 
 
In the 1940s and 1950s, Dantzig and Koopmans had developed the activity 
analysis model of a production possibility set with constant returns to scale. 
When factor endowments are specified, the model leads directly to a linear 
program which can be solved by Dantzig’s simplex method. The method makes 
use of competitive prices to test for the optimality of a proposed feasible 
solution. 
 
However, neither decreasing returns nor constant returns reflect economic 
reality. Since the beginning of the Industrial Revolution in the 1760s, 
economies of scale and increasing returns based on large indivisible pieces of 
machinery or forms of productive organization such as the assembly line are 
prominent features of every industrialized nation. Unfortunately, economic 
theory based on the assumption of convexity and perfect divisibility does not 
offer any clue to this challenging economic problem. The difficulty of dealing 
with indivisibilities has long been recognized by many leading economists 
including Lerner (1944), Koopmans and Beckmann (1957), and Debreu (1959), 
as Lerner (1944) points out: ``We see then that indivisibility leads to an 
expansion in the output of the firm, and this either makes the output big 
enough to render the indivisibility insignificant, or it destroys the perfection of 
competition. Significant indivisibility destroys perfect competition.” 
 

Scarf was interested in economies with indivisibilities in production, i.e., where 
activity levels are constrained to be integers, an extreme form of non-
convexity. When factor endowments are specified we are lead to the general 
integer program for which there is no pricing test to detect whether a feasible 



production plan is indeed optimal. His major goals have been (1) to replace the 
pricing test by a local neighbourhood search and (2) to develop a mechanism 
for efficiently finding this test set. In the early 1980s, he made a decisive 
victory in achieving his first goal. Using his early concept of primitive sets 
arising in his research on the core and the computation of equilibria, Scarf 
succeeded in developing a quantity test set. He proved that this test set is 
unique and minimal, depending on the technology matrix alone and not on the 
specification of the particular factor endowment. It consists of a finite number 
of integral production plans. When this test set is available, one can easily use 
it to verify if a production plan is optimal or not, and if it is not optimal, one 
can use the test set to obtain a better production plan. 

 

Scarf has worked with a group of mathematicians on this subject for many 
years. He has found several important special classes of technology matrices 
for which the test set can be easily identified. However, important questions 
remain open and the battle is not yet over, as he states in his 1983 Presidential 
Address of the Econometric Society (1986, Econometrica):``At the present 
time, I am far from being able to present a convincing argument which relates 
the structure of neighbourhood systems (i.e., test sets) to the administrative 
arrangements that might be taken by a large industrial enterprise.” Up to this 
very moment, his struggle goes on. Indeed, as a Chinese poem says: ``An old 
war-horse may be stabled, yet still it longs to gallop a thousand miles; and a 
noble-hearted man though advanced in years never abandons his proud 
aspirations.” 
 
Work 
 

1. ),( sS Optimal Inventory Policies 

 
Every organization encounters inventory problems of one kind or another. 
Consider a typical situation: A retailer faces uncertain demand for its 
product from customers over time. He has to pay a reorder cost and a unit 
cost when he orders the good from its producer. Over time, he also needs 
to pay the holding cost of its inventory and a shortage cost if the good runs 
out of stock. The retailer’s problem is to determine how much to order in 
each period of time so as to minimize expected cost. Scarf (1958) solved the 
problem in a characteristic manner by introducing a generalized notion of 
convexity, called K convexity. Given a constant ,0K a function )(xf  is 



called K -convex if, Kaxf
b

bxfxf
axf 


 )(]

)()(
[)(  for all positive a ,b  

and all .x   Note that 0 convexity is equivalent to ordinary convexity. 
 
Scarf demonstrated inductively that the minimum expected cost was K- 
convex and that the optimal policy for the dynamic inventory problem is 
given, for each period of time, by a pair ),( sS  of numbers. If, at the 

beginning of an ordering period, the stock has fallen below the lower level, 
s, it is optimal for the retailer to raise the stock to the upper level, S, 
otherwise no order is placed. The cost functions may be shown to be K - 
convex under a variety of conditions – for example whenever holding and 
shortage costs are linear, more generally, convex. Thus ),( sS  policies are 

optimal for many practical dynamic inventory problems and have become a 
benchmark solution in inventory management. ),( sS  policies had been used 

in practice for many years. Their operating characteristics were first 
discussed in Arrow, Harris and Marschak (1951), but the proof of optimality 
was first provided by Scarf. 
 
2. Optimal Policies in Multi-echelon Inventory Problems 
 
Clark and Scarf (1960) were the first to study a multi-echelon inventory 
problem and initiated the field of supply chain management. They 
considered a general situation in which there are several installations, say 1, 
2, …, N, with installation 1 receiving stock from 2, with 2 receiving stock 
from 3, etc. If installation k-1 places an order from installation from k, the 
length of time for the order to be filled is determined not only by the 
natural delivery time between these two sites, but also by the availability of 
stock at installation k. The problem is to determine optimal purchasing 
quantities at each installation when delivery times, purchase costs, demand 
distributions, holding and shortage costs and other parameters are given. 
 
They proved that the optimal policies for the N installations can be found by 
solving recursively a dynamic programming problem in which the value 
function depends on the inventory levels at each installation and the orders 
from successive installations which have not yet been delivered. Their 
important contribution was to demonstrate that under certain plausible 
conditions, the value functions can be decomposed into the sum of 
functions of a single variable, each of which satisfies its own recursive 
equation which can be solved easily. 
 



3. Global Instability of the Competitive Equilibrium 
 
Consider a situation: Several traders each bring his/her bundle of goods to a 
market place and wish to exchange their goods. In the general equilibrium 
model, the exchange takes place at prices that equilibrate demand and 
supply for every good. How are these prices to be found? 
 
The market is guided by an invisible hand - a price adjustment mechanism - 
to an equilibrium state. You examine each good in the market and increase 
the price of the good if its demand is more than its supply but decrease its 
price if the relation holds the other way. Léon Walras had proposed the first 
such process in 1874, and Paul Samuelson formalized such a procedure as a 
system of differential equations in 1948. 
 
Arrow and Hurwicz (1958), and Arrow, Block and Hurwicz (1959) found that 
the price adjustment process proposed by Samuelson always converges to 
an equilibrium if the goods are gross substitutes. It was then speculated 
that the same process would work for any reasonable market of divisible 
goods. Scarf (1963) dashed such hopes by showing a series of 
counterexamples among which the first example involves three consumers 
and three complementary commodities, and has a unique equilibrium. He 
demonstrated that if the initial price vector is not the equilibrium price 
vector, this process will generate a cycle of non-equilibrium price vectors 
and never converge to the equilibrium. 

 
4. Core and Competitive Equilibrium Equivalence 
 
Consider an economic system composed of many self-interested individuals 
each of whom is endowed with a bundle of goods, has preferences over the 
available bundles and wishes to achieve a maximal satisfaction by 
exchanging his/her own goods with others. The system requires every 
individual to respect the private ownership and the voluntary and non-
coercive trade rule. Given this system, what will be a natural outcome of 
chaotic and countless independent actions of these self-interested agents? 
Adam Smith in his book ``The Wealth of Nations” (1776) first recognized 
how the invisible hand - a competitive market mechanism - can reconcile 
the complicated and conflicting forces of self-interested agents and guides 
the system to an equilibrium. The equilibrium is a state in which there exists 
a system of prices (i.e., market-clearing prices) at which every agent gets a 
best bundle of goods under his/her budget constraint and the supply of 



each good meets its demand. The list of the bundles obtained by all agents 
in the equilibrium state is called a competitive equilibrium allocation and is 
a redistribution of all agents’ initial endowments of goods. Wald (1936), 
Arrow and Debreu (1954), and McKenzie (1959) among many others 
established fundamental results on the existence of competitive 
equilibrium.  The assumption of perfect competition or price-taking 
behaviour is crucial in these analyses. It essentially requires that the 
influence of every agent in the system should be negligible. 
 
Another equally appealing and natural outcome of the economic system 
was first proposed by Francis Edgeworth in his book ``Mathematical 
Psychics’’ (1881), and is now known as the core allocation (in the case of 
two goods, it is any point in the contract curve of the Edgeworth box). 
Formally, a redistribution of all agents’ initial endowments of goods among 
all agents in the system is a core allocation if no group of agents can 
redistribute their own initial endowments among themselves so as to 
improve the satisfaction of someone in the group without impairing that of 
any other in the group. Clearly, a core allocation is Pareto efficient in the 
sense that there is no way to make some agent better off without making 
any other worse off. It is now well-known that every competitive 
equilibrium allocation must be a core allocation but a core allocation need 
not be a competitive equilibrium allocation. Edgeworth worked with an 
economic system consisting of only two agents and two goods, and then 
replicated the economy many times. What he found is that as the 
replication tends to infinity, the set of core allocations converges to the set 
of competitive equilibrium allocations. This result provides a perfect 
justification of price-taking behaviour but in a very specific setting. 
However, Edgeworth’s approach is based on the geometrical picture of the 
Edgeworth box and cannot be applied to the general case involving more 
than two agents and more than two types of goods. The general case is 
known as Edgeworth conjecture and remained widely open for many 
several decades. 
 
Based on the earlier paper of Scarf (1962), Debreu and Scarf (1963) 
resolved the outstanding theoretical problem in a brilliant and elegant 
manner. They started with a general economy consisting of any finitely 
many agents and a finite number of goods and proved that if one replicates 
the economy infinitely many times, then the set of core allocations 
coincides with the set of competitive equilibrium allocations. This offers an 
impeccable validation of perfect competition in a most general and most 



natural setting. This study has spawned a large body of literature on the 
relationship between the core and the set of competitive equilibrium 
allocations. One of the most significant contributions to this literature is the 
paper of Aumann (1964). Having heard Scarf’s discussion on his original 
1962 paper at a conference at Princeton in 1962, Aumann established a 
model of pure exchange economy with a continuum of agents in which the 
core and the set of competitive equilibrium allocations are the same. 
 
5. The Core of an N-Person Game 
 
The problems of resource distribution in an economic system may be 
resolved by the tool of competitive equilibrium theory or by more general 
and more flexible techniques of game theory. In a competitive equilibrium 
setting, every consumer acts in response to a set of prices by choosing 
bundles to maximize her utility under her budget constraint and every firm 
selects production levels at which the highest profit is achieved . The 
system reaches an equilibrium at which consistent production plans and 
allocation of goods are made and all participants are in harmony with one 
another. When these economic problems are studied in the framework of 
game theory, we need to specify a set of production and distribution 
activities available to each possible coalition of economic agents. It is, 
however, often sufficient and also convenient to summarize the detailed 
strategic possibilities open to each coalition by a set of possible utilities that 
can be achieved by the coalition. A stable and desirable outcome of the 
system is a core allocation of the game which assigns every agent a utility, 
and from which neither any individual agent nor any group of agents will 
have incentive to deviate. Scarf (1967) studied this problem and provided 
sufficient conditions under which a core allocation always exists. 
 
Formally, Scarf considers the following general game with a finite number 
of agents.  Let N denote all the agents in a system who are engaging in 
some business, economic, or political activities. These agents are called 
players and each nonempty group of players is called a coalition.  For each 
coalition ,NS   let SR  stand for the Euclidean space of dimension equal to 

the number of players in S  and whose coordinates are indexed by the 
elements in S . Each coalition S  is associated with a set )(SV  of possible 

utility vectors which can be achieved by the coalition if all players in the 
coalition cooperate. The set )(SV  is a subset of NR  and the i -th component 

ix  of each element )(SVx  indicates a utility for player .Si  The following 

assumptions are made on the sets )(SV : 



 
1. For each coalition, )(SV  is closed and bounded from above. 

2. If )(SVx  and NRy  with ii xy   for all Si , then )(SVy . 

 
We say that a utility vector )(NVx  is blocked by a coalition S  if there exists 

a utility vector )(SVy  such that ii xy   for all Si . That is, when the 

coalition cooperates, every player in the coalition can actually achieve a 
higher utility than that given by x . A utility vector in )(NV  is in the core if no 

coalition can block it. An intriguing and fundamental question is what kind 
of game has a nonempty core. To answer this question, Scarf introduces the 
class of so-called balanced games. 
 
A family   of coalitions in the game is said to be balanced if there exist 
nonnegative numbers )(S , for every coalition S  in  , such that  1)( 

Si

S  

for every .Ni  (Any partition of the grand coalition N is a simple example of 
a balanced family.) The game is said to be balanced if for every balanced 
family  , a utility vector u  must be in  )(NV  if u  is in )(SV  for every 

coalition S . Scarf proved the following theorem based on a finite 
algorithm. 
 
Scarf’s Theorem: Every balanced game has a nonempty core. 
 
6. Scarf’s Combinatorial Lemma 
 
To prove his core existence theorem on the balanced game, Scarf (1967) 
introduced an elegant and fundamental combinatorial lemma which has 
found applications in various subjects. 
Let A  and C  be two n  by m  matrices of the following form: 
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The matrices A  and C are said to be in standard form if for every row i , 

),( iic  is the minimum of the elements in its row, and if for every non-

diagonal element ),( jic  in the square submatrix of C formed by the first n  

columns, and for every k  with mkn  , we have ),(),( kicjic  . 

 
Scarf’s Lemma: Assume that A  and C  are two mn matrices in standard 
form, and that b  is a nonnegative vector such that the set 



},,0|{ bAxandxx  is bounded. Then there exists a feasible basis for the 

system of linear equations 0,,  xandbAx , so that if we define 

),(min jicui   for all columns j  in this basis, then for every column k , we 

have ),( kicui   for some index i . 

 
7. The Computation of Economic Equilibria 
 
Scarf’s book ``The Computation of Economic Equilibria” (Yale University 
Press, 1973) is considered his magnum opus. It is a monumental work both 
in economic theory and in applied mathematics. Scarf ingeniously 
developed the first general constructive method for the explicit numerical 
solution to the neoclassical model of economic equilibrium and has made it 
possible to transform such a model from an abstract representation of an 
economy into realistic models of actual economies, permitting us to 
evaluate the effects of significant changes in the environment and in 
economic policies. 

 
One of the central themes of economic theory is that the behaviour of a 
highly complex economic system can be seen as an equilibrium outcome 
arising from the interactions of many individuals within the system with 
different and even conflicting interests and motivations. This fundamental 
idea was first formulated by Walras (1874) and further significantly 
developed by Wald (1936), Arrow and Debreu (1954), and McKenzie (1959) 
among many others as the neoclassical model of competitive equilibrium. 
When cast in a mathematical form such a model will become a system of 
highly nonlinear equations with multiple variables which represent prices 
of goods and services in the studied economy. The typical argument for the 
existence of a solution in this system is to apply Brouwer’s fixed point 
theorem (1912) - a fundamental theorem in mathematics which, however, 
does not offer any effective numerical solution. Brouwer’s theorem states 
that every continuous function nn SSf :  mapping from a unit simplex nS  

into itself must have a fixed point **)( ppf  , where }1|{
1

 




n

i

i

nn xRxS is 

the unit simplex whose elements are non-negative and the sum of all 
components equals one. As soon as we know a fixed point for the function 
constructed from the studied economy, we know its corresponding 
equilibrium in the economy. 

 
Scarf proposed an algorithm for calculating a fixed point as stated in 
Brouwer’s theorem. As a result, he gave the first constructive proof for 



Brouwer’s theorem which is a major tool for establishing the existence of a 
solution to problems arising in various subjects. Scarf’s algorithm can be 
described as follows.  One first subdivides the unit simplex nS into a finite 
simplicial subdivision. Each subsimplex is the convex hull of its vertices. 
Then one assigns each vertex a label from the set },...,2,1{ n , where the label 

of each vertex x  is given by }0)(|min{)(  jj xxfjxl . By definition, 

0jx implies .)( jxl   A labelling rule with this property is said to be proper. 

According to a remarkable combinatorial theorem called Sperner’s lemma 
(1928), if we are given a simplicial subdivision of a unit simplex and a 
proper labelling rule, there always exists a completely labelled subsimplex, 
i.e., a simplex each of whose n  vertices carry a distinct label. 

 
It is easy to show that if the labels are correctly selected, a completely 
labelled subsimplex contains an approximate fixed point of the function. 
The finer the subdivision, the better will be the approximation. Now the 
problem of finding an approximate fixed point is to search for a completely 
labelled subsimplex.  Unfortunately, the original proof and its subsequent 
arguments for Sperner’s lemma were inductive in nature and thus virtually 
impossible to implement. Scarf (1967, 1973) introduced an effective and 
finite algorithm that can always find a completely labelled subsimplex. 

 
The basic idea of Scarf’s algorithm can be clearly illustrated for 2n  and 
the same logic applies to higher values of .n  We can embed the unit 
simplex in a larger simplex as shown in Figure 1. The larger simplex is 
subdivided by linking its three new vertices with the vertices lying on the 
boundary of the original unit simplex. Each of the new vertices can be 
labelled by 1, 2, or 3 in such a way that no additional completely labelled 
simplex is created. This construction makes it very easy to find a triangle 
whose three vertices carry two of the three desired labels. Scarf’s 
algorithm begins with the triangle whose two vertices are the vertices of 
the larger simplex and bear labels 1 and 2, as shown in Figure 1. Then the 
algorithm generates a sequence of adjacent triangles, each of which has 
vertices labelled 1 and 2. The sequence is uniquely determined by the 
initial triangle. When the algorithm enters a new triangle, it exits through 
an edge whose vertices bear labels 1 and 2, which is different from the 
edge used to enter the triangle. If the triangle is not completely labelled, 
there will be a unique other edge whose vertices carry labels 1 and 2, and 
the algorithm leaves this edge to move into a new triangle. Remarkably, 
this algorithm will never return to any triangle that it has previously visited. 



Since the number of the triangles is finite, the algorithm must terminate 
with a completely labelled triangle. 

 
The argument for the convergence can be vividly described with a tale 
(Scarf (1973, p.48)):  We can think of the larger simplex as a house, and of 
its triangles as rooms. A room has a door if the two vertices of one of its 
edges bear labels 1 and 2. It is clear that a completely labelled triangle is a 
room with only one door, all other rooms have either two doors or no door 
at all. By the construction, the house has precisely one door leading to the 
outside. Scarf’s algorithm begins with the known outside door and 
proceeds from room to room, never departing from a room by the door 
used in entering it. The algorithm can never return to a room previously 
entered nor leave the house, and therefore must find a room with only one 
door—precisely a completely labelled simplex!  This idea has been 
explored to create the so-called Sperner Game (Kyle Burke 
http://www4.wittenberg.edu/academics/mathcomp/kburke and Shang-
Hua Teng http://www-rcf.usc.edu/%7Eshanghua/). 

 

 
Figure 1: The Illustration of Scarf’s Algorithm 
 

Scarf’s algorithm has initiated a major research field in economics known as  
Applied General Equilibrium Analysis (see Shoven and Whalley (1992)) and a 
corresponding area in operations research termed Simplicial Fixed Point 
Methods or Algorithms (see Todd (1976) and Yang (1999)). 

 
8. The Housing Market 

The assumption of perfect divisibility is essential in neoclassical 
economic analysis.  However, this assumption often contradicts our 
casual observation of economic reality. In fact, many traded 

http://www4.wittenberg.edu/academics/mathcomp/kburke
http://www-rcf.usc.edu/~shanghua/


commodities are inherently indivisible, such as houses and cars. In a 
pioneering article (Shapley and Scarf (1974)), Scarf and Shapley studied a 
market with a finite number of traders, each with a single indivisible 
good (e.g., a house) that they wish to exchange. Each trader has 
preferences over houses but has no use for more than one item. There is 
no money or other medium of exchange so the only effect of the market 
activity is to permute the indivisible goods among the traders in 
accordance with their purely ordinal preferences. With the aid of Scarf’s 
core existence theorem they proved that this market always possesses a 
core allocation--a redistribution of items among all traders that cannot 
be improved upon by any individual, or any group of individuals. To find 
a core allocation, they also introduced a mechanism - called the top 
trading cycle method which had been discovered by David Gale. 
 
The mechanism works as follows: 
Each trader i points to the trader j whose house trader i likes best. 
Clearly, there is at least one cycle of traders such that each trader most 
prefers the house owned by the subsequent trader in the cycle. The 
mechanism assigns every trader in the cycle the house he likes best, and 
removes all of the members of the cycle from the market. The remaining 
traders repeat the same process until every trader is accounted for. 
Remarkably it is now known that when faced with this mechanism, it is 
in the best interest of every trader and every group of traders to act 
sincerely – there are no gains to be made by misrepresenting an 
individual’s preferences. 
 

9.  Production with Indivisibilities and Integer Programming 
The assumption of convex production sets plays a pivotal role in 
neoclassical economic theory. If the production possibility set is convex 
then any efficient production plan will be supported by a set of 
competitive prices. The simplex method proposed by George Dantzig is 
an effective device for discovering these prices from the underlying 
linear programming problem. Unfortunately, such prices will no longer 
exist when the production set displays increasing returns to scale, 
indivisibilities, or other forms of nonconvexity.  The most important 
example of a production set with indivisibilities is an activity analysis 
model in which all activity levels are constrained to be integers rather 
than arbitrary real numbers. Production sets with indivisibilities 
represents the most extreme form of nonconvexities in production and 
correspond to integer rather than ordinary linear programming problem. 



In this case, there is no simple test, like the pricing test arising from 
convex production sets, to verify whether a production plan is optimal or 
not. 
 
To study this problem, Scarf (1981, 1986) developed an entirely different 
analytical apparatus-called a neighbourhood system, to replace the 
pricing test. Consider a general integer programming problem of the 
form: 

mnmnmm

nn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

ts

xaxaxa









...

......

...

...

..

)...max(

2211

22222121

11212111

0202101

 

where nxxx ,...,, 21 are integers. For each integral vector ),...,,( 21 nhhhh  , 

the neighbourhood of the vector h  is 
a finite set of integral vectors )(hN  satisfying the two conditions: (i) 

)0()( NhhN  , and (ii) )(hNk  implies ).(kNh  
 
The first condition indicates that for any two different integral points, 
their neighbourhoods are translates of each other, and the second 
condition shows the symmetric property of the neighbourhood system. 
Each element in )(hN  is called a neighbour of .h  If we are given a 

feasible solution x to the above integer program we can test its set of  
neighbours x+h, for h in N(h), to see if one of them is feasible and yields 
a higher value of the objective function. If none of them is feasible, then 
x is a local maximum with respect to this neighbourhood system. 

 
Scarf has shown that under mild conditions on the technology matrix 

)( ijaA  there is a unique, smallest neighbourhood system, with the 

property that a local maximum is always global. This unique minimal 
neighbourhood system depends only on the technology matrix and not 
on the factor endowment. Thus to verify whether a production plan is 
optimal, one just needs to check if all its neighbours are either infeasible 
or yield an inferior value of the objective function. Therefore the 
minimal neighbourhood system provides a unique quantity test for 
optimality in the case of a production set with indivisibilities analogous 
to the pricing test in the case of a convex production set.  Scarf (also 
together with his coauthors) has identified many important classes of 



production technology matrices for which the minimal neighbourhood 
system can be easily computed. 
 
Scarf’s neighbourhood system has found applications in a variety of 
different areas: Algebraic Geometry, Cooperative Game Theory, 
Reliability Theory Multi-Commodity Network Flows, Graph Theory and 
the Stable Paths Problem. However, it is difficult to find the minimal 
neighbourhood system associated with an arbitrarily given technology 
matrix and one is forced to use computational procedures borrowed 
from Algebraic Geometry. 
 

Personal life 
 
Scarf met Margie Klein a month or so before his graduation from Temple 
University in 1951, and married her in 1953. They have three daughters and 
eight grandchildren. Maggie Scarf (her maiden name is Margaret Klein) is a 
well-known writer of best-selling books on psychological issues. 
 
Mentors 
 
Herbert Scarf was intellectually influenced by Kenneth Arrow, Saloman 
Bochner (Scarf’s PhD adviser), George Dantzig, Gerard Debreu, Tjalling 
Koopmans, and Maxwell Scarf (Herbert Scarf’s uncle). Scarf has deep respect 
for them and regards them as his close friends and mentors. 
 
PhD Students 
 
Scarf is a superb teacher and adviser, a concerned and dedicated colleague, 
and has been an inspiration and role model to his students at Yale and 
Stanford and to his colleagues all over the world. His clarity of thought and 
vision and thoroughness of knowledge are highly appreciated by his students 
and the readers of his work. He has supervised about 30 PhD students. They 
are Frank Proschan (1959, Stanford), Donald Roberts (1960, Stanford), Donald 
Iglehart (1961, Stanford), Murray Geisler (1962, Stanford), Menahem Yaari 
(1962, Stanford), Louis Billera (1968, City University of New York), and the rest 
all graduated from Yale, Rolf Mantel (1965), Ana Martirena-Mantel (1965), 
Duncan Foley (1966), Eugene Poirier (1966), Terje Hansen (1968), Michael 
Keren (1968), Frank Levy (1969), Yukio Noguchi (1972), Michael Todd (1972), 
John Shoven (1973), John Walley (1973), Andrew Feltenstein (1976), Marcos 
Fonseca (1978), Timothy Kehoe (1979), Ludo van der Heyden (1979), Jaime 



Serra Puche (1979), Andrew Caplin (1983), Phillip White (1983), Kazuya Kamiya 
(1986), Joshua Reichert (1986), Michael Mandler (1989), Jingang Zhao (1992), 
and Xin Wang (1997). 
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