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Abstract

This paper establishes existence of a stationary Markov perfect equilib-

rium in general stochastic games with noise — a component of the state

that is nonatomically distributed and not directly affected by the previ-

ous period’s state and actions. Noise may be simply a payoff-irrelevant

public randomization device, delivering known results on existence of

correlated equilibrium as a special case. More generally, noise can take

the form of shocks that enter into players’ stage payoffs and the tran-

sition probability on states. The existence result is applied to a model

of industry dynamics and to a model of dynamic electoral competition.

1 Introduction

This paper proves existence of stationary Markov perfect equilibria in a class
of stochastic games, a subset of dynamic games in which isomorphic subgames
are indexed by a state variable that evolves according to a controlled Markov
process. In each period, the current state is publicly observed and determines
a stage game in which players simultaneously choose feasible actions, stage
payoffs are realized, and a new state is drawn from a distribution depend-
ing on the current state and the players’ actions. A natural starting point

∗Dept. of Political Science and Dept. of Economics, University of Rochester.
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for strategic analysis in this setting is to consider equilibria that reflect the
stationary structure of the environment, and so the issue of existence of sta-
tionary Markov perfect equilibria is of central interest. I establish existence
of equilibrium for general stochastic games by adding noise — a component
of the state state variable that is nonatomically distributed and not directly
affected by the previous period’s state and actions — in each period. I refer to
games for which such a decomposition of states is possible as “noisy stochas-
tic games.” The presence of such noise is often innocuous from an applied
point of view, where shocks to parameters of the game can increase modeling
realism and are desirable for purposes of estimation. I give two examples to
illustrate the application of the existence theorem: one is a dynamic model
of firm entry, exit, and investment in an industry, where the noise component
corresponds to demand or technology shocks, and another is a dynamic model
of electoral competition with time-consistent policy choice, where noise is in-
troduced via probabilistic voting, a standard assumption in the literature.

The literature on stochastic games has not yielded general existence re-
sults, even under the compactness and continuity conditions familiar from
Debreu (1952), Fan (1952), and Glicksberg (1952) for static games. Indeed,
the example in Section 2.1 of Harris et al. (1995) shows that compactness
and continuity are not sufficient for existence of stationary Markov perfect
equilibrium in stochastic games. That example is a relatively simple, two-
period game in which the players’ action sets are compact and payoffs are
continuous in histories. Though not formulated explicitly as a stochastic
game, the example can be formulated as one in which the state in the first
period is an exogenous initial state, and the state in the second period is just
the profile of actions taken in the first; then the mapping from action profiles
in period 1 to the state in period 2 is just the identity mapping. The authors
argue that there is no subgame perfect equilibrium in their example, and
therefore there is no Markov perfect equilibrium when the game is viewed as
a stochastic game. The approach taken by Harris et al. (1995) is to consider
correlated equilibria in history-dependent strategies.

Another approach, followed in the literature on stochastic games, is to
impose stronger continuity conditions on the transition probability. At is-
sue is the fact that even if stage payoffs are continuous, discontinuities can
conceivably be introduced by future behavior of the players, for players to-
morrow may condition their responses to today’s actions in a discontinuous
way. The literature has accordingly assumed that next period’s state is deter-
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mined stochastically as a function of the current period’s state and actions,
and that the distribution of next period’s state varies with current actions
in a strongly continuous way, e.g., the probability of each measurable set
of next period’s states is continuous in this period’s actions. This precludes
deterministic transitions, as in the example of Harris et al. (1995), and it par-
tially addresses the continuity problem in dynamic games. This stochastic
element alone does not, however, deliver general existence results, for diffi-
cult technical problems arise when the set of states is uncountably infinite.
Existence arguments for stochastic games typically involve selections from a
correspondence (of induced equilibrium payoff vectors of stage games) defined
on states, and when there is a continuum of states, these selections will live in
an infinite-dimensional space, the set of selections need not be closed (even if
the underlying correspondence has closed graph), and it need not vary upper
hemicontinuously in its parameters (even if the graph of the correspondence
does). To obtain both of these properties, the underlying correspondence
must have convex values: when there is a continuum of states, the role of
convexity is intertwined with upper hemicontinuity.

The papers in the extant literature closest to the current one are Nowak
and Raghavan (1992), who prove the existence of correlated stationary Markov
perfect equilibria, and Duffie et al. (1994), who additionally deduce ergodic
properties of equilibria under stronger conditions. These papers essentially
assume that the players observe the outcome of a public randomization de-
vice before choosing their actions in each period, convexifying payoffs in ev-
ery state and delivering the convexity needed to obtain upper hemicontinuity
needed for their arguments. The drawback is that the “sunspot” on which
players coordinate is payoff-irrelevant and may be unnatural or unmotivated
in applications. The innovation of the current paper is to replace sunspots
with shocks that appear explicitly as a component of the state, along with
a standard component, and that enter into the stage payoffs of the players
and the transition probability on states. I refer to these shocks as the “noise”
component of the state, because in contrast to the standard component, the
distribution of noise next period is not directly affected by this period’s state
and actions. (The noise component can be correlated with the standard com-
ponent, allowing indirect dependence on the state and actions this period.)
The noise component could be simply an iid draw of a payoff-irrelevant, con-
tinuously distributed random variable, i.e., a public randomization device,
thereby obtaining the existence results of Nowak and Raghavan (1992) and
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Duffie et al. (1994) as special cases. More generally, the noise component can
affect stage payoffs and the state transition, and it may play a natural role
in many applications. Even so, it delivers the needed convexity for existence.

The usefulness of the noise component is that it permits the fixed point
argument to be framed in the space of “interim” continuation values, which
are defined over the standard component alone rather than the entire state,
and these interim continuation values can be written as an integral over the
noise component for each realization of the standard component. Given a
realization of the standard component, integration over the non-atomic noise
component provides convexity via Lyapunov’s theorem, and the theorem of
Artstein (1989) is used to address measurability issues across realizations.
This convexifies the correspondence from interim continuation values to up-
dated interim continuation values. At the level of technique, a contribution
of the current paper is to explicitly formulate the correspondence of updated
continuation values as a Bochner integral; then the requisite upper hemicon-
tinuity of this correspondence is established with the help of a fundamental
result of Artstein (1979) on Fatou’s lemma in infinite dimensions.

Section 2 provides a literature review. Section 3 presents the noisy
stochastic game model and the existence theorem. Section 4 gives two ap-
plications, one oriented toward industrial organization and the other toward
political economy. Section 5 is devoted to an informal discussion of the proof
approach. Section 6 contains the proof of the main theorem.

2 Literature Review

Existence of stationary Markov perfect equilibrium is a central issue in the
literature on stochastic games beginning with Shapley (1953), who proved
existence for finite, two-player, zero-sum games. Existence in general finite
stochastic games follows from the straightforward application of Kakutani’s
fixed point theorem in finite dimensions (cf. Fink (1964), Rogers (1969), and
Sobel (1971)), while Takahashi (1964) proves existence when the set of states
is finite and action sets are compact. Haller and Lagunoff (2000) prove that
the set of stationary Markov perfect equilibria in finite games is generically
finite; Herings and Peeters (2004) develop an computational algorithm and
show that the number of equilibria is generically odd; and Doraszelski and Es-
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cobar (2010) prove generic strong stability and purifiability of stationary equi-
libria. Parthasarathy (1973) extends the framework of Shapley to two-player,
non-zero sum games with finite action sets and a countable set of states.

General results on existence, however, have been elusive and have relied on
the imposition of relatively special structure or departures from the concept
of stationary Markov perfect equilibrium, and all known results impose some
form of strong continuity on transition probabilities. Letting s denote a state
and a denote a profile of actions, a transition probability is a measurable
mapping (s, a) → µt(·|s, a) from state-action pairs to probability measures
on the set of states that can conceivably vary with the time period t. Next,
in increasing strength, are some assumptions used in the literature.

(A1) µt is set-wise continuous in a,1

(A2) µt is norm-continuous in a,2

(A3) µt is norm-continuous in a and absolutely continuous with respect to
some fixed probability measure νt,

(A4) µt is norm-continuous in a and absolutely continuous with respect to a
fixed, non-atomic probability measure νt,

(A5) µt has a jointly measurable density f(s′|s, a) with respect to Lebesgue
measure that is continuous in a.

In the analysis of stationary stochastic games, as in the current paper, it is
further assumed that the transition probability is fixed across time and the
subscript t dropped. Note that even the weakest of the above assumptions,
(A1), is inconsistent with deterministic transitions (precluding the example
of Harris et al. (1995)) when action sets are uncountably infinite. Of course,
(A1) and (A2) hold when the players’ action sets are finite.

In finite-horizon stochastic games, Rieder (1979) establishes existence of
Markov perfect equilibrium under (A1). Incorporating time in the state vari-

1For each state s, each measurable set Z of states, and each sequence am → a, we have
µt(Z|s, am) → µt(Z|s, a).

2For each state s and each sequence am → a, we have ||µt(Z|s, am) − µt(Z|s, a)|| → 0.
Here, given an arbitrary signed measure µ on a measurable space (S, S), the total variation

norm ||µ|| is the supremum of
∑

k |µ(Sk)| over the finite, measurable partitions {Sk} of S.
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able of a finite-horizon game, we may in fact view Rieder’s equilibrium as sta-
tionary. Also assuming (A1), Federgruen (1978), Whitt (1980), and Escobar
(2006) prove existence for countable state spaces and uncountable action sets.
Himmelberg et al. (1976) prove existence of stationary p-equilibria for two-
player games with an uncountable state space but assuming finite action sets
and strong separability conditions on stage payoffs and the transition proba-
bility, and Parthasarathy (1982) gives additional conditions under which the
result of the latter paper delivers a stationary Markov perfect equilibrium.
Existence of equilibrium for multi-player games with uncountable state space
is proved in Parthasarathy and Sinha (1989) under the assumptions of finite
action sets and state-independent transitions. Under continuity assumptions
on the transition probability akin to (A5), Amir (1996, 2002)), Curtat (1996),
and Nowak (2007) prove existence of stationary Markov perfect equilibria in
games possessing strategic complementarities with uncountable state and ac-
tion spaces.3 Assuming that the state transition is a convex combination of a
fixed finite set of probability measures, Nowak (2003) gives sufficient condi-
tions related to (A1) for existence of stationary Markov perfect equilibrium.

Otherwise more general results have been obtained by weakening station-
arity or considering weaker notions of equilibrium. Most closely related to
the current paper, Nowak and Raghavan (1992) prove existence of station-
ary Markov perfect equilibria with public randomization under (A3), and
Duffie et al. (1994) add mutual absolute continuity of transition probabili-
ties and show that the equilibrium induces an ergodic process. Mertens and
Parthasarathy (1991) assume finite action sets and deduce existence of equi-
libria that are nearly Markovian, in the sense that the players’ strategies in
period t can depend not only on the current state but the previous state as
well. Mertens and Parthasarathy (1987, 2003) allow for infinite action sets
and deduce equilibria in which players use history-dependent strategies such
that each player’s mixture over actions is the same following any two histories
ending in the same state and generating identical continuation values.

Building on Rieder’s (1979) result for finite-horizon games, Dutta and
Sundaram (1998) prove existence of (possibly non-stationary) Markov perfect
ǫ-equilibria under (A1). Assuming stage utilities and the state transition are

3Nowak (2007) gives conditions based on concavity of the stage game and a decomposi-
tion of the transition probability. Jovanovic and Rosenthal (1988), Bergin and Bernhardt
(1992), and Horst (2005) restrict the way players’ actions affect each others’ payoffs.
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continuous in the state variable, Whitt (1980) gives conditions related to (A2)
for existence of a Markov perfect ǫ-equilibrium in stationary strategies, and
Nowak (1985) drops continuity of the state transition in the state variable and
increases (A2) to (A4) to obtain a stationary Markov perfect ǫ-equilibrium.

3 Existence Theorem

A stochastic game is a list Γ = (N, (S, S), (Xi, Ai, ui, δi)i∈N , µ), where N is a
finite set of n players, denoted i or j; (S, S) is a measurable space of states
s; Xi is a compact metric space of actions ai for player i, with X =

∏

iXi

endowed with the product topology; Ai : S ⇉ Xi is a lower measurable cor-
respondence from S into nonempty, compact feasible sets Ai(s) of actions for
player i;4 ui : S×X → ℜ is a bounded stage-payoff function such that ui(s, a)
is measurable in s for each a = (a1, . . . , an) ∈ X and continuous in a for each
s; δi ∈ [0, 1) is player i’s discount factor; and µ : S ×A× S → [0, 1] is a tran-
sition probability on states representing the law of motion, i.e., µ(·|s, a) is a
probability measure on (S, S) for all s and all a, and for all Z ∈ S, µ(Z|s, a)
is jointly measurable in (s, a). Here, µ(Z|s, a) is the probability that next
period’s state belongs to Z given state s and action vector a in the current
period. Write u(s, a) = (u1(s, a), . . . , un(s, a)) for the vector of stage payoffs
of the players. This is the standard definition of a general stochastic game.

The next step is to introduce a noise structure into the model. To this
end, assume: (i) the set of states can be decomposed as S = Q × R and
S = Q ⊗ R, where Q and R are complete, separable metric spaces and Q

and R are the respective Borel sigma-algebras. Letting µq(·|s, a) denote the
marginal of µ(·|s, a) on q, assume: (ii) there is a fixed probability measure
κ on (Q,Q) such that for all s and all a, µq(·|s, a) is absolutely continu-
ous with respect to κ. By the Radon-Nikodym theorem (see Theorem 13.20
of Aliprantis and Border (2006)), we can write g(·|s, a) for the density of
µq(·|s, a) with respect to κ. Moreover, assume: (iii) for all s, the mapping
a → µq(·|s, a) is norm-continuous, i.e., for all s, all a, and each sequence
{am} of action profiles converging to a, the sequence {µq(·|s, am)} converges
to µq(·|s, a) in total variation. Thus, the first component of the state satisfies

4A correspondence ϕ : S → X from a measurable space (S, S) to a topological space X

is lower measurable if for all open sets G ⊆ X , we have {s ∈ S | ϕ(s) ∩ G 6= ∅} ∈ S.
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one of the typical continuity conditions assumed in the literature.

Furthermore, assume: (iv) conditional on next period’s q′, the distribution
of r′ next period is independent of the current state and actions. Specifically,
assume there exists µr : Q×R → [0, 1] such that the mapping q′ → µr(·|q

′) is a
regular conditional probability for r following each state-action pair (see Rao
(1993), p.46). In particular, for all s, all a, and all Z ∈ S, we have µ(Z|s, a) =
∫

q′

∫

r′
IZ(q′, r′)µr(dr

′|q′)µq(dq
′|s, a). Assume: (v) for κ-almost all q, µr(·|q) is

absolutely continuous with respect to a fixed, atomless probability measure
λ on (R,R); by the Radon-Nikodym theorem, this conditional probability
has a density h(·|q), and moreover we can choose the density h(r|q) to be
jointly measurable in (r, q) (see Proposition 1.1 of Orey (1971)). For later
use, define the product probability measure ν = κ ⊗ λ. A noisy stochastic

game is a stochastic game satisfying conditions (i)–(v).

A stationary Markov strategy for i is a measurable mapping σi : S →
P(Xi) such that for all s, σi(s) is a Borel probability measure on Xi that
places probability one on Ai(s).

5 Given a strategy profile σ = (σ1, . . . , σn),
let σ(s) denote the product probability measure σ1(s)⊗· · ·⊗σn(s) on action
vectors induced by the players’ strategies, where σ(·|s) takes Borel measur-
able sets of action vectors. Continuation values v(·; σ), which are placed in
the space Ln

∞
(S, S, ν) of ν-equivalence classes of essentially bounded, measur-

able functions from S to ℜn, are uniquely defined by the following recursion:6

vi(s; σ) =

∫

a

[

(1 − δi)ui(s, a) + δi

∫

s′
vi(s

′; σ)µ(ds′|s, a)

]

σ(da|s).

A strategy vector σ is a stationary Markov perfect equilibrium if each player
i’s strategy maximizes i’s discounted expected payoff in every state s, i.e.,

vi(s; σ)

= sup
ai∈Ai(s)

∫

a−i

[

(1 − δi)ui(s, a) + δi

∫

s

vi(s
′; σ)µ(ds′|s, a)

]

σ−i(da−i|s),

where σ−i(s) is the product probability measure σ1(s) ⊗ · · · ⊗ σi−1(s) ⊗
σi+1(s)⊗· · ·⊗σn(s) over vectors a−i of actions of players other than i. By the

5Given any metric space X , P(X) denotes the set of Borel probability measures endowed
with the weak* topology.

6By the Riesz-Fischer theorem (see Theorem 13.5 of Aliprantis and Border (2006)),
Ln
∞(S, S, ν) is a Banach space with the essential supremum norm || · ||∞; then uniqueness

follows from a standard contraction mapping argument.
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one-shot deviation principle, every stationary Markov perfect equilibrium is,
in particular, subgame perfect.

Theorem: Every noisy stochastic game possesses a stationary Markov
perfect equilibrium.

In practice, conditions (i)–(v) will be widely satisfied in applications,
where typically: Q and R would be compact subsets of finite-dimensional
Euclidean space, the distribution over next period’s r′ would be given by a
jointly measurable density h(r′|q′) (with respect to Lebesgue measure) that
is conditioned only on q′, and the marginal over q′ would be given by a den-
sity g(q′|s, a) that is measurable in s and continuous in (q′, a).7 A special
case of interest is the situation in which r is identically and independently
distributed across periods and ui is constant in r, so the noise component of
the state is payoff-irrelevant. Then r acts as a public randomization device,
and every stationary Markov perfect equilibrium of the model can be viewed
as a correlated equilibrium in the sense of Nowak and Raghavan (1992) or
Duffie et al. (1994), and vice versa.8 Thus, for any stochastic game satisfying
the assumptions of the latter papers, we can extend that game by specify-
ing a noise component r uniformly and independently distributed in each
state (and stage payoffs constant in r) to obtain a stationary Markov perfect
equilibrium of the extended game, which delivers a correlated equilibrium of
the original game. But the formulation of this paper allows for noise that is
payoff-relevant, capturing many economic and political models of interest.

4 Applications

4.1 Firm Exit, Entry, and Investment

This subsection provides a dynamic model of firm entry, exit, and investment
in an industry. Each period begins with a set of firms active in the market, a
vector of capital stocks for each firm, and a vector of demand or technology

7Compactness of Q and joint continuity of g(q′|s, a) in (q′, a) is more than sufficient for
norm-continuity of µq(·|s, a) in a.

8The setup here generalizes Duffie et al. (1994) in that Q is Polish but not assumed
compact, while Nowak and Raghavan (1992) assume only that S is countably generated.
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shocks. Each firm, active or inactive, must decide whether to enter or remain
in the industry, and conditional on having entered in the previous period, a
firm must choose a production plan. The firms’ output and investment plans
determine profits for the current period and a distribution over capital stocks
next period, reflecting uncertain depreciation and returns to investment. The
model is comparable to those of Hopenhayn (1992) or Bergin and Bernhardt
(2008), where firms make entry and exit decisions over time and are subject to
exogenous technology shocks. In contrast, those models assume a continuum
of price-taking firms, while here there is a (possibly large) finite number of
firms competing oligopolistically; and those models either fix capital or treat
it as a variable input, while here firms make investment decisions and accumu-
late capital over time. In fact, firms’ production plans and capital stocks can
be multidimensional, and a firm’s decisions can affect future production tech-
nology through current investment, so that technology evolves endogenously.

Formally, let N be a finite set of n firms (or potential firms) in an industry,
and suppose that in each period, firms must decide whether to enter or remain
in the market and, conditional on having previously entered the market, must
make output and investment decisions. At the beginning of any period, let
z ∈ {0, 1}n summarize the firms active in the industry, with zi = 1 indicating
that i is active and zi = 0 indicating i is inactive; let ki ∈ ℜℓ

+ denote the
capital stock of firm i and k = (k1, . . . , kn) the vector of stocks; and let
r = (r1, . . . , rm) be a vector of shocks to demand or production technology
belonging to a compact subset R ⊆ ℜm with positive Lebesgue measure.
For tractability, the level of capital stock of each firm is bounded above
by k in each coordinate. The state of the industry is then summarized by
the state variable (z, k, r), where (z, k) is influenced by the actions of the
firms, and r is distributed iid across periods. A decision for firm i is a
pair (ei, pi), where ei ∈ {0, 1} is firm i’s entry/exit decision, with ei = 1
indicating i is will be in the market next period and ei = 0 that it will not,
and pi ∈ ℜd is a multidimensional production plan for firm i. In state (z, k, r),
the set of feasible production plans for firm i is a nonempty, compact subset
φi(z, k, r) ⊆ ℜd, where φi : {0, 1}

n × [0, k]nℓ × R ⇉ ℜd is lower measurable
with compact range X̃i ⊆ ℜd. When firm i is inactive, i.e., zi = 0, assume
that φi(z, k, r) = {0} to indicate that the firm makes no output or investment
decision. Then the decisions available to firm i in state (z, k, r) are (ei, pi) ∈
{0, 1} × φi(z, k, r), and the vector of firm decisions is denoted (e, p).

Given current state (z, k, r) and actions (e, p), next period’s state, de-
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noted (z′, k′, r′), is determined as follows. Entry and exit decisions determine
each firm’s status next period, so z′ = e, while k′ is a random variable as-
sumed to be absolutely continuous with respect to a probability measure κ̃,
defined as the product measure κ̃ = κ̃1 × · · · × κ̃n, where κ̃i is the equally
weighted average of the uniform distribution on [0, k]ℓ and the unit mass on
zero. Denote the density of k′ with respect to κ̃ by g̃(k′|(z, k), (e, p)), which
depends on the firms’ current capital stocks and decisions. Assume that the
density g̃(k′|(z, k), (e, p)) is measurable in (z, k) and continuous in (k′, e, p).
The distribution of next period’s capital stock levels reflects the assumption
that returns on investment to capital stock are subject to uncertainty, but
because κ̃i places positive probability on zero, the model allows for the pos-
sibility that the capital stock of an inactive firm is fixed at zero. Assume
r′ ∈ R is iid and has density h with respect to Lebesgue measure.

A firm i remains active in a period if zi = ei = 1. Let πi((z, k, r), (ei, p))
be the profit of a firm i that remains active given its own entry/exit decision
ei and production plans p in state (z, k, r), and assume πi((z, k, r), (ei, p))
is bounded, measurable in (z, k, r), and continuous in (ei, p). The payoff of
an active firm that decides to leave the market, i.e., zi = 1 = ei + 1, is
ιi((z, k, r), (ei, p)), which may reflect the scrap value of a firm leaving the
market. Assume ιi((z, k, r), (ei, p)) is bounded, measurable in (z, k, r), and
continuous in (ei, p). The payoff of an inactive firm that decides to enter the
market, i.e., zi = 0 = ei − 1, is αi(z, k, r), a bounded, measurable function
that may reflect the setup cost of entry into the market. The payoff to an
inactive firm that remains inactive, i.e., zi = ei = 0, is zero. Payoffs are
discounted over time by the factor δi for each firm.

Though formulated generally, the expected structure can be imposed on
these payoffs. In particular, it may be that capital ki is one-dimensional, that
r = (r1, . . . , rn, rn+1, rn+2) ∈ ℜn+2 consists of firm-specific production shocks
(r1, . . . , rn), an aggregate output demand shock rn+1, and an aggregate labor
supply shock rn+2, and that firms compete in a single output market. A
production plan is then a pair pi = (k̇i, ℓi) consisting of levels of capital
investment and labor input. Firm i’s output is then yi = Fi(ki + k̇i, ℓi, ri),
total labor demand is L =

∑

i ℓi, and total output is Y =
∑

i yi. The inverse
demand for output is given by P (Y, rn+1), and inverse supply of labor is
W (L, rn+2). Then for firms currently active in the market and remaining in
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the market next period, i.e., zi = ei = 1, we have

πi((z, k, r), (1, p)) = P (Y, rn+1)yi −W (L, rn+2)ℓi

Y =
∑

j

Fj(kj + k̇j, ℓj, rj)

L =
∑

j

ℓj ,

with suitable continuity assumptions on production, inverse demand, and
supply functions, and with bounds on investment and labor inputs to ensure
compactness. The industry then transitions to (z′, k′, r′), where z′ is deter-
mined by entry/exit decisions, k′ is drawn from g(k′|(z, k), (e, p)) reflecting
depreciation on capital and returns to investment, and new shocks r′ are
drawn independently from h.

At issue is the existence of a stationary Markov perfect equilibrium in
this model, which is addressed in the next proposition.

Proposition 1: In the dynamic model of firm exit, entry, and invest-
ment, there exists a stationary Markov perfect equilibrium.

To apply the main theorem of the paper, the model must be recast as a
noisy stochastic game. The set of players is N , the set of states is S = Q×R,
where Q = {0, 1}n × [0, k]nℓ and R is as above, and the set of conceivable
actions for firm i is Xi = {0, 1}× X̃i. The correspondence of feasible actions
for firm i is defined by Ai(s) = {0, 1} × φ(z, k, r), which is lower measurable
with nonempty, compact values contained in Xi, and an action for firm i is
ai = (ei, pi). The stage payoff of firm i is then

ui(s, a) =















πi(s, (ei, p)) if zi = ei = 1
ιi(s, (ei, p)) if zi = 1, ei = 0,
αi(s) if zi = 0, ei = 1,
0 if zi = ei = 0,

which is bounded, measurable in s, and continuous in a. Discount factors
are as in the original model, and the law of motion µ is as described above.
Letting κ̂ be the uniform distribution on {0, 1}n and defining κ = κ̂ × κ̃,
the marginal µq(·|s, a) is absolutely continuous with respect to κ and norm-
continuous in a; and letting λ be the uniform distribution on R, the condi-
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tional µr(·|q) is absolutely continuous with respect to λ. Thus, conditions
(i)–(v) are satisfied, and the main existence theorem yields Proposition 1.

4.2 Electoral Competition and Time-consistent Policy

This subsection provides a dynamic model of elections in which politicians
cannot make binding commitments, and a representative voter chooses among
candidates to fill a finite number of offices in each period.9 At the beginning
of each period, a state of the economy e is given, and the voter chooses from a
finite number of politician types for each office; then the winning candidates
play a political game that determines a policy p, and the voter makes a simul-
taneous consumption decision c; and these choices then stochastically deter-
mine a new state leading into the next election. To apply the main theorem of
the paper, I impose the further structure that the voter’s preferences contain
an idiosyncratic component that is realized at the beginning of each period
prior to the election but after play of the political game in the previous period,
so voting is essentially probabilistic; consistent with that assumption, the
politicians’ preferences in the political game are also subject to type-specific
shocks that are unobserved by the voter at the time of the election. The
elected politicians then choose policy given their expectations of the voter’s
choices and the evolution of the economy, and the voters’ choices in turn take
expectations of political outcomes and future economic states as given.

In the special case that there is just one elected office (so the winning
politician unilaterally determines policy) and just one politician type (so
elections are trivial), the equilibrium analysis entails that the policy maker
use time-consistent policies, i.e., she choose optimally given her expectations
of the voter’s choices, while the voter chooses under rational expectations of
political outcomes (see Kydland and Prescott (1977)). In macroeconomic ap-
plications, it may be that the voter’s decision c consists of choosing a level of
employment, and the policy decision p is the rate of inflation, as in Barro and
Gordon (1983). In contrast to the standard framework, however, the model
here allows for the level of inflation in one period to affect real variables in

9The assumption of a representative voter is for tractability only. In general, it is im-
portant that voters eliminate weakly dominated strategies, a condition that is not implied
by stationary Markov perfect equilibrium. This could be finessed in the stochastic game
model by having voters vote sequentially, but it is simpler to assume a representative voter.
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the next. Assuming two politician types (interpreted as parties), elections
become non-trivial, and the parties are in competition with each other. Thus,
a party’s optimization problem must also take as given the expectations of
the voters’ future choices between the two parties and the opposing party’s
future policy choices when elected. More generally, there could be multi-
ple offices, and the political game could be viewed as a reduced form for a
legislative process; alternatively, the political game could reflect interaction
among multiple branches of government, providing an infinite-horizon ver-
sion of Alesina and Rosenthal’s (1996) model of divided government with a
general institutional environment and endogenous policy making.

An interesting incentive that can arise in equilibrium is that elected politi-
cians may seek to influence future economic states to their advantage. In the
two-party model, in particular, it may be that one party seeks to “tie the
hands” of the other, or to engender economic states in which it is perceived
favorably by the voter. The model has antecedents in Alesina (1988), which
considers repeated elections with probabilistic voting, but there is no eco-
nomic state variable in the setting of that paper; there, voting behavior is
black-boxed (and does not depend on expectations of the voters about future
policy choices); and Alesina considers equilibria in trigger strategies, rather
than Markovian strategies. Alesina (1987) studies stationary equilibria in a
model of macroeconomic policy making, where the party in power chooses a
level of monetary expansion and rational wage setters anticipate monetary
policy, but there parties are myopic and voting behavior is exogenous. Dixit
et al. (2000) analyze a model in which farsighted parties compete in elections
to divide a surplus, and in which a state variable evolves according to an ex-
ogenous Markov process. In contrast, the present model endogenizes voting
behavior, and it allows the possibility that current policy decisions influence
future states. As well, voting behavior is exogenous in their model, and those
authors focus on efficient equilibria in history-dependent strategies.

Formally, let L = {1, . . . , ℓ} be a set of political offices andM = {1, . . . , m}
a set of politician types, and let N = {0} ∪ (L ×M) consist of a represen-
tative voter, denoted 0, and ℓm agents corresponding to one type per office;
that is, agent (j, k) ∈ L ×M is a type k ∈ M politician who may fill office
j ∈ L.10 In each period, the voter casts a ballot b ∈ ML, where b(j) ∈ M is

10Because politicians are policy-motivated and because of the focus on stationary equi-
libria, there is no loss of generality in identifying politicians of the same type holding the
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the politician type elected to office j ∈ L, and elected politicians then decide
policy. Accordingly, each period is divided into two phases: voting and policy
making. At the beginning of the voting phase, an economic state e belonging
to a subset E ⊆ ℜd is given, where E is compact and has positive Lebesgue
measure; also given is a preference shock r for the voter belonging to the set
R = [0, 1]L×M ; for now, r(j, k) is to be interpreted as an additive shock to
the voter’s payoff when a type k politician is elected to office j. The voter
then casts a ballot b ∈ ML(e), where ML(e) ⊆ ML is a nonempty subset
of ballots that varies lower measurably with e. A new economic state e′ is
realized according to the jointly measurable density g̃(e′|e, b), and preference
shocks r′ ∈ R are drawn from the jointly measurable density h(r|e′); now
r′(j, k) serves as a preference shock for the politician (j, k).

The game then enters the policy-making phase, where the elected politi-
cians simultaneously make policy choices that determine the political out-
come for the period, and simultaneously the voter makes a consumption
decision. More precisely, politician type k elected to office j chooses a policy
pj,k ∈ Pj,k(e) ⊆ Pj,k, where Pj,k ⊆ ℜd is a compact policy space, and Pj,k(e) is
a nonempty, compact feasible set that is lower measurable in e; and the voter
chooses c ∈ C(e) ⊆ C, where C ⊆ ℜd is a compact consumption set, and
C(e) is a nonempty, compact feasible set that is lower measurable in e. The
resulting vector of policies chosen by elected politicians is p = (pj,b(j))j∈L.
Finally a new economic state e′′ is realized from the density g̃(e′′|b, e′, p, c),
which is measurable in (b, e′) and continuous in (e′′, p, c); new shocks r′′ for
the voter are drawn according to the jointly measurable density h(r′|e′′); and
the game moves to the next period, where the process is repeated.

In the election phase, the voter receives payoff
∑

j∈L r(j, b(j)), while the
politicians receive a zero payoff. In the policy-making phase, the voter re-
ceives a payoff ũ0(e

′, p, c) from policy p and consumption c in state e′, and
the payoff to politician (j, k) is ũj,k(e

′, r′(j, k), p, c), where all stage utility
functions are jointly measurable and continuous in (p, c). Payoffs are dis-
counted after each period (at the end of the policy making phase) by δ̃0 and
δ̃j,k, respectively, for the voter and politicians. Thus, the voter’s payoff in a
period is

ũ0(e
′, p, c) +

∑

j∈L

r(j, b(j)),

same political office after different histories.

15



so the voter’s preference shocks act to perturb her payoffs from any ballot;
as is common in the literature on probabilistic voting, these shocks can re-
flect the voter’s perceptions of attributes unrelated to policy (such as the
politicians’ charisma). In the simple formulation above, the economic state
e realized in the voting phase does not directly affect payoffs; it is simply a
technical device that represents the voter’s information about the economic
state that will obtain in the subsequent policy making phase.

Proposition 2: In the dynamic model of electoral competition and
time-consistent policy, there exists a stationary Markov perfect equilibrium.

To apply the main theorem, the model must be reformulated as a noisy
stochastic game. The set of players remains N = {0}∪ (L×M), and the set
of states is S = Q×R, where Q = ({0}∪ML)×E and R is as above. Here,
the first component of q = (q1, q2) indicates whether a period corresponds
to the voting phase (q1 = 0) or the policy phase (q1 ∈ ML); and in the
latter case, it also indicates the type of politician elected to each office. The
sets of conceivable actions are X0 = ML ∪ C for the voter and Xi = Pj,k

for politician i = (j, k). Disregarding inactive players, an action profile a
in state s = ((q1, q2), r) is either a ballot a = b ∈ ML when q1 = 0 or a
vector a = (p, c) ∈ P × C when q1 ∈ ML. The correspondence of feasible
actions is defined as follows: when q = (0, e), the voter’s feasible actions are
A0(s) = ML(e); and when q = (b, e), the feasible actions are A0(s) = C(e)
and Ai(s) = Pi(e) for the voter and politician i = (j, b(j)), respectively.
Given (s, a) = ((q, r), a), stage payoffs are defined for i = 0 as

u0(s, a) =

{ ∑

j∈L r0(j, b(j)) if q = (0, e)
1
δ0
ũ0(e, p, c) if q = (b, e) and a = (p, c),

and for i ∈ L×M as

ui(s, a) =

{

0 if q = (0, e)
1
δi
ũi(e, r(i), p, c) if q = (b, e) and a = (p, c),

and discount factors are the square roots, δi =
√

δ̃i, of the original discount
factors. A “period” in the stochastic game corresponds to a “phase” in the
original model, so in contrast to the original, discounting now must occur
between the voting and policy-making phases; this is undone by using square
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roots of the original discount factors and by inflating stage payoffs in the pol-
icy making stage accordingly. The law of motion µ is as above. Letting let κ
be uniform on Q, the marginal µq(·|s, a) is absolutely continuous with respect
to κ and norm-continuous in a; and letting λ be uniform on R, the condi-
tional µr(·|q) is absolutely continuous with respect to λ. Thus, conditions
(i)–(v) are satisfied, and the main existence theorem implies Proposition 2.

5 Discussion of Proof

To describe the method of analysis, I begin with the existence proof of Nowak
and Raghavan (1992) for stationary Markov perfect equilibrium with public
randomization. The argument takes place in a compact, convex space V of
continuation value functions v : S → ℜn endowed with the weak* topology.
Given v, consider the induced game Γv(s) with actions Ai(s) and payoffs

(1 − δi)ui(s, a) + δi

∫

s′
vi(s

′)µ(ds′|s, a)

for each player i. Assuming the transition µ(·|s, a) is norm-continuous in
a, these payoffs are continuous in actions, and the theorem of Debreu-Fan-
Glicksberg implies that there is at least one mixed strategy equilibrium of
the induced game. Let Pv(s) be the set of mixed strategy equilibrium pay-
off vectors of the induced game, and let P ∗

v (s) be the convex hull of that
set. To update continuation values, let Ev consist of all selections v̂ from
the correspondence s → P ∗

v (s), yielding a nonempty-valued correspondence
v → Ev depicted in Figure 1. Because we select from the convex hull of
induced equilibrium payoffs, Ev is clearly convex. Closed graph of v → Ev

follows from both continuity assumptions imposed on the model and convex
values of the correspondence; if v → Ev were not convex-valued, then closed
graph would not follow. By the Debreu-Fan-Glicksberg theorem, the corre-
spondence v → Ev has a fixed point v∗ ∈ E(v∗), and equilibrium strategies
can be backed out from v∗, with care to ensure measurability.

The role of public randomization in convexifying equilibrium payoffs in
induced games is critical in the foregoing. To eschew correlation, I assume a
nonatomically distributed noise component of the state. The argument now
takes place in a compact, convex set V of “interim” continuation values, which
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v′
v̂

ℜn

P ∗

v

S

Figure 1: Correlation approach

are conditioned only on the realization of the standard component q, rather
than the full state. To convey this notion more precisely, define the interim
continuation v : Q→ ℜn generated by strategy profile σ by the recursion

vi(q; σ)

=

∫

r

[
∫

a

[

(1 − δi)ui(s, a) + δi

∫

q′
vi(q

′; σ)µq(dq
′|s, a)

]

σ(da|s)

]

h(r|q)λ(dr),

where s = (q, r). Given interim continuation value function v, define the
induced game Γv(s) with actions Ai(s) and payoffs

(1 − δi)ui(s, a) + δi

∫

q′
vi(q

′)µq(dq
′|s, a),

which are continuous in actions by norm-continuity of µq(·|s, a). Let Pv(s) be
the (possibly non-convex) set of mixed strategy equilibrium payoffs in Γv(s).

To update interim continuation values, for each s = (q, r), choose an ele-
ment of Pv(s). Intuitively, we then integrate across the noise component r to
get a new interim continuation value v̂. Repeating this for all possible selec-
tions of induced equilibrium payoffs, we have a correspondence v → Ev that
maps any v to a set Ev of updated interim continuation values. The crux of
the proof is to formalize this idea and establish the usual properties needed
to deduce a fixed point. Technically, to define the correspondence, we take
a selection φ(r) : Q→ ℜn for each r of density-weighted equilibrium payoffs,
i.e., for κ-almost all q, φ(r)(q) ∈ h(r|q)Pv(q, r), as depicted in Figure 2. The
mapping φ : R → V takes values in the function space V , and assuming it
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ℜn

h(r|·)Pv(·, r)

r

φ(r)

h(r′|·)Pv(·, r
′)

r′

φ(r′)

q

Figure 2: Noise approach

is measurable, the Bochner integral v̂ =
∫

r
φ(r)λ(dr) provides a new interim

continuation value. We repeat this procedure for each measurable function
φ taking selections of density-weighted equilibrium payoffs. More formally,
letting Φv(r) be the set of density-weighted equilibrium payoff selections at
r, the set of updated continuation values is Ev =

∫

r
Φv(r)λ(dr), the Bochner

integral of the correspondence Φv.

The key to the existence proof is establishing that v → Ev has convex
values and closed graph. Both properties rely on the observation that Ev can
be equivalently defined by integrating over selections from P ∗

v (s). That is,
letting Φ∗

v(r) be the set of density-weighted mixtures of equilibrium payoff
selections as a function of q, we have Ev =

∫

Φ∗

v(r)λ(dr). The argument for
the claim proceeds by arbitrarily choosing v̂ ∈

∫

r
Φ∗

v(r)λ(dr) and considering
each q separately. For κ-almost all q, we have v̂(q) ∈

∫

r
h(r|q)P ∗

v (q, r)λ(dr).
Given such q, the correspondence h(·|q)Pv(q, ·) : R → ℜn may have non-
convex values, as depicted in Figure 3, but it maps to finite-dimensional
Euclidean space. Thus, since λ is nonatomic, a version of Lyapunov’s the-
orem yields the equality

∫

r
h(r|q)Pv(q, r)λ(dr) =

∫

r
h(r|q)P ∗

v (q, r)λ(dr), and
in particular, there is a mapping ψ(q) : R → ℜn that is measurable on R,
integrates to v̂(q), and is a λ-almost everywhere selection from h(·|q)Pv(q, ·).
The selections ψ(q) are chosen independently for each q, and so the mapping
ψ : Q → V so-defined need not be measurable, but the theorem of Artstein
(1989) allows us to “sew up” these selections in a measurable way, giving us
v̂ ∈

∫

r
Φv(r)λ(dr), as required. Finally, using the fact that for each s, the
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h(·|q)Pv(q, ·)
ℜn

r

r′

q

Figure 3: Applying Lyapunov

correspondence v → P ∗

v (s) has closed graph and convex values, a result of
Artstein (1979) is used to show closed graph of the correspondence v → Ev.
Therefore, v → Ev possesses a fixed point v∗ ∈ Ev∗ , and the final step of the
proof is to back out equilibrium strategies corresponding to this value.

6 Proof of the Theorem

The proof of existence consists of a fixed point argument in a subset V of
continuation value functions in the space Ln

∞
≡ Ln

∞
(Q,Q, κ) of κ-equivalence

classes of essentially bounded, measurable functions from Q to ℜn, and it
makes use of the space Ln

1 ≡ Ln
1 (Q,Q, κ) of κ-equivalence classes of integrable

functions from Q to ℜn. These spaces are equipped with the usual norms,

||f ||∞ = inf{c ∈ ℜ | κ({q | ||f(q)|| ≤ c}) = 1}

||g||1 =

∫

q

||g(q)||κ(dq),

respectively. By the Riesz representation theorem (see Theorem 13.28 of
Aliprantis and Border (2006)), Ln

∞
consists of the continuous linear func-

tionals on Ln
1 , and it is endowed with the weak* topology σ(Ln

∞
, Ln

1 ), i.e.,
a net {fα} converges to f in Ln

∞
if and only if for all g ∈ Ln

1 , we have
∫

fα(q)g(g)κ(dq) →
∫

f(q)g(q)κ(dq).11 By Lemma 3 (p.419) of Dunford and

11The choice of Ln
∞ and the weak* topology for the space of continuation value functions

is important in the continuity argument of Lemma 1, below.
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Schwartz (1957), Ln
∞

is then a locally convex, Hausdorff topological vector
space. Let V consist of the functions v ∈ Ln

∞
such that ||v(q)|| ≤ C for κ-

almost all q, where C is a fixed constant such that ||u(s, a)|| ≤ C for all s and
a. Obviously, V is nonempty and convex, and it follows from Alaoglu’s the-
orem (see Theorem 6.21 of Aliprantis and Border (2006)) that V is compact.
Since Q is a separable metric space, the sigma-algebra Q is countably gener-
ated, and it follows that Ln

1 is separable (see Theorem 8.3.27 of Corbae et al.
(2009)). Then Aliprantis and Border’s (2006) Theorem 6.30 implies that V
is metrizable in the weak* topology. Henceforth, universal quantifiers over
continuation value functions will (unless otherwise specified) to range over V ,
and I work with sequences of continuation value functions rather than nets.

For each v, let Γv(s) be the stage game induced by v at s, where each
player i’s action space is Ai(s) and i’s payoff from a ∈

∏

j Aj(s) is

Ui(s, a; v) = (1 − δi)ui(s, a) + δi

∫

q′
vi(q

′)µq(dq
′|s, a).

Let U(s, a; v) = (U1(s, a; v), . . . , Un(s, a; v)) be the vector of payoffs. A mixed
strategy for player i in Γv(s) is a probability measure αi ∈ P(Ai(s)); but we
may equivalently view αi as an element of P(Xi) satisfying αi(Ai(s)) = 1, and
mixed strategies for all players then determine a product probability mea-
sure α = α1 ⊗ · · · ⊗ αn ∈

⊗

i P(Xi). The spaces
⊗

i P(Xi) and
⊗

i P(Ai(s))
are endowed with the relative weak* topology inherited from P(

∏

iXi), so
by Billingsley’s (1968) Theorem 3.2, convergence of a sequence {αm} to α is
equivalent to convergence of the marginals {αm

i } to αi for all i. Define the
extension U(·; v) : S ×

⊗

i P(Xi) → ℜn to mixed strategies in the induced
game by U(s, α; v) =

∫

a
U(s, a; v)α(da).

Lemma 1: For each v and for all α, U(s, α; v) is measurable in s; and
for all s, U(s, α; v) is jointly continuous in (α, v).

Proof: First, fix v and a, and note that µq(·|·, a) is a transition probability,
i.e., for all s, µq(·|s, a) is a probability measure, and for each Z ∈ Q, µq(Z|s, a)
is measurable in s. Since v is essentially bounded, Theorem 19.7 of Aliprantis
and Border (2006) implies that

∫

q′
vi(q

′)µq(dq
′|s, a) is measurable in s, which

delivers measurability of U(s, a; v) in s. Now fix s, and consider a sequence
{(am, vm)} converging to (a, v) in X × V . Then for all i, we have

∣

∣

∣

∣

∫

q′
vm

i (q′)µq(dq
′|s, am) −

∫

q′
vi(q

′)µq(dq
′|s, a)

∣

∣

∣

∣
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≤

∣

∣

∣

∣

∫

q′
vm

i (q′)µq(dq
′|s, am) −

∫

q′
vm

i (q′)µq(dq
′|s, a)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

q′
vm

i (q′)µq(dq
′|s, a) −

∫

q′
vi(q

′)µq(dq
′|s, a)

∣

∣

∣

∣

≤ C||µq(·|s, a
m) − µq(·|s, a)|| +

∣

∣

∣

∣

∫

q′
(vm

i (q′) − vi(q
′))g(q′|s, a)ν(dq′)

∣

∣

∣

∣

→ 0,

where the first inequality uses the triangle inequality, the second follows
since {vm

i } is essentially bounded by C, and the limit follows both from
norm-continuity of µq(·|s, a) and from weak* convergence of {vm} to v and
the fact that the transition density g(·|s, a) of µq(·|s, a) lies in Ln

1 . Thus,
U(s, a; v) is continuous in (a, v), and Aliprantis and Border’s (2006) Lemma
4.51 implies that U is jointly measurable. Given any α, it follows that
U(s, α; v) =

∫

a
U(s, a; v)α(da) is measurable in s. Moreover, for every se-

quence {(αm, vm)} converging to (α, v), we have for all i,

|Ui(s, α
m; vm) − Ui(s, α; v)| ≤

∣

∣

∣

∣

∫

a

(Ui(s, a; v
m) − Ui(s, a; v))α

m(da)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

a

Ui(s, a; v)α
m(da) −

∫

a

Ui(s, a; v)α(da)

∣

∣

∣

∣

→ 0,

where the inequality follows from the triangle inequality, and the limit fol-
lows from both Lebesgue’s dominated convergence theorem (using the fact
that U(s, ·; vm) → U(s, ·; v) pointwise; see Theorem 11.21 of Aliprantis and
Border (2006)) and weak* convergence of {αm} to α, as required.

The payoff function U(s, ·; v) restricted to
∏

iAi(s) is continuous, and
with compactness of each Ai(s), the Debreu-Fan-Glicksberg theorem implies
that the set of mixed strategy Nash equilibria of Γv(s), denoted Nv(s), is a
nonempty, compact subset of

⊗

i P(Xi). Let Pv(s) denote the payoffs gen-
erated by equilibria in Nv(s), i.e., Pv(s) = U(s,Nv(s); v) = {U(s, α; v) | α ∈
Nv(s)}. Note the immediate implication of Lemma 1 that the correspon-
dences v → Nv(s) and v → Pv(s) have weak* closed graph. The next lemma
is essentially Lemmas 5 and 6 of Nowak and Raghavan (1992).

Lemma 2: For each v, the correspondences s → Nv(s) and s → Pv(s)
are lower measurable.
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Proof: Fix v. Note that the correspondence s → Ai(s) is measurable by
Theorem 18.10 of Aliprantis and Border (2006), so Theorem 3 of Himmel-
berg and van Vleck (1975) implies that the correspondence s → P(Ai(s)) is
lower measurable for all i. Part 2 of Aliprantis and Border’s (2006) Lemma
18.4 then implies that ∆: S ⇉

∏

i P(Xi) defined by ∆(s) =
∏

i P(Ai(s)) is
lower measurable. Letting π :

∏

i P(Xi) →
⊗

i P(Xi) be the homeomorphism
defined by π(α1, . . . , αn) = α1 ⊗ · · · ⊗ αn, it follows that s→

⊗

i P(Ai(s)) =
π(∆(s)) is lower measurable. Now define ξ : S ×

⊗

i P(Xi) → ℜ by

ξ(s, α) =
∑

i

[Ui(s, α; v) − max
ai∈Ai(s)

Ui(s, ai, α−i; )].

By Lemma 1 and the theorem of the maximum (see Theorem 17.31 of
Aliprantis and Border (2006)), ξ(s, α) is continuous in α; and by Theorem
18.19 of Aliprantis and Border (2006), it is measurable in s. Thus, ξ is
Caratheodory. Defining Ξ: S ⇉

⊗

i P(Xi) by

Ξ(s) =

{

α ∈
⊗

i

P(Xi) | ξ(s, α) = 0

}

,

Corollary 18.8 of Aliprantis and Border (2006) implies that Ξ is lower mea-
surable. Then, by part 3 of Aliprantis and Border’s (2006) Lemma 18.4,
s → Nv(s) = Ξ(s) ∩ P(Ai(s)) is lower measurable. That s → Pv(s) is lower
measurable then follows from the fact that Pv(s) = U(s,Nv(s); v) is the image
of Nv(s) under a continuous function, as required.

For all r, let Φv(r) be the set of κ-integrable, density-weighted, equilib-
rium payoff selections as a function of q: specifically, f ∈ Ln

1 belongs to
Φv(r) if and only if for κ-almost all q, f(q) ∈ h(r|q)Pv(q, r), i.e., there is
an equilibrium payoff vector y ∈ Pv(q, r) of the stage game induced by v

at (q, r) such that f(q) = h(r|q)y.12 The remainder of the proof considers
properties of the integral of the correspondence r → Φv(r), suitably de-
fined. A function φ : R → Ln

1 is Bochner integrable if two conditions hold: it
can be approximated by a sequence {ϕm} of simple functions, in the sense
that ||φ(r) − ϕm(r)||1 → 0 for λ-almost all r; and it is λ-integrable, in the
sense that

∫

r
||φ(r)||1λ(dr) < ∞ (see Definition 11.42 and Theorem 11.44

12The choice of Ln
1

for the range of Φv is important for the existence of a λ-integrable
selection in the proof of Lemma 4, because h(r|·) need not be essentially bounded for
λ-almost all r.
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of Aliprantis and Border (2006)). In this case, the Bochner integral of φ is
limm→∞

∫

r
ϕm(r)λ(dr), and the Bochner integral of a general correspondence

Φ: R ⇉ Ln
1 is the set of integrals of λ-almost everywhere selections, i.e.,

∫

r

Φ(r)λ(dr) =

{
∫

r

φ(r)λ(dr) |
φ is a Bochner integrable,
λ-a.e. selection of Φ

}

.

For all v, define Ev =
∫

r
Φv(r)λ(dr) as the Bochner integral of the correspon-

dence r → Φv(r) with respect to λ, parameterized by v. The next lemma
establishes that the correspondence v → Ev maps to subsets of V .

Lemma 3: For each v, Ev ⊆ V .

Proof: Given v, consider any f ∈ Ev. Then there exists a Bochner inte-
grable selection φ : R → Ln

1 such that φ(r) ∈ Φv(r) for λ-almost all r and such
that f =

∫

r
φ(r)λ(dr). Moreover, for all r with φ(r) ∈ Φv(r) and for κ-almost

all q, φ(r)(q) ∈ h(r|q)Pv(q, r). By part 1 of Aliprantis and Border’s (2006)
Theorem 11.47, there is a ν = κ⊗ λ-integrable F : Q×R → ℜn such that

(a) for λ-almost all r, we have for κ-almost all q, φ(r)(q) = F (q, r),

(b) for κ-almost all q, F (q, ·) is λ-integrable and

(
∫

r

φ(r)λ(dr)

)

(q) =

∫

r

F (q, r)λ(dr).

An implication of (a), with the fact that φ(r) ∈ Φv(r) for λ-almost all r, is
that for κ-almost all q and for λ-almost all r, F (q, r) ∈ h(r|q)Pv(q, r). With
(b), this implies that there is a set Q0 ∈ Q with κ(Q0) = 0 such that for all
q ∈ Q \ Q0, we have (i) for λ-almost all r, F (q, r) ∈ h(r|q)Pv(q, r), and (ii)
(
∫

r
φ(r)λ(dr))(q) =

∫

r
F (q, r)λ(dr). Then for all q ∈ Q \Q0, we have

||f(q)|| =

∣

∣

∣

∣

∣

∣

∣

∣

(
∫

r

φ(r)λ(dr)

)

(q)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∫

r

F (q, r)λ(dr)

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫

r

||F (q, r)||λ(dr) ≤

∫

r

Ch(r|q)λ(dr) ≤ C,

where the first equality follows from f =
∫

r
φ(r)λ(dr), the second equality

from (ii), the first inequality from Jensen’s inequality (see Theorem 11.24 of
Aliprantis and Border (2006)), the second inequality from (i), and the last
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inequality from the fact that h(·|q) is a density. This implies f ∈ V and
therefore Ev ⊆ V , as required.

To see that the correspondence v → Ev has nonempty values, note the
implication of Lemma 2, via the Kuratowski-Ryll-Nardzewski selection the-
orem (see Theorem 18.13 of Aliprantis and Border (2006)), that for each v,
the correspondence s → Pv(s) admits an measurable selection. With some
care to ensure integrability, this implies the desired result.

Lemma 4: For each v, Ev 6= ∅.

Proof: It suffices to deduce a Bochner integrable mapping φ : R → Ln
1

such that φ(r) ∈ Φv(r) for λ-almost all r. By Lemma 2 and the Kuratowski-
Ryll-Nardzewski selection theorem, there is a measurable mapping y : S → ℜ
satisfying y(s) ∈ Pv(s) for ν = κ⊗ λ-almost all s. In particular, ||y(q, r)|| ≤
C for κ ⊗ λ-almost all (q, r). Obviously,

∫

q

∫

r
h(r|q)λ(dr)κ(dq) = 1, and

Tonelli’s theorem (see Theorem 11.28 of Aliprantis and Border (2006)) im-
plies that h(r|q) is κ ⊗ λ-integrable and

∫

r

∫

q
h(r|q)κ(dq)λ(dr) = 1. Thus,

∫

q
h(r|q)κ(dq) < ∞ for λ-almost all r. Let R0 ∈ R satisfy λ(R0) = 0 and

for all r ∈ R \ R0,
∫

q
h(r|q)κ(dq) < ∞, and define φ : R → Ln

1 so that

φ(r)(q) = h(r|q)y(q, r) for all r ∈ R \R0 and all q. Then φ(r) ∈ Φv(r) for λ-
almost all r, and h(r|q)y(q, r) is κ⊗λ-integrable, so part 2 of Aliprantis and
Border’s (2006) Theorem 11.47 implies φ is Bochner integrable, as required.

To establish convex values and closed graph of v → Ev, it will be useful to
define the following auxiliary correspondences. For each v, let P ∗

v (s) denote
the convex hull of Pv(s), and let Φ∗

v(r) be the set of κ-integrable, density-
weighted, convex combinations of equilibrium payoff selections as a function
of q: specifically, f ∈ Ln

1 belongs to Φ∗

v(r) if and only if for κ-almost all
q, f(q) ∈ h(r|q)P ∗

v (q, r), i.e., there is a convex combination y ∈ P ∗

v (q, r) of
equilibrium payoff vectors in the induced game such that f(q) = h(r|q)y. In
contrast to Φv(r), the set Φ∗

v(r) must be convex, and it follows immediately
that the Bochner integral

∫

r
Φ∗

v(r)λ(dr) is convex as well.

The usefulness of the latter observation lies in the fact, shown next, that
Ev can be written as the integral of Φ∗

v, i.e.,
∫

r
Φv(r)λ(dr) =

∫

r
Φ∗

v(r)λ(dr).
One direction of this inclusion is obvious. For the less trivial ⊇ inclusion,
we would like to apply a version of Lyapunov’s theorem for correspondences
(e.g., Theorem 4, p.64, of Hildenbrand (1974)) with respect to a nonatomic
measure: for correspondences mapping to ℜn, Lyapunov’s theorem implies
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that the integral of a correspondence with respect to a nonatomic measure
is equal to the integral of the convex hull of the correspondence. But Lya-
punov’s theorem does not hold in infinite-dimensional settings, so this direct
avenue is not open. Instead, the approach I use relies on the fact that the
correspondence r → Φv(r) has a product structure, in that given r, Pv(q, r) is
defined independently for each q; the selection of equilibrium payoffs in the in-
duced game Γ(q, r) does not restrict (beyond considerations of measurability)
the selection at Γ(q′, r). This permits the application of Lyapunov’s theorem
separately for each q. Thus, the proof “goes down” from the Bochner integral
∫

r
Φ∗

v(r)λ(dr) to integrals of the correspondence (q, r) → P ∗

v (q, r) defined on
(q, r) pairs. I then apply Lyapunov’s convexity theorem for correspondences
mapping to subsets of ℜn, integrating across r one q at a time. Finally the
proof “goes up” to the Bochner integral. A technical issue is that in the
latter step, we have one integral

∫

r
Pv(q, r)h(r|q)λ(dr) for each q, and thus

one selection from r → h(r|q)Pv(q, r) for each q. To return to the Bochner
integral, we have to “sew up” these selections in a measurable way, a task
facilitated by a theorem of Artstein (1989).13

Lemma 5: For each v, Ev =
∫

r
Φ∗

v(r)λ(dr); in particular, Ev is convex.

Proof: Clearly, Ev ⊆
∫

r
Φ∗

v(r)λ(dr). Now consider any v̂ ∈
∫

r
Φ∗

v(r)λ(dr),
so there exists a λ-integrable mapping φ : R → Ln

1 such that φ(r) ∈ Φ∗

v(r)
for λ-almost all r and v̂ =

∫

r
φ(r)λ(dr). By Aliprantis and Border’s (2006)

Theorem 11.47, part 1, there is a κ⊗ λ-integrable function F : Q× R→ ℜn

satisfying (a) and (b) in the proof of Lemma 3. An implication of (a), with the
fact that φ(r) ∈ Φ∗

v(r) for λ-almost all r, is that for κ-almost all q and for λ-
almost all r, F (q, r) ∈ h(r|q)P ∗

v (q, r). With (b), this implies that there is a set
Q0 ∈ Q with κ(Q0) = 0 such that for all q ∈ Q \Q0, we have (i) for λ-almost
all r, F (q, r) ∈ h(r|q)P ∗

v (q, r), and (ii) (
∫

r
φ(r)λ(dr))(q) =

∫

r
F (q, r)λ(dr).

Then for all q ∈ Q \Q0, we have

v̂(q) =

∫

r

F (q, r)λ(dr) ∈

∫

r

P ∗

v (q, r)h(r|q)λ(dr) =

∫

r

Pv(q, r)h(r|q)λ(dr),

where the first equality follows from v̂ =
∫

r
φ(r)λ(dr) and (ii), the inclusion

from (i), and the last equality from Hildenbrand’s (1974) Theorem 4 (p.64).
It follows that for κ-almost all q, v̂(q) ∈

∫

r
Pv(q, r)h(r|q)λ(dr). To apply the

13Alternatively, this lemma can be deduced from part 2 of the more general theorem of
Mertens (2003). The proof of Lemma 5 here is straightforward relative to Mertens’ proof.
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theorem of Artstein (1989), note thatQ and R are complete, separable metric
spaces, and that the correspondence (q, r) → Pv(q, r) is lower measurable,
by Lemma 2, and has nonempty, compact values. Thus, by Aliprantis and
Border’s (2006) Theorem 18.10, the correspondence (q, r) → Pv(q, r) is in
fact measurable. Note also that for κ-almost all q, ||

∫

r
h(r|q)Pv(q, r)λ(dr)|| ≤

C, so the correspondence r → h(r|q)Pv(q, r) is λ-integrably bounded. We
identify our R with Artsein’s S, our Q with his T , our λ with his βt (constant
in t), and our Pv(q, r) with his F (t, s). Then Artstein’s theorem yields a
measurable mapping G : Q × R → ℜn such that for κ-almost all q, v̂(q) =
∫

r
G(q, r)λ(dr) and for λ-almost all r, G(q, r) ∈ h(r|q)Pv(q, r). Of course, G

is κ⊗ λ-integrable, so by part 2 of Aliprantis and Border’s (2006) Theorem
11.47, the mapping ψ : R → Ln

1 defined so that ψ(r)(q) = G(q, r) for κ ⊗ λ-
almost all (q, r) is Bochner integrable, and for κ-almost all q,

v̂(q) =

∫

r

G(q, r)λ(dr) =

(
∫

r

ψ(r)λ(dr)

)

(q),

so v̂ =
∫

r
ψ(r)λ(dr). Furthermore, ψ(r) ∈ Φv(r) for λ-almost all r, and we

conclude that v̂ ∈
∫

r
Φv(r)λ(dr) = Ev, as required.

The next lemma shows that the set of selections of (q, r) → h(r|q)P ∗

v (q, r)
has closed graph with respect to v. Specifically, the correspondence analyzed
is Ψ∗ : V ⇉ Ln

1 (S, S, ν) defined by

Ψ∗(v) =
{

F ∈ Ln
1 (S, S, ν) | for ν-a.e. s = (q, r), F (s) ∈ h(r|q)P ∗

v (s)
}

,

with the weak* topology σ(Ln
∞
, Ln

1 ) on its domain and the weak topology
σ(Ln

1 (S, S, ν), Ln
∞

(S, S, ν)) on its range. The result is related to Lemma 7 of
Nowak and Raghavan (1992), but here we must frame the result in Ln

1 (S, S, ν)
instead of Ln

∞
(S, S, ν), and the proof uses Proposition C of Artstein (1979).

A technical issue is that the closed unit ball in Ln
1 (S, S, ν) is not metrizable

(unless ν has finite support), so the lemma is stated only for sequentially
closed graph.

Lemma 6: The correspondence v → Ψ∗(v) has sequentially closed graph.

Proof: Note that the correspondence v → Pv(s) has closed graph by
Lemma 1, and then part 2 of Aliprantis and Border’s (2006) Theorem 17.35
implies that v → P ∗

v (s) has closed graph as well. Consider a sequence
{(vm, Fm)} converging to (v, F ) in V × Ln

1 (S, S, ν) such that for all m,
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Fm ∈ Ψ∗(vm), i.e., Fm is a ν-almost everywhere selection from P ∗

vm . By
Tonelli’s theorem, h(r|q) is ν-integrable as a function of s = (q, r), and note
that ||Fm(s)|| ≤ h(r|q)C for all m, implying the sequence {Fm} is uniformly
integrable. Then Proposition C of Artstein (1979) implies that for ν-almost
every s, F (s) is a convex combination of accumulation points of {Fm(s)}.
Let Z0 ∈ S be a set of full measure for which this property holds. For each
m, let Zm ∈ S be a set of full measure on which Fm selects from P ∗

vm , i.e.,
Zm ⊆ {s | Fm(s) ∈ P ∗

vm(s)}, and define Z =
⋂

∞

m=0 Z
m, which also has

full measure. Considering any s ∈ Z, we may write F (s) ∈ co{y1, . . . , yk},
where for each j = 1, . . . , k, there is a subsequence {Fmℓ} such that yj =
limℓ→∞ Fmℓ(s). And since Fmℓ(s) ∈ P ∗

vmℓ
(s) for all ℓ, this implies yj ∈ P ∗

v (s),
which implies that F (s) ∈ P ∗

v (s). Thus, F is a ν-almost everywhere selection
from s→ P ∗

v (s), i.e., F ∈ Ψ∗(v), as required.

Closed graph of the correspondence v → Ev can now be established by an
infinite-dimensional Fatou’s lemma argument. One possible approach would
be to apply Yannelis’s (1990) Theorem 3.2, with the proviso is that Yannelis
works with a complete measure space (T, τ, µ), whereas our (S, S, ν) is not
assumed complete; but a close reading of his proof reveals that completeness
is not used. Instead, I provide a direct proof based on Lemma 6.

Lemma 7: The correspondence v → Ev has closed graph.

Proof: Consider a sequence {(vm, v̂m)} converging to (v, v̂) in V × V

such that for all m, v̂m ∈ Evm =
∫

r
Φvm(r)λ(dr). For each m, there is a

Bochner integrable, λ-almost everywhere selection φm of r → Φvm(r) such
that v̂m =

∫

r
φm(r)λ(dr). By part 1 of Aliprantis and Border’s (2006) Theo-

rem 11.47, there is a κ⊗λ-integrable function Fm : Q×R → ℜ such that (a)
for λ-almost all r, we have for κ-almost all q, φm(r)(q) = Fm(q, r), and (b) for
κ-almost all q, Fm(q, ·) is λ-integrable and v̂m(q) =

∫

Fm(q, r)λ(dr). From
(a), it follows that Fm ∈ Ψ∗(vm) for all m, and as in the proof of Lemma 6,
{Fm} is uniformly integrable. Furthermore, ||Fm||1 ≤ C for all m, so the se-
quence is norm-bounded. Then Theorem 15 (p.76) of Diestel and Uhl (1977)
implies that the sequence is relatively compact. By the Eberlein-Smulian
theorem (see Theorem 6.34 of Aliprantis and Border (2006)), it has a conver-
gent subsequence {Fm} (still indexed by m) with limit F ∈ Ln

1 (S, S, ν). By
Lemma 6, we have F ∈ Ψ∗(v), and moreover ||F (·, r)||1 < ∞ for λ-almost
all r, so we can define the mapping φ : R → Ln

1 so that φ(r)(q) = F (q, r)
for κ-almost all q. Note that for λ-almost all r, we have for κ-almost all q,
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φ(r)(q) ∈ P ∗

v (q, r), i.e., φ(r) ∈ Φ∗

v(r). By part 2 of Aliprantis and Border’s
(2006) Theorem 11.47, it follows that (c) φ is Bochner integrable, and that
(d) (

∫

r
φ(r)λ(dr))(q) =

∫

r
F (q, r)λ(dr) for κ-almost all q. In particular, φ is

a Bochner integrable, λ-almost everywhere selection from r → Φ∗

v(r), so it
suffices to prove that v̂ =

∫

r
φ(r)λ(dr). For this, since v̂m → v̂ weak* (and

therefore weakly), it suffices to show that v̂m →
∫

r
φ(r)λ(dr) weakly. To this

end, consider any f ∈ Ln
∞

. Note that
∫

q

v̂m(q)f(q)κ(dq) =

∫

q

(
∫

r

Fm(q, r)λ(dr)

)

f(q)κ(dq)

=

∫

(q,r)

Fm(q, r)f(q)(κ⊗ λ)(d(q, r))

→

∫

(q,r)

F (q, r)f(q)(κ⊗ λ)(d(q, r))

=

∫

q

(
∫

r

F (q, r)λ(dr)

)

f(q)κ(dq)

=

∫

q

(
∫

r

φ(r)λ(dr)

)

(q)f(q)κ(dq),

where the first equality follows from (b), the second equality from Fubini’s
theorem, the limit from Fm → F weakly (viewing f as defined on Q×R and
constant in r), the third equality from Fubini’s theorem, and the last from (d).
Thus, v̂ =

∫

r
φ(r)λ(dr) ∈

∫

r
Φ∗

v(r)λ(dr) =
∫

r
Φv(r)λ(dr) = Ev, as required.

Collecting Lemmas 3, 4, 5, and 7, the correspondence v → Ev maps
the nonempty, convex, weak* compact set V (a subset of a locally convex
Hausdorff tvs) to nonempty, convex subsets of V , and it has closed graph in
the weak* topology. By the Debreu-Fan-Glicksberg theorem, there exists a
fixed point v ∈ Ev. The final step of the proof is to construct a stationary
Markov perfect equilibrium. Let φ : R → Ln

1 be an λ-integrable mapping
such that φ(r) ∈ Φv(r) for λ-almost all r and such that v =

∫

r
φ(r)λ(dr).

Using part 1 of Aliprantis and Border’s (2006) Theorem 11.47 again, let
F : Q× R → ℜn be a κ⊗ λ-integrable function satisfying (a) and (b) in the
proof of Lemma 3. From (a), there is a set S0 ∈ S with ν(S0) = 0 such that
for all s = (q, r) ∈ S \S0, we have F (s) ∈ h(r|q)Pv(q, r). Using the fact that
s→ Pv(s) is lower measurable, and therefore admits a measurable selection,
we can modify F so that F (s) ∈ h(r|q)Pv(q, r) for all s ∈ S0 as well. From
(b), it follows that for κ-almost all q, v(q) =

∫

r
F (q, r)λ(dr).
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By Lemmas 1 and 2, U(·; v) : S×
⊗

i P(Xi) → ℜn is a Caratheodory func-
tion and s → Nv(s) is lower measurable. Moreover, for all s = (q, r), there
exists α ∈ Nv(s) such that F (s) = h(r|q)U(q, r, α; v). Then Filippov’s im-
plicit function theorem (see Aliprantis and Border’s (2006) Theorem 18.17)
yields a measurable function ξ : S →

⊗

i P(Xi) such that for all s = (q, r),
we have ξ(s) ∈ Nv(s) and F (s) = h(r|q)U(s, ξ(s); v). Define the strategy
σi : S → P(Xi) for each player i so that for all s, σi(s) is the marginal of
ξ(s) on Xi, and write instead σ(s) for ξ(s), the product of the players’ mixed
strategies. By Aliprantis and Border’s (2006) Theorem 19.7, measurability
of ξ implies that ξi(s)(Yi) ≡ ξ(s)(Yi ×X−i) is measurable in s for each Borel
Yi ⊆ Xi, which implies that the mapping σi : S → P(Xi) is indeed measur-
able, so these strategies are well-defined.

Finally, I argue that σ is an equilibrium. For κ-almost all q and all i,

vi(q) =

∫

r

Fi(s)λ(dr) =

∫

r

Ui(s, σ(s); v)h(r|q)λ(dr)

=

∫

r

[
∫

a

[

(1 − δi)ui(s, a) + δi

∫

q′
vi(q

′)µq(dq
′|s, a)

]

σ(da|s)

]

µr(dr|q), (1)

where s = (q, r). Define w ∈ Ln
∞

(S, S, ν) so that for ν-almost all q and all i,

wi(s) =

∫

a

[

(1 − δi)ui(s, a) + δi

∫

q′
vi(q

′)µq(dq
′|s, a)

]

σ(da|s). (2)

Recall that the mapping q → µr(·|q) is a regular conditional probability for r
following any state-action pair. By a generalized version of Fubini’s theorem
(see Proposition 2, p.47, of Rao (1993)), equations (1) and (2) then imply
that for all s, all a, and all i,

∫

q′
vi(q

′)µq(dq
′|s, a) =

∫

s′
wi(s

′)µ(ds′|s, a), (3)

and then substituting back into (2), we obtain for ν-almost all s and all i,

wi(s) =

∫

a

[

(1 − δi)ui(s, a) + δi

∫

s′
wi(s

′)µ(ds′|s, a)

]

σ(da|s).

Thus, w satisfies the recursion that uniquely defines v(·; σ), so w = v(·; σ).
Using (2), the fact that σi(s) is a best response to σ−i(s) in Γv(s) implies

wi(s) = sup
ai∈Ai(s)

∫

a−i

[

(1 − δi)ui(s, a) + δi

∫

s′
vi(q

′)µq(dq
′|s, a)

]

σ−i(da−i|s).
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Finally, using w = v(·; σ) and (3), the above equality yields

vi(s; σ)

= sup
ai∈Ai(s)

∫

a−i

[

(1 − δi)ui(s, a) + δi

∫

s′
vi(s

′; σ)µ(ds′|s, a)

]

σ−i(da−i|s),

for all s and all i. Therefore, σ is a stationary Markov perfect equilibrium.
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