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Abstract

In life insurance, actuaries have traditionally calculated premiums and reserves using

a deterministic mortality intensity, which is a function of the age of the insured only.

Over the course of the 20th century, the population of the industrialized world underwent

a major mortality transition, with a dramatic decline in mortality rates. The mortal-
ity decline has been dominated by two major trends: a reduction in mortality due to

infectious diseases affecting mainly young ages, and a decrease in mortality at old ages.

These mortality improvements have to be taken into account to price long-term life in-

surance products and to analyse the sustainability of social security systems. In this

paper, we argue that pricing and reserving for pension and life insurance products re-

quires dynamic (or prospective) lifetables. We briefly review classic and recent projection
methods and adopt a Poisson log-bilinear approach to estimate Portuguese Prospective

Lifetables. The advantages of using dynamic lifetables are twofold. Firstly, it provides

more realistic premiums and reserves, and secondly, it quantifies the risk of the insurance

companies associated with the underlying longevity risks. Finally, we discuss possible

ways of transferring the systematic mortality risk to other parties.
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1 Introduction and motivation

It is well documented that human mortality globally declined during the course

of the 20th century. Mortality improvements are naturally viewed as a positive

change for individuals and as a substantial social achievement of developed coun-

tries. The mortality decline has been dominated by two major trends: a reduction

in mortality due to infectious diseases affecting mainly young ages, and a decrease

in mortality at old ages. Effectively, based on available demographic databases,

we can conclude that human life span shows no sign of approaching a fixed limit

imposed by biology. Rather, historical trends show that both average and the

maximum life span have increased gradually during the 20th century.

All of this poses a serious challenge for the planning of public retirement

systems, the long term risk management of supplemental pension plans as well

as for the pricing and reserving for life insurance companies. To be more precise,

human longevity trends affect not only old-age pensions but all components of

social security systems, namely health care costs and disability and survivorship

benefits. Likewise, other insurance products sold by private companies providing

some sort of “living benefits” are affected by these developments in longevity (e.g.

post-retirement health care protection).

Mortality improvements have an obvious impact on pricing and reserving for

any kind of long-term living benefits, particularly on annuities. The calculation

of expected present values requires an appropriate mortality projection in order

to avoid significant underestimation of future costs.

In order to protect the company from mortality improvements, actuaries have

different solutions, among them to resort to projected (dynamic or prospective)

lifetables, i.e., lifetables including a forecast of future trends of mortality instead

of static lifetables. Static lifetables are obtained using data collected during a

specific period (1 to 4 years) whereas dynamic lifetables incorporate mortality

projections. To illustrate the problems with this approach, consider a female

individual born in 2006. Her mother is 30-year-old and her grand-mother 60.

To estimate the life expectancy of the newborn, the death probability at age

30 will be her mother’s one and at age 60 her grand-mother’s one, observed in

2006. This means that in a situation where longevity is increasing, static lifetables

underestimate lifelengths and thus premiums relating to life insurance contracts.

Conversely, dynamic lifetables will project mortality into the future accounting

for longevity improvements
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The literature on the construction of projected lifetables is vast and growing.1

The classical approach is to fit an appropriate parametric function (e.g. Make-

ham model) to each calendar year data, and then treat parameter estimates as

independent time series, extrapolating their behaviour to the future on order to

provide the actuary with projected lifetables. Despite simple, this approach has

serious limitations. In the first place, this approach strongly relies on the ap-

propriateness of the parametric function adopted. Secondly, parameter estimates

are very unstable a feature that undermines the reliability of univariate extrap-

olations. Thirdly, the time series for parameter estimates are not independent

and often robustly correlated. Although applying multivariate time series meth-

ods for the parameter estimates is theoretically possible, this will complicate the

approach and introduce new problems.

Lee and Carter (1992) developed a simple model for describing the long term

trends in mortality as a function of a simple time index. The method models the

logarithm of a time series of age-specific death rates as the sum of an age-specific

component that is independent of time and a second component, expressed as a

product of a time-varying parameter denoting the general level of mortality, and

an age-specific component that signals the sensitiveness of mortality rates at each

age fluctuate when the general level of mortality changes. The model is fitted to

data, and the resulting time-varying parameter estimates are then modelled and

forecasted using standard Box-Jenkins time series methods. Finally, from this

forecast of the general level of mortality, the projected age-specific death rates

are derived using the estimated age-specific parameters.

Recently, Brouhns et al. (2002a,b) and Renshaw and Haberman (2003a,b)

adopted a Poisson log-bilinear regression model to build projected lifetables, an

approach developed to prevent some limitations inherent to the Lee & Carter

(1992) original methodology. Indeed, Lee & Carter assume that the errors are

homoskedastic, an unrealistic assumption since the logarithm of the force of mor-

tality is normally much more variable at older ages that at younger ages. On the

other hand, since the estimation of the model relies on a Singular Value Decom-

position (SVD) of the matrix of the log age-specific observed forces of mortality,

a complete rectangular matrix of data actually needed. Moreover, for actuarial

applications, the law of the number of deaths is very useful and in this sense, the

adoption of a Poisson distribution for the number of death remedies some of the

Lee & Carter drawbacks.
1A detailed review of mortality projection methods can be found in Tuljapurkar and Boe

(1998), Pitacco (2004), Wong-Fupuy and Haberman (2004) and Bravo (2007).
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In this paper we adopt a the Poisson log-bilinear approach developed by

Brouhns et al. (2002a,b) to estimate Portuguese general population prospective

lifetables. The results are then compared with classical static lifetables to give

and indication of the longevity risk faced by insurance companies.

Let us now describe the content of this paper. Section 2 describes the notation

and the assumptions adopted throughout this paper. Section 3 resumes the basic

features of the Poisson log-bilinear projection model suggested by Brouhns et al.

(2002a,b). Section 4 presents the data used in this study and describes the major

mortality trends in Portugal during the 20th century. Section 5 examines the

results of the application of the projection model to the Portuguese data. Section

6 concludes.

2 Notation, assumption and quantities of interest

2.1 Notation

The basic idea underlying projected lifetable methods is to analyse changes in

mortality as a function of both age x and time t. Even though age and time are

theoretically free to oscillate in the half-positive real line, we assume here that x

and t are integer numbers. From now on, µx (t) will denote the force of mortality

at age x during calendar year t. By the same reason, qx (t) represents the one-year

death probability at age x in year t and px (t) = 1 − qx (t) is the corresponding

survival probability. Let Dx,t denote the number of deaths recorded at age x

during year t, from an exposure-to-risk (i.e., the number of person years from

which Dx,t arise) Ex,t.

2.2 Piecewize constant forces of mortality

Consider the classic Lexis diagram, that is, a coordinate system that has calendar

time as abscissa and age as coordinate. If we assume that both time scales are

divided into yearly bands, the Lexis plane is partitioned into squared segments.

In this paper, we assume that the age-specific forces of mortality are constant

within bands of time and age, but authorized to change from one band to the

next. Formally, given any integer age x and calendar year t, we assume that

µx+ξ (t+ τ) = µx (t) for any 0 ≤ ξ, τ < 1 (1)

In other words, assumption (1) means that mortality rates are constant within

each square of the Lexis diagram, but allowed to vary between squares. From (1)
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the calculation of the probability of an individual aged x in year t, px (t) , and of

the corresponding death probability qx (t) = 1− px (t) simplifies to:

px (t) = exp (−µx (t)) = 1− px (t) (2)

2.3 Quantities of interest

Several markers are regularly used by demographers to measure the evolution of

mortality, namely life expectancies, variance of residual lifetime, median lifetime

or the entropy of a lifetable. Let ex(t) denote the life expectancy of an x-aged

individual in year t, i.e., the average number of years he is expected to survive.

This means we expect this individual will die in year t+ex(t) then aged x+ex(t).

Contrary to classic static lifetables, the use of projected lifetables allows us to

estimate the “true” expected residual lifetime of an individual. The appropriate

formula for ex(t) is given by

ex (t) =
∑

k≥0






k∏

j=0

px+j (t+ j)






=
1− exp (−µx (t))

µx (t)
(3)

+
∑

k≥1






k−1∏

j=0

exp
(
−µx+j (t+ j)

)




1− exp

(
−µx+k (t+ k)

)

µx+k (t+ k)

The actual computation of ex (t) requires the knowledge of µξ (τ) (or pξ (τ))

for x ≤ ξ ≤ ω and t ≤ τ ≤ t + ω − x, where ω denotes the ultimate (maximum)

age. Since these survival probabilities are knot known at time t, they have to be

estimated using extrapolation methods based on past trends. The next section

gives an example of how this can be done in practice.

For life insurance companies and annuity providers, the net single premium

of an immediate life annuity sold to an x-aged individual in year t, ax (t) , is of

special interest. The appropriate formula for ax(t) is given by

ax (t) =
∑

k≥0






k∏

j=0

px+j (t+ j)





υk+1 (4)

where υ = (1 + i)−1 is the yearly discount factor. As can be seen, mortality

projections and projected survival probabilities are particularly important to price

correctly annuity and other life insurance contracts.
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3 Mortality projection method

3.1 Poisson log-bilinear model

Following Brouhns et al. (2002a), we adopt a Poisson log-bilinear approach and

consider that

Dx,t ∼ Poisson (µx (t)Ex,t) (5)

with

µx (t) = exp (αx + βxκt) (6)

where the parameters αx, βx and κt have to be constrained by

tmax∑

t=tmin

κt = 0 and
xmax∑

x=xmin

βx = 1 (7)

in order to ensure model identification.

Similar to Lee and Carter (1992), the model assumes that the force of mor-

tality has a log-bilinear structure, that is, lnµx (t) = αx + βxκt. Additionally,

the expected number of death is eay to calculate and given by λx,t = E (Dx,t) =

Ex,t exp (αx + βxκt) . The meaning of parameters αx, βx and κt is fundamentally

the same as in the traditional Lee-Carter model, that is,

exp (αx) : corresponds to the general shape of mortality across age or, more rig-

orously, to the geometric mean of µx (t) in the observation period.

κt : denotes the general time trends in mortality

βx : expresses the sensitivity of the logarithm of the force of mortality at age x to

variations in the parameter κt, i.e., it basically determines the speed of reaction

of mortality rates at each age in response to changes in general time trends.

3.2 Estimation of the parameters

One of the main advantages of the Poisson log-bilinear model over the Lee and

Carter (1992) model is that specification (5) allows us to use maximum-likelihood

methods to estimate the parameters instead of resorting to SVD methods. More-

over, since model (5) doesn’t requires a SVD of the matrix lnµx (t) we don’t need

a complete rectangular matrix of data anymore.

Formally, we estimate the parameters αx, βx and κt by maximizing the log-
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likelihood derived from model (5)-(6), which is given by

lnV (α,β,κ) = ln

{
tmax∏

t=tmin

xmax∏

x=xmin

(
λ
Dx,t
x,t exp (−λx,t)

(Dx,t)!

)}

=
tmax∑

t=tmin

xmax∑

x=xmin

{Dx,t lnλx,t − λx,t − ln [(Dx,t)!]}

=
tmax∑

t=tmin

xmax∑

x=xmin

{Dx,t lnEx,t +Dx,t (αx + βxκt) (8)

−Ex,t exp (αx + βxκt)− ln [(Dx,t)!]}

=
tmax∑

t=tmin

xmax∑

x=xmin

{Dx,t (αx + βxκt)−Ex,t exp (αx + βxκt)}+ c

where α = (αxmin , . . . , αxmax) , β =
(
βxmin , . . . , βxmax

)
, κ = (κxmin , . . . , κxmax) and

c is a constant.

The presence of the bilinear term βxκt makes it impossible to estimate the

model using standard statistical packages that include Poisson regression. Because

of this, we resort to an iterative method for estimating log-linear models with

bilinear terms proposed by Goodman (1979). The algorithm, which is essentially

a Newton-Raphson standard method, states that in iteration υ + 1, a single set

of parameters is updated fixing the other parameters at their current estimates

according to the following updating scheme

θ̂
(υ+1)

j = θ̂
(υ)

j −
∂L(υ)/∂θj

∂2L(υ)/∂θ2j
(9)

where L(υ) = L(υ)(θ̂
(υ)
). Recall that in our case we have three sets of parameters,

corresponding to the αx, βx and κt terms.

The updating scheme is as follows: starting with a given initial vector (α̂(0)x β̂
(0)
x κ̂

(0)
t ),

then:
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α̂(υ+1)x = α̂(υ)x −

tmax∑

t=tmin

[
dx,t −Ex,t exp

(
α̂
(υ)
x + β̂

(υ)
x κ̂

(υ)
t

)]

−
tmax∑

t=tmin

[
Ex,t exp

(
α̂
(υ)
x + β̂

(υ)
x κ̂

(υ)
t

)] ,

β̂
(υ+1)
x = β̂

(υ)
x , κ̂

(υ+1)
t = κ̂

(υ)
t (10)

κ̂
(υ+2)
t = κ̂

(υ+1)
t −

xmax∑

x=xmin

β̂
(υ+1)
x

[
dx,t −Ex,t exp

(
α̂
(υ+1)
x + β̂

(υ+1)
x κ̂

(υ+1)
t

)]

−
xmax∑

x=xmin

(
β̂
(υ+1)

x

)2 [
Ex,t exp

(
α̂
(υ+1)
x + β̂

(υ+1)

x κ̂
(υ+1)
t

)] ,

α̂(υ+2)x = α̂(υ+1)x , β̂
(υ+2)
x = β̂

(υ+1)
x

β̂
(υ+3)

x = β̂
(υ+2)

x −

tmax∑

t=tmin

κ̂
(υ+1)
t

[
dx,t −Ex,t exp

(
α̂
(υ+2)
x + β̂

(υ+2)

x κ̂
(υ+2)
t

)]

−
tmax∑

t=tmin

(
κ̂
(υ+2)
t

)2 [
Ex,t exp

(
α̂
(υ+2)
x + β̂

(υ+2)
x κ̂

(υ+2)
t

)] ,

α̂(υ+3)x = α̂(υ+2)x , κ̂
(υ+3)
t = κ̂

(υ+2)
t

We use as a criterion to stop the iterative procedure a very small increase of

the log-likelihood function.

The maximum-likelihood estimations of the parameters generated by (10) do

not match the identification constraints (7), and have thus to be adapted. This

is guaranteed by changing the parameterization in the following manner:

κ∗t = (κ̂t − κ̄)K and β∗x =
β̂x∑xmax

x=xmin
β̂x

(11)

where κ̄ denotes average value for κ̂t, i.e.

κ̄ =
1

tmax − tmin + 1

tmax∑

t=tmin

κ̂t

and where K is given by

K =
xmax∑

x=xmin

β̂x

from which we finally calculate

α∗x = α̂x + β̂xκ̄ (12)
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The new estimates α∗x, β
∗
x and κ

∗
t fulfill the constraints (7) and provide the

same D̂x,t since α̂x + β̂xκ̂t = α
∗
x + β

∗
xκ
∗
t . Note also that differentiating the log-

likelihood function with respect to αx yields the equality

∑

t

Dx,t =
∑

t

D̂x,t =
∑

t

Ex,t exp
(
α̂x + β̂xκ̂t

)

This means that the estimated κt’s are such that the resulting death rates

applied to the actual risk exposure produce the total number of deaths actually

observed in the data for each age x.

3.3 Modelling the time-factor

In the Poisson log-bilinear methodology, the time factor κt is intrinsically viewed

as stochastic process. In this sense, standard Box-Jenkins techniques are used to

estimate and forecast κt within an ARIMA(p, d, q) time series model. Recall that

the model takes the general form

(1−B)d κt = µ+
Θq (B) ǫt
Φq (B)

(13)

where B is the delay operator (i.e., B (κt) = κt−1, B
2 (κt) = κt−2, . . .), 1 −

B is the difference operator (i.e., (1−B)κt = κt − κt−1, (1−B)
2 κt = κt −

2κt−1 + κt−2, . . .), Θq (B) is the Moving Average polynomial, with coefficients

θ = (θ1, θ2, . . . , θq), Φq (B) is the Autoregressive polynomial, with coefficients

φ =
(
φ1, φ2, . . . , φp

)
, and ǫt is white noise with variance σ2ǫ .

The method used to derive estimates for the ARIMA parameters µ, θ, φ

and σǫ is conditional least squares. From these, forecasted values of the time

parameter, denoted by κ∗t , are derived. Finally, the parameter estimates of the

Poisson model and the forecasts κ∗t can be inserted in (6) to obtain age-specific

mortality rates, prospective lifetables, life expectancies, annuities single premiums

and other related markers. In the following we apply the Poisson modelling to

Portugal’s general population data in order to derive prospective lifetables.

4 Building prospective lifetables for Portugal

4.1 Data

The model used in this paper is fitted to the matrix of crude Portuguese death

rates, from year 1970 to 2004 and for ages 0 to 84. The data, discriminated by

age and sex, refers to the entire Portuguese population and has been supplied
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by the Portuguese National Institute of Statistics (INE - Instituto Nacional de

Estatística). The database for this study comprises two elements: the observed

number of deaths dx,t given by age and year of death, and the observed population

size lx,t at December 31 of each year. We follow the INE definition of population

at risk using the population counts at the beginning and at the end of a year and

take migration into account.

Figures 1 and 2 give us a first indication of mortality trends in Portugal during

this period. Two trends dominated the mortality decline: (i) a reduction in

mortality due to infectious diseases affecting mainly young ages, (ii) decreasing

mortality at old ages.

4.2 Parameter estimation

We apply the Poisson modelling to the Portuguese data presented above. The

Poisson parameters αx, βx and κt implicated in (6) are estimated by maximum-

likelihood methods using the iterative procedure described in Section 3.2. We

started the updating scheme considering the following initial values α̂(0)x = 0,

β̂
(0)
x = 1, and κ̂(0)t = 0.1. The criterion to stop the iterative procedure is a very

small increase of the log-likelihood function (in our case we used 10−5). The

routine was implemented within the SAS package. Figure 3 plots the estimated

αx, βx and κt.

We note that the α̂x’s represent the average of the ln µ̂x (t) across the time

period. As expected, the average mortality rates are relatively high for newborn

and childhood ages, then decrease rapidly towards their minimum (around age

12), increasing then in x, reflecting higher mortality at older ages. The only ex-

ception refers to the well know “mortality hump” around ages 20-25, more visible

in the male population, a phenomena normally associated with accident or suicide

mortality. We can see that young ages tend to be more affected by changes in the

general time trends of mortality, probably due the evolution of medicine in reduc-

ing infantile and juvenile mortality. In effect, the β̂x’s decrease with age, except

for the mortality hump phenomena, but remain positive for all ages. Note also

that the sensitiveness of the male population to variations in parameter κt tends

to be grater than that of the female population, which has a more stable pattern.

Finally, we can see that the κ̂t’s exhibit a clear decreasing trend (approximately

linear). This reveals the significant improvements of mortality at all ages both for

men and women in the last 35 years.
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Figure 1: Crude mortality rates for the period 1970-2004, males

Figure 2: Crude mortality rates for the period 1970-2004, females
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Figure 3: Estimations of αx, βx and κt for men (left panels) and women (right

panels).
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4.3 Extrapolating time trends

Let {κ̂t, t = tmin, . . . , tmax} denote a realization of the finite chronologic time series

K = {κt, t ∈ N} . Following the work of Lee and Carter (1992) and Brouhn et al.

(2002a,b), we use standard Box-Jenkins methodology to identify, estimate and

extrapolate the appropriate ARIMA (p, d, q) time series model for the male and

female time indexes κt.

A good model for the male population is ARIMA(0, 1, 1), which is a moving

average (MA(1)) model

(1−B)κmt = ρ
m + θmεmt−1 + ε

m
t (14)

whereas for women the ARIMA(1,1,0) autoregressive model was identified as a

good candidate

(1−B)κwt = ρ
w + φwκwt−1 + ε

w
t (15)

where εmt and εwt are white noise error terms with variance σ
2
m and σ2w, respec-

tively. The estimated parameters for the ARIMA (p, d, q) models (14) and (15)

are given in Table 1. Note that all parameters are significant at a 5% significance

level.

Sex Parameter Estimate Std error t−value p−value

ρm -1.64623 0.11663 -14.11 <.0001
Men θm 0.64315 0.14831 4.34 0.0001

σm 1.800992

ρw -2.14802 0.23969 -8.96 <.0001
Women φw -0.63606 0.15145 -4.20 0.0002

σw 2.263249

Table 1: Estimation of the parameters of the ARIMA(p,d,q) models

In Figure 4 we show the estimated values of κt together with the κ∗t projected

and the corresponding 95% confidence interval forecasts.
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Figure 4: Estimated and projected values of κt with their 95% confidence intervals

for males (left panel) and females (right panel)

Given the forecasted values of κt
{
κ̂∗2004+s : s = 1, 2, . . .

}
, the reconstituted

sex-specific forces of mortality are given by

µ̂x (2004 + s) = exp(α̂x + β̂xκ̂
∗
2004+s), s = 1, 2, . . . (16)

and then used to generate sex-specific life expectancies and life annuities.

4.4 Completion of lifetables

According to the United Nations, it is estimated that in 2001 72 million of the 6.1

billion inhabitants of the world were 80 year or older. In the developing world,

the population of the oldest-old (e.g., those 80 years and older) still represents

a small fraction of the world’s population but it is the fastest growing segment

of the population. In addition, because life expectancy will continue to increase,

not only we should expect to have an increasing number of people surviving to

very old ages, but also anticipate that the deaths of the oldest-old will account

for an increasing proportion of all deaths in a given population. In view of this,

it is important to have detailed information about the age structure of the oldest-
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old and about the behaviour of mortality at these ages. Unfortunately, in most

countries reliable data on both the age distribution of population at risk and death

counts of the oldest-old is not yet available. This is also our case since Portuguese

statistics do not provide an age breakdown for the group aged 85 and over. This

poses a serious problem when it comes to complete lifetables.

Because of this, a number of research papers has addressed the issue of pro-

jecting mortality for the oldest-old (see, e.g., Buettner (2002)). In this paper

we adopt the method proposed by Denuit and Goderniaux. (2005) to extrapo-

late mortality rates at very old ages. The method is a two step method: first, a

quadratic function is fitted to age-specific estimated mortality rates in a given age-

band; second, the estimated function is used to extrapolated mortality rates up

to a pre-determined maximum age. Formally, the following log-quadratic model

is fitted by weighted least-squares

ln q̂x (t) = a (t) + b (t)x+ c (t)x
2 + ǫx (t) , 65 ≤ x ≤ 84 (17)

to age-specific mortality rates observed at older ages (in our case 65 ≤ x ≤ 84),

where ǫx (t) ∼ N
(
0, σ2 (t)

)
, with additional constraints

q120 = 1 (18)

q′120 = 0 (19)

where q′x denotes the first derivative of qx with respect to age x. Constraints (18)

and (19) impose a concave configuration to the curve of mortality rates at old ages

and the existence of a horizontal tangent at x = 120.We then use this function to

extrapolated mortality rates up to age 120. Figures 5 and 6 show the final result

of this procedure.

4.5 Mortality Projections

4.5.1 By chronologic year

Considering the prospective lifetables derived in the previous section, we can now

analyse the evolution of mortality across time. Figure 7 represents the evolution

of observed and estimated forces of mortality from 1970 to 2050 for both genders.

In Figure 8 we can observe the evolution of observed and estimated mortality

rates from 1970 to 2050 for both genders and some representative ages.
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Figure 5: Mortality rates for closed lifetables, males

Figure 6: Mortality rates for closed lifetables, females
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Figure 7: Evolution of µx (t) for men (left panel) and women (right panel)
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Figure 8: Evolution of qx for some representative ages, from 1970 to 2124, for

men (left) and women (right)
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Overall, we can observe a clear and continuous decline in mortality throughout

this period. It is also apparent that this mortality decline is more noticeable

within younger ages. The mortality hump phenomenon is surprisingly persistent

and tends to be more significant for the male population. In effect, we can observe

a sort of mortality stagnation within this age-band. For older ages, we predict a

decline in mortality rates.

4.5.2 By Cohort

Prospective lifetables provide us with new tools for the analysis of mortality

trends, namely the possibility to investigate the evolution of mortality not only in

terms of calendar time but also in terms of year of birth or cohort. In brief, by us-

ing prospective lifetables we switch from a transversal approach to a longitudinal

(or diagonal) approach to mortality.

In Figure 9 we can observe the evolution of the force of mortality for some

representative generations born between 1970 and 2004.
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Figure 9: Evolution of the instantaneous force of mortality for some representative

generations for men (left panel) and women (right panel)

We note that the main mortality features identified in the previous section

within the transversal approach (decreasing mortality trends, mortality hump,...)

18



are again easily recognized within the cohort approach. It should be mentioned,

however, that the evolution of mortality for successive generations seems to be

more reliable and plausible when compared with that provided by the classic static

approach.

In figure 10 we compare mortality rates obtained in both a transversal and

diagonal approach for selected cohorts (and calendar years). We can observe

that, in decreasing mortality environment, the predicted values within a diagonal

approach are, as expected, lower than those estimated via a transversal approach.

Note also that the differences in the projected values increase with the age of the

individual and with the generation’s year of birth. The only exception refers, once

again, to the mortality hump phenomena, for which we project a stagnation (and

even a slight increase) in mortality rates.

4.6 Life expectancy

In this section we analyse the evolution of life expectancy ex (t) in terms of cal-

endar year t = 1970, . . . , 2004 for some representative ages x = 0 and x = 65. In

Section 2.3 we showed that within the transversal approach ex (t) is calculated on

the basis of mortality rates observed (or estimated) in year t (i.e., using proba-

bilities qx+k (t) , k = 0, 1, 2, . . .). For the contrary, within the diagonal approach

ex (t) represents the “true” remaining lifetime for individuals aged x in year t,

and is calculated on the basis of mortality rates projected for that generation

(i.e., using probabilities qx+k (t+ k) , k = 0, 1, 2, . . .). Table 2 summarizes the

results obtained for the life expectancy calculated at birth and at age 65 for two

selected calendar years. Column ∆̄y indicates the average annual gain (measured

in days) in the life expectancy registered between 1970 and 2004.
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Figure 10: Transversal vs cohort approach, for selected calendar years, for men

(left panel) and women (right panel)
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Men e0 (t) e65 (t)

t Long ∆̄y Trans ∆̄y Long ∆̄y Trans ∆̄y

1970 71.99 63.21 13.16 12.21

2004 83.30 117.9 74.55 118.3 16.91 39.2 15.84 38.0

Women e0 (t) e65 (t)

t Long ∆̄y Trans ∆̄y Long ∆̄y Trans ∆̄y

1970 80.37 69.32 16.24 14.53

2004 90.63 107.0 81.05 122.4 20.87 48.3 19.22 49.0

Table 2: Evolution of life expectancy at birth and at age 65 calculated according

to both a transversal and diagonal approach

The first noticeable aspect refers to the spectacular life expectancy gains ob-

served during this period. In effect, when we can consider the transversal ap-

proach we observe that over this period life expectancy at birth increased, on

an annual average, by approximately four months for both sexes (more precisely

118.3 and 122.4 days for men and women, respectively). These gains are slightly

more moderate when considering the diagonal approach, particularly for the fe-

male population, with average annual gains amounting to 117.9 and 107.0 days

for men and women, respectively. Similar conclusions may be stated when we

examine the evolution of life expectancy at the age of 65.

The second main conclusion has do to with the significant difference between

life expectancies estimated using the two approaches. In effect, when we use

prospective lifetables we estimate that the “true” life expectancy at birth for an

individual born in 2004 will be of 83.30 and 90.63 years for men and women, re-

spectively, whereas the corresponding values estimated using the classic transver-

sal approach are 74.55 and 81.05 years. In other words, when we project past

trends observed in mortality to the future we conclude that adopting a transver-

sal approach underestimates life expectancy at birth in 8.75 and 9.58 years for

men and women, respectively. This apparently surprising conclusion highlights

the importance of using prospective lifetables in life insurance and pension busi-

nesses. Actually, long-term calculations based on periodic lifetables are erroneous

since they do not incorporate expected longevity improvements.

In Figure 11 we can see that the differentials between the values of e0 (t) and

e65 (t) calculated according to the two methodologies considered are, for both

sexes, relatively stable across the time period analysed.
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Figure 11: Life expectancy ex (t) calculated at x = 0, 65 for men (left panel) and

women (right panel)

Finally, Figure 12 gives us a long term perspective of the evolution of e0 (t)

and e65 (t) across the time period analysed.
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Figure 12: Projected life expectancy at birth and at age 65, calculated according

a transversal approach
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Our model estimates that life expectancy will continue to increase in the future

in both sexes, although we expect longevity improvements to slow down.

4.7 Annuity prices

In this section we are interested in the evolution of the net single premium of an

immediate life annuity sold to an x-aged individual in year t, ax (t) considered both

a transversal and a diagonal approach. For simplicity of exposition, we assume

a flat technical interest rate at 3%, i.e. i = 3%. This means that we concentrate

our analysis on the impact of longevity improvements on annuity prices. Given

this, we examine the evolution of ax (t) for x ∈ [0; 65] years.

Men

t a0 (t) ∆̄y a0 (t) ∆̄y

Longitudinal (annual) Transversal (annual)

1970 26.84 25.90

2004 29.82 0.085 29.02 0.089

Women

t a0 (t) ∆̄y a0 (t) ∆̄y

Longitudinal (annual) Transversal (annual)

1970 28.18 27.06

2004 30.72 0.073 29.89 0.081

Men

t a65 (t) ∆̄y a65 (t) ∆̄y

Longitudinal (annual) Transversal (annual)

1970 9.88 9.29

2004 12.22 0.0668 11.64 0.0671

Women

t a65 (t) ∆̄y a65 (t) ∆̄y

Longitudinal (annual) Transversal (annual)

1970 11.86 10.85

2004 14.56 0.077 13.70 0.081

Table 3: Evolution of ax(t) for x = 0 and x = 65

In Table 3 we can appreciate the underestimation of annuity prices resulting

from classic transversal lifetables. For example, the net single premium of an

immediate life annuity sold to a female individual aged 65 in year 2004, a65 (2004) ,
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will be 0.86$ higher (14.56− 13.70) or 6.3% when compared with that calculated

using classic static lifetables. Values in column ∆̄y(annual) indicate the average

annual gains in ax (t) registered between 1970 and 2004.

5 Conclusion

To the knowledge of the authors, the present paper offers the first attempt to

build prospective lifetables for the Portuguese population. In addition, we offer a

first attempt to quantify the impact of longevity risk, that is, the risk arising from

systematic deviations of observed mortality rates from their estimated values, on

life annuity premiums computed on the basis of projected mortality rates.

The results obtained with the log-bilinear Poisson approach over a matrix

of crude Portuguese death rates, from year 1970 to 2004 and for ages 0 to 84,

clearly demonstrate that classic static lifetables tend to seriously underestimate

the longevity prospects. Since mortality improvements have an obvious impact

on pricing and reserving for any kind of long-term living benefits, particularly

on annuities, we argue that the calculation of expected present values requires

the use of prospective lifetables built using an appropriate mortality projection

model.
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