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Abstract

When the number of players is small in a weighted majority voting game, it can occur that one of

the players has no influence on the result of the vote, in spite of a strictly positive weight. Such

a player is called a “dummy” player in game theory. The purpose of this paper is to investigate

the conditions that give rise to such a phenomenon and to compute its likelihood. It is shown

that the probability of having a dummy player is surprisingly high and some paradoxical results

are observed.
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1 Introduction

The main teaching of the literature on power indices is that, in a collective choice process,

voting power or influence need not to be proportional to the relative number of votes (weight)

an individual or a group (player) is entitled to. An extreme and striking consequence of this

non proportionality is that a player can have a positive weight but never be a member of a

minimal winning coalition (a coalition that wins and the removal of a single player does not

allow the coalition to win any longer). Such players have no voting power and are known as

dummies.

The most famous example of this somewhat paradoxical phenomenon is offered by Luxembourg

in the Council of Ministers of the EU between 1958 and 1973. Luxembourg held one vote,

whereas the quota for a proposition to be approved was 12 out of 17. Since other member

states held an even number of votes (4 for Germany, France and Italy, 2 for Belgium and The

Netherlands), Luxembourg formally was never able to make any difference in the voting process

and was a dummy.

Another well known case of dummies involves Nassau County, New York. Nassau County’s

government took the form of a Board of Supervisors, one representative for each of various

municipalities, who cast a block of votes. Here are the weighted voting systems used at various

times by Nassau County. The passing quota shown reflects the number of votes needed to pass

“ordinary legislation”.

1958 1964

Hempstead 1 9 31

Hempstead 2 9 31

North Hempstead 7 28

Oyster Bay 3 21

Long Beach 1 2

Glen Cove 1 2

Total votes 30 115

Quota 16 58

The numerical weights were chosen to try to take into account the populations of the different

municipalities, which were quite disparate. It is easy to see that in 1958, Oyster Bay, Long

Beach and Glen Cove were dummies. It can also be checked that, in 1964, there were two

dummies (Glen Cove and Long Beach). After 1964, the quota was raised to guarantee that no

municipality was a dummy.

A third example of dummy has recently been discovered by one of the authors (see Blancard

and Lepelley, 2010) in a community of municipalities in La R?union (France). This community,

called CIVIS (Communaut? Intercommunale des VIlles Solidaires), gathers five municipalities:

Saint-Pierre (15 representatives in the community council), Saint-Louis (10 representatives),

L’Etang-Sal? (4), Petite-?le (4) and Cilaos (3), the number of representatives being roughly

proportional to the municipality population . In the community Council, 19 votes are necessary
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for a proposition to be accepted. If we suppose that the representatives of a municipality vote

as a block, it can be seen that Cilaos is a dummy: all the winning coalitions containing Cilaos

remain winning when this municipality is removed.

The possibility of dummy players is clearly problematic from a democratic point of view and

the diversity of the examples given above suggests that the occurrence of dummies in voting

games is of practical concern and could be less rare that expected in first analysis. What is

the likelihood of such an undesired phenomenon ? How the distribution of weights should be

arranged in order to avoid the occurrence of dummies in voting games?

We propose in this paper a theoretical investigation of these issues in the context of weighted

majority games, where the quota is equal to the half of the total number of votes, plus one.

Our framework and our main assumptions are introduced in Section 2. We propose some

analytical results in Section 3 for weighted voting games with 4, 5 and 6 players: in each

case, we characterize the distributions of weights giving rise to the occurrence of the “dummy

paradox” and deduce from these characterizations some representations for the likelihood of the

paradox as a function of the total number of votes. Section 4 proposes exact numerical results

for the likelihood of dummy players for more than 6 players and for some specified values of

the total number of votes. Our results are discussed in Section 5, where we study the impact

of a reduction of the weight scattering on the probability of having some dummies. Section 6

concludes the paper.

2 Framework and assumptions

We will adopt the following notation:

m is the number of players (or voters). The players are denoted by J1, J2, ..., Jm. N is the

set of all players and a subset of N is called a coalition.

ni is the weight of player i and n =
∑

i ni. Hence, ni can be interpreted as the number of votes

assigned to a member Ji of a voting body. Notice however that, when the players are parties

in a political assembly, the ni’s correspond to the number of representatives of each party and

n is the total number of votes in the assembly.

As mentioned above, we only consider in the present study Weighted Majority Games (WMG):

a proposition is adopted if and only if the total weight of the players in favor of this proposition

is greater or equal to n/2 + 1 if n is even and to (n + 1)/2 if n is odd. In what follows, this

majority quota will be denoted by Q = [n/2]+, where [x]+ is the smallest integer strictly higher

than x. So, a coalition S is winning if and only if
∑

i∈S ni ≥ Q; otherwise, the coalition is said

to be loosing.1 A player Ji is a dummy if and only if, for each winning coalition S including

Ji, S − {Ji} is still winning.

Our main assumptions are the following:

1Notice that, when n is even, the complementary coalition of a loosing coalition is not always winning. In
order to take into account this peculiarity, we will make use of the following notation: Q∗ = Q if n is odd and
Q∗ = Q − 1 if n is even.
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(1) the ni’s are integer,

(2) n/2 ≥ n1 ≥ n2 ≥ ... ≥ nm ≥ 1,

(3) m and n being given, all the distributions of the ni’s verifying (1), (2) and n =
∑

i ni are

equally likely to occur.

Notice that this framework fits well with the (recent) French local entities called EPCI (Etab-

lissement Public de Cooperation Intercommunale) where each municipality belonging to the

EPCI is given a number of delegates approximately proportionate to its number of inhabi-

tants2. In this context, n1 is the number of delegates of the biggest municipality in the EPCI

council, nm the number of delegates of the smallest, and n is the total number of delegates in

the EPCI council (we suppose that, in this council, the delegates of a given municipality vote

as a bloc). Of course, the biggest municipality should not be a dictator (n1 ≤ n/2) and the

smallest one should obtain at least one delegate. In the EPCI council, the current decisions are

taken with a quota Q = [n/2]+.

3 Some analytical results

Proposition 1 In a m-player WMG, (i) the maximum number of possible dummies is equal

to m − 3 and (ii) the number of dummies is exactly m − 3 if and only if n2 + n3 ≥ Q.

Proof. In order to prove (i), we have to show that J3 cannot be a dummy in a m-player majority

game, m ≥ 3. Suppose the contrary: J3 is a dummy. A first consequence is that J4, J5, ..., Jm

are also dummies. Furthermore, the coalition {J1, J3} is loosing (if this coalition was winning,

the fact that J3 is a dummy would imply that n1 > n/2, contradicting our assumptions). Now,

if {J1, J3} is loosing, then {J1, J3, J4} is also loosing since J4 is a dummy. Similarly, as

J5 is a dummy, the coalition {J1, J3, J4, J5} is loosing and we can set in the same way that

{J1, J3, J4, ..., Jm} is loosing, which implies n1 + n3 + n4 + n5 + ... + nm < Q. As
∑

i ni = n,

we would have n2 ≥ n/2, which is impossible.

Consider now assertion (ii) and suppose that n2 + n3 ≥ Q. Let’s show this implies that J4

is a dummy. Consider the winning coalitions including J4. Observe first that n2 + n3 ≥ Q

implies that the coalition {J4, J5, ..., Jm} is loosing. Observe next that the coalition {J1, J4}
is also loosing: n2 + n3 ≥ Q implies n1 + n4 + n5 + ... + nm < Q, which implies n1 + n4 < Q.

It follows from these observations that the only winning coalitions with J4 must include two

players among {J1, J2, J3}. As n2 + n3 ≥ Q and n1 ≥ n2 ≥ n3, we have n1 + n3 ≥ Q and

n1 + n2 ≥ Q. Consequently, the defection of J4 in these coalitions lets them winning and J4 is

a dummy.

Finally, suppose that J4 is a dummy. This implies that the coalition {J1, J4} is loosing (if

not, J4 dummy would imply n1 ≥ Q, a contradiction). As J5, J6, ..., Jm are (also) dummies,

it follows that {J1, J4, J5}, {J1, J4, J5, J6}, ..., {J1, J4, J5, J6, ..., Jm} are also loosing. But

{J1, J4, J5, J6, ..., Jm} loosing implies n1 +n4 +n5 + ...+nm < Q and, consequently, n2 +n3 ≥

2The CIVIS we have mentioned in the Introduction is an example of EPCI.
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Q∗. As J4 dummy makes n2 + n3 = Q∗ impossible in the case where n is even, we finally

conclude that we must have n2 + n3 ≥ Q. 2

Corollary 1 There is no dummy player in a 3-player WMG and, in a 4-player WMG, J4 is a

dummy player if and only if n2 + n3 ≥ Q.

The following proposition deals with 5-player and 6-player WMG’s.

Proposition 2 (i) In a 5-player WMG, J5 is a dummy player if and only if one of the following

cases holds:

- case 1: n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q;

- case 2: n2 + n3 ≥ Q.

In case 2 (and only in this case), both J4 and J5 are dummy players.

(ii) In a 6-player WMG, J6 is a dummy player if and only if one of the following cases holds:

- case 1: n2 + n3 + n4 + n5 ≥ Q and n1 + n5 ≥ Q;

- case 2: n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q;

- case 3: n2 + n3 + n5 ≥ Q and n1 + n4 + n5 ≥ Q and n1 + n3 ≥ Q;

- case 4: n2 + n3 ≥ Q;

- case 5: n2 + n4 + n5 ≥ Q and n1 + n2 ≥ Q;

- case 6: n3 + n4 + n5 ≥ Q.

In case 2, J5 and J6 are dummy players; in case 4, J4, J5 and J6 are dummy players.

The proof of this proposition is rather tedious and is given in Appendix.

Corollary 1 and Proposition 2 allow us to enumerate the distributions of the weights that give

rise to dummy players and to compute the probability of their occurrence in m-player WMG’s,

with m ∈ {4, 5, 6}. Moreover, it is possible to derive from Corollary 1 and Proposition 2

some representations for this probability as a function of n, the total number of votes. This

probability is denoted by P (m,n) in what follows.

Proposition 3 For n ≡ 9 modulo 12, the probability of having a dummy player in a 4-player

WMG is given as:

P (4, n) =
n2 − 33

2(n2 + 3n − 12)
.

As a consequence, limn→∞P (4, n) = 1
2
.

Proof. Given our assumption (3) and for a given value of n, we have to divide the number of

those distributions of the ni’s that give rise to the occurrence of a dummy player (denoted by

D(4, n)) by the total number of possible distributions with 4 players (denoted by T (4, n)). We

begin by evaluating T (4, n). A vector of integers (n1, n2, n3, n4) is a possible distribution of the

weights is and only if

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ n/2 and n1 + n2 + n3 + n4 = n.

We know from Ehrhart’s theory and its recent developments (the reader is referred to Lepelley

et al. (2008) for a presentation of this theory) that the number of integer solutions of such a set
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of (in)equalities is a quasi polynomial in n with periodic coefficients (or Ehrhart’s polynomial).

A periodic coefficient takes various values according to n and to a given period. For example,

c(n) = [1
2
, 3

4
, 1]n is a periodic coefficient with period 3, c(n) = 1

2
if n ≡ 0 modulo 3, c(n) = 3

4

if n ≡ 1 modulo 3 and c(n) = 1 if n ≡ 2 modulo 3. Numerous algorithms exist to derive the

expression of such a quasi polynomial (see, once again, Lepelley et al. (2008)). Using one of

these algorithms, we obtain

T (4, n) = 1
288

n3 +[ 1
32

, 1
48

]nn2 +[ 1
24

,− 1
96

]nn+[0,− 1
72

,−17
72

,−1
4
, 1

9
, 7

72
,−1

8
,− 5

36
,−1

9
,−1

8
,− 1

72
,− 1

36
]n.

The period of such a quasi polynomial is the least common multiple of the periods of its coeffi-

cients, here 12. Consequently, the expression of T (4, n) corresponds to 12 distinct polynomials;

for instance, we obtain for n ≡ 9 modulo 12:3

T (4, n) =
1

288
n3 +

1

48
n2 − 1

96
n − 1

8
=

(n + 3)(n2 − 33)

576
.

Now, according to Corollary 1, a dummy player exists if and only if

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ n/2, n2 + n3 > n/2 and n1 + n2 + n3 + n4 = n.

The number of associated distributions of the ni’s is given as

D(4, n) = 1
576

n3+[− 1
96

, 1
192

]nn2+[− 1
24

,− 11
192

, 1
48

, 1
192

]nn+[0, 29
576

,− 7
72

,− 7
64

, 2
9
,− 35

576
,−1

8
, 65

576
, 1

9
,−11

64
,

7
72

, 1
576

]n,

which implies, for n ≡ 9 modulo 12:

D(4, n) =
1

576
n3 +

1

192
n2 − 11

192
n − 11

64
=

(n + 3)(n2 + 3n − 12)

288
.

The expression of P (4, n) = D(4, n)/T (4, n) for n ≡ 9 modulo 12 directly follows, as well as

the limiting value4 P (4,∞) =
1

576
1

288

= 1
2
. 2

The two following Propositions are obtained along the same lines as Proposition 3 and their

proofs are omitted.

Proposition 4 For n ≡ 15 modulo 120, the probability of having dummy player(s) in a 5-

player WMG is:

P (5, n) =
5(n + 9)(7n3 − 51n2 + 165n − 801)

6(11n4 + 120n3 + 350n2 + 960n + 4815)
.

Consequently, the probability for P5 to be a dummy when n is large is: limn→∞P (5, n) = 35
66

.

And the limiting probability of having two dummy players (J4 and J5) when n is large is given

as 5
22

.

Proposition 5 The limiting probability of having at least one dummy player in a 6-player

WMG is given by: limn→∞P (6, n) = 155
312

. The limiting probability of having two dummies (J5

and J6) is 5
39

and the limiting probability of having three (J4, J5 and J6) is 5
52

.

3Of course, the 11 other polynomials can be derived in the same way.
4It is worth noticing that the coefficient of the leading term of the quasi polynomials is not periodic. This

peculiarity allows to easily obtain the desired probabilities for n large by considering only this coefficient in the
quasi plolynomials.
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Table 1

Probability P (m,n) of having a dummy player

as a function of n (the total number of votes) for m = 4, 5, 6.

n 4-player WMG 5-player WMG 6-player WMG

15 0.4375 0.2609 0.1818

18 0.2258 0.1778 0.0196

21 0.4146 0.2973 0.1978

24 0.2537 0.2302 0.0529

27 0.4578 0.3696 0.2731

30 0.3089 0.2827 0.1002

33 0.4490 0.3818 0.2905

36 0.3235 0.3087 0.1259

39 0.4684 0.4145 0.3310

42 0.3535 0.3398 0.1601

45 0.4637 0.4213 0.3407

48 0.3624 0.3553 0.1809

51 0.4747 0.4402 0.3641

54 0.3813 0.3757 0.2072

57 0.4718 0.4443 0.3711

60 0.3873 0.3859 0.2232

63 0.4789 0.4564 0.3869

66 0.4002 0.4002 0.2431

69 0.4770 0.4593 0.3918

72 0.4045 0.4075 0.2558

75 0.4820 0.4678 0.4028

78 0.4139 0.4181 0.2716

81 0.4806 0.4699 0.4066

84 0.4172 0.4235 0.2818

87 0.4842 0.4761 0.4149

90 0.4243 0.4316 0.2943

93 0.4832 0.4777 0.4177

96 0.4269 0.4359 0.3027

99 0.4860 0.4825 0.4241

. . .

199 0.4928 0.5061 0.4594

202 0.4645 0.4624 0.3935

. . .

limit 1/2 35
66

= 0.530 155
312

= 0.497
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Table 2

Probability P (m,∞) of having one, two or three dummies

for m = 4, 5, 6.

m 1 dummy 2 dummies 3 dummies Total

4 0.5 0 0 0.5

5 0.3030 0.2273 0 0.5303

6 0.2724 0.1282 0.0962 0.4968

The next section deals with the cases with more than six players.

4 Results for more than six players

In the 5-player case, 120 different formulas are necessary to compute all the probabilities P (5, n)

(see Proposition 4 for one of them). The number of different formulas is exponentially increasing

when m increases and it becomes practically too complicated to list all of them when m is higher

than 6. In order to obtain the desired probabilities for more than 6 players, we make use of a

computer. This is done in two ways: exact computations and simulations. Exact computations

are done with an exhaustive list of all the possible vectors of weights for a given number n

of votes in the assembly. For all these vectors (n1, . . . , nm), we check whether or not the last

player is pivotal (decisive) (remember that n1 ≥ n2 ≥ . . . ≥ nm). This is done by computing

the Banzhaf powr index with the generating function method. Finally, the exact probability

of having at least one dummy player is the ratio between the number of times the last player

Jm is never pivotal (decisive) and the number of vectors (n1, . . . , nm) considered as admissible

(with a uniform distribution of weights vectors, as done theoretically in the previous section).

Table 3

Probability P (m,n) of having a dummy player

as a function of m for n = 45, n = 50, n = 95 and n = 100.

m n = 45 n = 50 n = 95 n = 100

4 0.4637 0.3735 0.4855 0.4297

5 0.4213 0.3020 0.4806 0.4003

6 0.3407 0.1931 0.4215 0.3091

7 0.2135 0.0858 0.3173 0.1869

8 0.1050 0.0299 0.2017 0.0862

9 0.0434 0.0091 0.0963 0.0304

10 0.0185 0.0030 0.0447 0.0108

11 0.0086 0.0012 0.0194∗ 0.0044∗

12 0.0044 0.0005 0.0098∗ 0.0017∗

13 0.0021 0.0002 0.0060∗ 0.0008∗

14 0.0007 0.0000 0.0038∗ 0.0005∗

15 0.0004 0.0000 0.0025∗ 0.0003∗

∗Simulated probabilities
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Our simulations are based on random vectors of weights. The estimated probability of having

at least one dummy player is then obtained by dividing the number of times the last player Jm

is never pivotal (decisive) by the number of vectors (n1, . . . , nm) randomly generated.

Table 4

Simulated5 probability P (∞, n) of having one, two ... or x dummies

Number of dummy players

m ≥ 1 1 2 3 4 5

4 0.49300 0.49300

5 0.52490 0.29830 0.22660

6 0.49310 0.27140 0.12750 0.09240

7 0.43530 0.24530 0.10460 0.04570 0.03980

8 0.34470 0.21030 0.07970 0.02930 0.01300 0.01240

9 0.25750 0.17250 0.04930 0.01960 0.00790 0.00370

10 0.17750 0.13160 0.02710 0.01000 0.00340 0.00230

11 0.11844 0.09634 0.01440 0.00414 0.00138 0.00074

12 0.07140 0.06044 0.00756 0.00184 0.00058 0.00024

13 0.04340 0.03940 0.00294 0.00062 0.00020 0.00004

14 0.02282 0.02132 0.00114 0.00024 0.00004 0+

15 0.01226 0.01168 0.00046 0.00004 0.00002 0+

0+: the estimated probability is less than 1/50 000

Figure 1. Simulated Probability P (∞, n) of having exactly x dummies with m players

510 000 simulations for m < 11 and 50 000 when m ≥ 11. Moreover P (∞, n) estimating P (99999, n).
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5 Discussion and further results

The theoretical risk of having a dummy appears to be very high. It can be suggested that our

calculations possibly overestimate this risk in the case of the french EPCI, which very often

try to reduce the spread (range) of the numbers of representatives in each city. How can we

introduce more realism in our analysis ?

One approach is the following. Let k be the maximal fraction of the total weight given to the

“biggest” player: n1/n ≤ k. We wish to study the impact of parameter k on the probability

of having a dummy player. Under our other assumptions, k belongs to [ 1
m

, 1
2
]. When k = 1

2
,

we recover the situation we have studied in the preceding sections. With k = 1
m

, each player

obtains the same weight, hence the same power and there is no dummy. Let P (m,n, k) be

the probability of having a dummy when J1 gets k% of the total weight. It seems natural to

conjecture that P (m,n, k) decreases when k moves from 1
2

to 1
m

. The following results show

that this conjecture does not hold for small values of m. We will only give the proof of the first

Proposition.6

Proposition 6 In a 4-player WMG with n large, the probability of having a dummy player as

a function of k is given by the following representation:

P (4,∞, k) =
3

4
for

1

4
≤ k <

1

3

=
240k3 − 288k2 + 108k − 13

4(44k3 − 60k2 + 24k − 3)
for

1

3
≤ k ≤ 1

2
.

Proof. Let K be the maximal weight of J1, with k = K/n. In order to compute the desired

probability, we begin by evaluate the total number T (4, n, K) of distributions on the ni’s when

n1 is constrained to be lower or equal to K. T (4, n, K) is the number of integer solutions of

the following inequalities :

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ K n1 + n2 + n3 + n4 = n and K ≤ n/2.

We have now two parameters, n and K, and the number of integer solutions is given by

bivariate quasi polynomials (see Lepelley et al.(2008)). Using an algorithm recently developed

by Barvinok (????), we obtain for n even two distinct quasi polynomials associated with two

validity domains:

For n
4
≤ K < n

3
:

T (4, n, K) = − 1
144

n3 + ( 1
12

K + 5
48

)n2 + (−1
3
K2 − 5

6
K − 1

2
)n + 4

9
K3 + 5

3
K2 + 2K + c1;

For n
3
≤ K ≤ n

2
:

T (4, n, K) = 1
48

n3 + (−1
6
K − 3

16
)n2 + ( 5

12
K2 + −11

12
K + 5

12
)n − 11

36
K3 − 23

24
K2 − 2K + c2,

where c1 and c2 are periodic constants the value of which depends on both n and K.

Consider the first domain. As K = kn, it follows that, for n
4
≤ K < n

3
, i.e. for 1

4
≤ k < 1

3
:

T (4, n, k) = − 1
144

n3 + ( 1
12

kn + 5
48

)n2 + (−1
3
k2n2 − 5

6
kn − 1

2
)n + 4

9
k3n3 + 5

3
k2n2 + 2kn + c1

6Although more cumbersome, the proofs of Proposition 7 and 8 are quite similar.
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= (− 1
144

+ 1
12

k − 1
3
k2 + 4

9
k3)n3 + ( 5

48
− 5

6
k + 5

3
k2)n + (−1

2
+ 2k)n + c1.

Observe that, in order to compute the limiting probability P (4,∞, k), only the coefficient of

the leading term in n3 matters. For this reason, we will only give the coefficient of n3 of the

quasi polynomials we exhibit in the remaining of this proof.

Proceeding as above, we obtain for the second domain, 1
3
≤ k ≤ 1

2
:

T (4, n, k) = ( 1
48

− 1
6
k + 5

12
k2 − 11

36
k3)n3 + ...

Consider now the number D(4, n, K) of distributions with a dummy player with n1 ≤ K. All

we have to do is to add to the above set of inequalities n2 + n3 > n/2. Replacing K by kn in

the quasi polynomials associated with this new set on inequalities gives:

For 1
4
≤ k < 1

3
: D(4, n, k) = (− 1

192
+ 1

16
k − 1

4
k2 + 1

3
k3)n3 + ...

For 1
3
≤ k ≤ 1

2
: D(4, n, k) = ( 13

576
− 3

16
k + 1

2
k2 − 5

12
k3)n3 + ...

We finally obtain:

For 1
4
≤ k < 1

3
:

P (4,∞, k) =
D(4,∞, k)

T (4,∞, k)
=

− 1
192

+ 1
16

k − 1
4
k2 + 1

3
k3

− 1
144

+ 1
12

k − 1
3
k2 + 4

9
k3

=
(4k−1)3

192
(4k−1)3

144

=
3

4
,

and for 1
4
≤ k < 1

3
:

P (4,∞, k) =
D(4,∞, k)

T (4,∞, k)
=

13
576

− 3
16

k + 1
2
k2 − 5

12
k3

1
48

− 1
6
k + 5

12
k2 − 11

36
k3

=
240k3 − 288k2 + 108k − 13

4(44k3 − 60k2 + 24k − 3)
. 2

Proposition 7 In a 5-player WMG with n large, the probability of having at least one dummy

player depends on k as shown in the following representation:

P (5,∞, k) = 0 for
1

5
< k <

1

4

=
5(4k − 1)3(44k − 23)

32(655k4 − 780k3 + 330k2 − 60k + 43)
for

1

4
< k <

1

3

=
−5(3264k4 − 3840k3 + 1440k2 − 192k + 5)

96(155k4 − 300k3 + 210k2 − 60k + 6)
for

1

3
< k <

1

2
.

Proposition 8 In a 6-player WMG with n large, the probability of having at least one dummy

player depends on k as shown in the following representation:

P (6,∞, k) =
5

12
for

1

6
< k <

1

5

=
186120k5 − 192600k4 + 79200k3 − 16200k2 + 1650k − 67

12(10974k5 − 12270k4 + 5340k3 − 1140k2 + 120k − 5)
for

1

5
< k <

1

4

= −5034240k5 − 7027200k4 + 3916800k3 − 1094400k2 + 153600k − 8669

768(2193k5 − 3465k4 + 2130k3 − 630k2 + 90k − 5)
for

1

4
< k <

3

10

=
5(1153152k5 − 1834560k4 + 1160640k3 − 364320k2 + 56760k − 3515)

768(2193k5 − 3465k4 + 2130k3 − 630k2 + 90k − 5)
for

3

10
< k <

1

3

= −5(282240k5 − 486720k4 + 331200k3 − 110880k2 + 18360k − 1211)

768(237k5 − 585k4 + 570k3 − 270k2 + 60k − 5)
for

1

3
< k <

3

8

=
5(307584k5 − 619200k4 + 498240k3 − 200160k2 + 39960k − 3163)

768(237k5 − 585k4 + 570k3 − 270k2 + 60k − 5)
for

3

8
< k <

1

2
.

11



Table 5

Exact probability P (m,∞, k) of having a dummy player

as a function of k for large n and m = 4, 5, 6.

k 4-player WMG 5-player WMG 6-player WMG

0.23 - 0 0.381

0.25 0.750 0 0.282

0.27 0.750 0.060 0.269

0.29 0.750 0.174 0.311

0.31 0.750 0.270 0.354

0.33 0.750 0.344 0.391

0.35 0.748 0.403 0.418

0.37 0.737 0.452 0.439

0.39 0.718 0.492 0.455

0.41 0.693 0.525 0.469

0.43 0.662 0.549 0.482

0.45 0.624 0.563 0.495

0.47 0.580 0.563 0.505

0.49 0.529 0.547 0.505

0.50 0.500 0.530 0.497

Table 6

Simulated7 probability P (m, 9999, k) of having a dummy player

as a function of k and m.

k 7-player WMG 8-player WMG 9-player WMG 10-player WMG

0.23 0.199 0.175 0.146 0.099

0.25 0.235 0.198 0.163 0.117

0.27 0.259 0.221 0.182 0.125

0.29 0.290 0.238 0.192 0.133

0.31 0.319 0.255 0.205 0.143

0.33 0.346 0.271 0.211 0.152

0.35 0.365 0.283 0.219 0.157

0.37 0.376 0.297 0.223 0.160

0.39 0.387 0.302 0.228 0.163

0.41 0.393 0.313 0.234 0.165

0.43 0.402 0.322 0.238 0.167

0.45 0.413 0.333 0.243 0.174

0.47 0.422 0.340 0.247 0.177

0.49 0.428 0.347 0.252 0.180

0.50 0.435 0.435 0.258 0.1775

710 000 simulations for m < 11 and 50 000 when m ≥ 11.
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6 Concluding remark

We have shown in this paper that the probability of having at least one dummy player in

Weighted Majority Games with a small number of player is very high. This probability can

reach about 50% for 4, 5 or 6 players ; for more than 6 players, the probability decreases but we

have to consider more than 15 players for obtaining results lower than 1%. Of course, it can be

suspected that our probabilistic assumption (all admissible weight distributions are supposed

to be equally likely to occur) could tend to exaggerate the probability of having a dummy. We

have proved however that, for a very small number of players, the introduction of some degree

of homogeneity in the distribution of the weights has a weak impact on this probability.

Finally, it is worth to emphasize that our results are limited to majority games, in which the

quota for a proposition to be approved is equal to 50% of the total weight. It should be of

interest to consider the impact of the quota value on the probability of having a dummy player.

We plan to study this question in another paper.

7 Appendix: Proof of Proposition 2

(i) In order to characterize the distributions of the ni’s for which J5 is a dummy player, we

consider the set of coalitions to which J5 is susceptible to belong: {J1, J5}, {J2, J5}, {J3, J5},
{J4, J5}, {J1, J2, J5}, {J1, J3, J5}, {J1, J4, J5}, {J2, J3, J5}, {J2, J4, J5}, {J3, J4, J5},
{J1, J2, J3, J5}, {J1, J2, J4, J5}, {J1, J3, J4, J5}, {J2, J3, J4, J5} and {J1, J2, J3, J4, J5}.
Consider first the two-player coalitions; J5 is a dummy player if these coalitions are loosing

(if not, a zero power for J5 would imply that a coalition with only one player is winning,

contradicting our assumptions) and these two-player coalitions will be loosing if n1 + n5 < Q.

Consider now the coalitions {J1, J2, J5} and {J1, J3, J5}; these coalitions are necessarily win-

ning (recall that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 ≥ 1, by assumption (2)). J5 is a dummy if we

have n1 + n3 ≥ Q (which implies n1 + n2 ≥ Q). The next three-player coalitions {J1, J4, J5},
{J2, J3, J5}, {J2, J4, J5} and {J3, J4, J5} can be winning or loosing. Hence, J5 is a dummy

if: (n1+n4+n5 < Q or n1+n4 ≥ Q) and (n2+n3+n5 < Q or n2+n3 ≥ Q) and (n2+n4+n5 < Q

or n2 + n4 ≥ Q) and (n3 + n4 + n5 < Q or n3 + n4 ≥ Q). Finally, consider coalitions with four

or five players, which are winning coalitions. J5 is a dummy player is n2 + n3 + n4 ≥ Q. To

summing up, J5 is a dummy player if and only if we have:

n1 + n5 < Q and n1 + n3 ≥ Q and (n1 + n4 + n5 < Q or n1 + n4 ≥ Q) and (n2 + n3 + n5 < Q or

n2 + n3 ≥ Q) and (n2 + n4 + n5 < Q or n2 + n4 ≥ Q) and (n3 + n4 + n5 < Q or n3 + n4 ≥ Q)

and n2 + n3 + n4 ≥ Q.

Since
∑

i ni = n, these inequalities can be written in the following way:

n1 + n5 < Q and n1 + n3 ≥ Q and (n2 + n3 ≥ Q∗ or n1 + n4 ≥ Q) and (n1 + n4 ≥ Q∗ or

n2 + n3 ≥ Q) and (n1 + n3 ≥ Q∗ or n2 + n4 ≥ Q) and (n1 + n2 ≥ Q∗ or n3 + n4 ≥ Q) and

n1 + n5 < Q∗,

Eliminating redundant inequalities, we obtain:

n1 + n5 < Q∗ and n1 + n3 ≥ Q and (n2 + n3 ≥ Q or n1 + n4 ≥ Q) and n1 + n3 ≥ Q and

13



n1 + n2 ≥ Q,

which can be reduced to:

(n1 + n5 < Q∗ and n2 + n3 ≥ Q) or (n1 + n5 < Q∗ and n1 + n4 ≥ Q).

As n2 + n3 ≥ Q implies n1 + n5 < Q∗ and n1 + n5 < Q∗ is equivalent to n2 + n3 + n4 ≥ Q, we

finally obtain:

n2 + n3 ≥ Q or (n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q), in accordance with Proposition 2 (i).

Furthermore, it follows from Proposition 1 that J4 and J5 are both dummy players if and only

if n2 + n3 ≥ Q.

(ii) Proceeding as above, it is easily checked that J6 is a dummy player if and only if a) all the

two-player coalitions including J6 are loosing, b) either {J1, J2, J6}, {J1, J3, J6}, {J1, J4, J6},
{J1, J5, J6}, {J2, J3, J6} are loosing or (respectively) {J1, J2}, {J1, J3}, {J1, J4}, {J1, J5},
{J2, J3} are winning, c) either {J1, J4, J5, J6}, {J2, J3, J4, J6}, {J2, J3, J5, J6}, {J2, J4, J5, J6},
{J3, J4, J5, J6} are loosing or (respectively) {J1, J4, J5}, {J2, J3, J4}, {J2, J3, J5}, {J2, J4, J5},
{J3, J4, J5} are winning, d) {J1, J2, J3}, {J1, J2, J4}, {J1, J2, J5}, {J1, J3, J4}, {J1, J3, J5}
are winning, e) {J1, J2, J3, J4}, {J1, J2, J3, J5}, {J1, J2, J4, J5}, {J1, J3, J4, J5}, {J2, J3, J4, J5}
are winning and f) {J1, J2, J3, J4, J5} is winning. This implies a) n1+n6 < Q, b) (n1+n2+n6 <

Q or n1+n2 ≥ Q) and (n1+n3+n6 < Q or n1+n3 ≥ Q) and (n1+n4+n6 < Q or n1+n4 ≥ Q) and

(n1+n5+n6 < Q or n1+n5 ≥ Q) and (n2+n3+n6 < Q or n2+n3 ≥ Q), c) (n1+n4+n5+n6 < Q

or n1 +n4 +n5 ≥ Q) and (n2 +n3 +n4 +n6 < Q or n2 +n3 +n4 ≥ Q) and (n2 +n3 +n5 +n6 < Q

or n2+n3+n5 ≥ Q) and (n2+n4+n5+n6 < Q or n2+n4+n5 ≥ Q) and (n3+n4+n5+n6 < Q or

n3+n4+n5 ≥ Q), d) n1+n3+n5 ≥ Q, e) n2+n3+n4+n5 ≥ Q and f) n1+n2+n3+n4+n5 ≥ Q.

The reduction of this set of inequalities leads to the six cases given in Proposition 2 (ii). To

complete the proof, it remains to observe that, in case 4, J4, J5 and J6 are dummy players (by

Proposition 1); and if J6 is a dummy and J4 is not (n2 + n3 < Q), then it results from part (i)

of Proposition 2 that J5 is also a dummy player if and only if n1+n4 ≥ Q and n2+n3+n4 ≥ Q.2
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