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Abstract 

Recent and presumable future developments tend to increase the risk associated with farming 

activities. This causes an increasing importance of risk management. Farmers have a wide 

variety of possibilities to influence the risk exposure of their operations. Among them are the 

choice of the production program as well as marketing activities including forward pricing 

and hedging with futures and options. In total all these opportunities comprise a portfolio of 

activities which must be selected as to match the resources of the farm as well as the farmer’s 

attitudes towards risk. The paper addresses this issue using a whole farm stochastic optimisa-

tion approach based on a risk-value framework. The paper starts with a discussion of risk-

value models and the relationship between them and the expected utility hypothesis. In the 

second part the approach is incorporated in a whole farm model that optimizes a portfolio of 

production activities and risk management instruments. A case study is used to analyse the 

possibilities and limitations of the approach and to illustrate the effects of yield and produc-

tion risk on decision making.  

Keywords: downside risk, risk management, risk measure, risk-value models, stochastic opti-

misation 

 



 

1 Introduction 

Recent and presumable future developments tend to increase the risk associated with farming 

activities. Globalisation and liberalisation of trade combined with declining commodity price 

support result in an increase of market risks. Besides this, more stringent regulations with 

respect to the application of agro chemicals cause an increase of yield variability. In animal 

production, the achieved degree in the division of labour has dramatically aggravated the con-

sequences of contagious disease outbreaks. This list could easily be extended. In summary it 

illustrates the increasing importance of risk management. 

Farmers have a wide variety of possibilities to influence the risk exposure of their op-

erations. Among them are the choice of the production program as well as marketing activities 

including forward pricing and hedging with futures and options. In total all these opportuni-

ties comprise a portfolio of activities which must be selected as to match the resources of the 

farm as well as the farmer’s attitudes towards risk. In our paper we address this issue using a 

whole farm stochastic optimisation approach based on a risk-value framework. The paper 

starts with a discussion of risk-value models and the relationship between them and the ex-

pected utility hypothesis. In the second part the approach is incorporated in a whole farm 

model that optimizes a portfolio of production activities and risk management instruments. 

2 Conceptualisation and measurement of risk 

In accordance with most of the relevant literature we define risk as the uncertainty of out-

comes (cf Anderson et a. 1977; Hardaker 2000; Robison and Barry 1987). Adopting this defi-

nition requires that we explicitly consider the distribution of outcomes. The ordering of risky 

prospects Xi which are characterised by their cumulative distribution functions Fi(x) then re-

quires that an ordinal preference function Φ(Fi(x))∈ℜ exists, such that 
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Xi f Xj ⇔ Φ(Fi(x)) ≥ Φ(Fj(x)). The most general approach for comparing risky choices is by 

means of expected utility (EU). In this case the preference function is defined as  
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where U(x) marks the utility function, fi(x) represents the probability density function (PDF) 

and Fi(x) the cumulative distribution function (CDF) under consideration, respectively. Faced 

with a choice amongst a set of risky prospects, the expected utility hypothesis states that the 

prospect with the highest expected utility is preferred.  

While the EU approach is widely accepted on theoretical grounds it has some difficul-

ties in application. First, these relate to the selection of the mathematical form of the utility 

function as well as to the quantification of its parameters. Furthermore neither the expected 

utility nor the certainty equivalent that can be derived from it is easily understood by decision 

makers. Therefore other concepts have widely been used, e.g. the value-at-risk or the expected 

value-variance approach. Both belong to a category of models which are often referred to as 

risk-value models. Following this category of models is discussed in more detail. 

2.1 Risk-value models 

During the recent years risk-value models have regained considerable attention, often refer-

ring to the ground-breaking article of Sarin and Weber (1993). The risk-value approach dis-

tinguishes explicitly between a risk measure R[F(x)] and a measure of the value or worth 

W[F(x)], respectively (cf Albrecht & Maurer 2002, p. 171). Considering these two measures 

leads to a preference statement of the form (Sarin & Weber 1993, p. 131): 

Φ(Fi(x)) ≥ Φ (Fj(x))     if and only if 

H(W[Fi(x)], R[Fi(x)]) f  H(W[Fj(x)], R[Fj(x)]) (2) 

The function H(⋅) determines the trade-off between risk and worth according to the decision 

maker’s preferences. The usual assumption is that H(⋅) grows with increasing worth and falls 
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with increasing risk. Neither the value measure nor the risk measure depends on wealth. Only 

the trade-off function is wealth dependent. If the decision maker is able to specify the trade-

off function, comparing pairs of distributions leads to an optimal choice. If H(⋅) remains un-

specified, it is still possible to determine the efficient set consisting of the distributions which 

are not dominated. A distribution Fi(x) dominates the distribution Fj(x) if the condition 

W[Fi(x)] ≥ W[Fj(x)]  and   R[Fi(x)]) ≤ R[Fj(x)]) (3) 

holds with at least one strict inequality (Fishburn 1977, p. 118). All non dominated alterna-

tives lie on the efficient frontier which can be determined by solving the optimisation problem 
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where c must be varied across all possible numerals of R[F(x)].  

Implementing risk-value models requires the definition of measures for risk and worth 

to be used in the approach. Following we discuss some of these measures.1

2.2 Risk measures 

Since risk has primarily been associated with the dispersion of the corresponding random 

variable it is common to measure the riskiness of an alternative using its variance or standard 

deviation. If the outcome is normally distributed the distribution is fully defined by mean and 

variance. Otherwise higher order moments, particularly skewness and kurtosis can be em-

ployed to obtain more information about the shape of the distribution. 

The moments of the distribution are based on the variations around the mean, i.e. 

Mk(x) = E[(x–μ)k], where k and μ denote the order of the moment and the mean, respectively 

and E[⋅] represents the expectation operator. When using these measures, the mean or ex-

pected value is therefore (implicitly) considered as the relevant target and risk is quantified 

using the magnitude of deviations from this target. Furthermore the above measures are two-

                                                 
1 For a more comprehensive discussion of risk measures see e.g. Albrecht (2003). 
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sided in that they consider the magnitude of the distance from the realisations of x to E(x) in 

both directions.  

Conventional wisdom, however, states that risk is perceived by the majority of humans 

as the chance of something bad happening. In this regard, risk is associated with an outcome 

that is worse than some specific target. This brings about a further class of risk measurers, 

often referred to as shortfall measures. This class of measures dates back to the work of 

Fishburn (1977). Considering only the lower part of the distribution, these measures account 

for the downside-risk and are called lower partial moments (LPM). They are defined as 

( )∫
∞−

−=
z

n
n dxxfxzzLPM  )()(     (n ≥ 0) (5) 

Setting the target z and the order k of the LPM yields a specific measure. Basic cases that play 

an important role in applications, are obtained for k = 0, 1 and 2. Setting k=0 yields the short-

fall probability LPM0(z) that is closely related with the value-at-risk:2

  (6) ( ) (zFdxxfxzzLPM
z
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]

                                                

For k=1 the resulting measure is the shortfall expectation: 
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LPM1(z) denotes the (conditional) expected value of shortfalls multiplied by the probability of 

the occurrence of below target returns. Thus, it accounts for the probability as well as for the 

magnitude of shortfalls. Finally k=2 leads to the shortfall variance 

( ) [ ( )zFzxxzEdxxfxzzLPM
z

<−=−= ∫
∞−

|)( )()( 22
2  (8) 

the square root of which denotes the shortfall standard deviation. Here the squared downside 

deviations from target are considered in the risk measure.  

 
2 For details on the value-at-risk concept see e.g.  Jorion (1997), Manfredo and Leuthold (1999) 
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Further variations are obtained if the expected value serves as target, i.e. z=E[x]. The 

corresponding measures are the probability of falling short of the expected value (k=0), its 

expected underrun (k=1) and the semi-variance (k=2). These measures do not change if a cer-

tain amount c is added to an uncertain outcome X, i.e. R[X]=R[X+c]. Contrary, if z is deter-

mined exogenously, adding a certain quantity to an uncertain prospect reduces the risk associ-

ated with it, i.e. R[X]>R[X+c]. Generally, one would consider a situation to be less risky if a 

certain income is earned in addition to the uncertain prospect. Furthermore Schneeweiß 

(1967, p. 111) has shown that risk-value models which use risk measures with an endogenous 

target (e.g. E[x]), are not consistent with the utility model, except for certain classes of distri-

butions. The further discussion therefore is limited to those risk measures where the target is 

determined exogenously. 

2.3 Value measures 

While the appropriateness of risk measures is still controversially discussed in the relevant 

literature it is widely agreed that the expected value is the best measure of worth in risk-value 

models, i.e. W[F(x)]=E[x]. Only in the recent literature the appropriateness of the expected 

value is sometimes questioned (Maurer 2000; Frowein 2002). It is criticised that the computa-

tions of the expected value takes data into account that have already been considered in the 

risk measure. 

Alternatively, upper partial moments (UPM) can be used which are complementary to 

the LPMs in that they consider the upper part of the distribution by measuring the excess of a 

target z: 

( )∫
∞

−=
z

k
k dxxfzxzUPM  )()(      (k ≥ 0) (9) 

For k=0 the above formula yields the probability that x exceeds z, i.e. UPM0(z) = 1–F(z). 

This measure is called excess probability (Albrecht et al. 1999, p. 263). If k equals 1 the ex-

cess expectation is returned and k=2 leads to the excess variance. The UPMs are partly less 
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informative than the expected value (e.g. UPM0(z)) and in any case less understandable for a 

decision maker. In accordance with most of the literature we therefore use the expected value 

E[x] as measure of worth. 

2.4 Risk value models in relation to utility functions 

The preference function of the risk-value model using the expected value E[x] as value meas-

ure and a lower partial moment LPMk(z) as risk measure can be stated as 

( ) )(][)( zLPMcxExF k−=Φ  (10) 

where c>0 denotes die weighting factor and k is the order of the LPM. Increasing c therefore 

means increasing risk aversion. Schneeweiß (1967, p. 89ff) has shown that the corresponding 

utility function has the following form: 
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Figure 1 contains the graph of the utility functions according to (11) using the shortfall prob-

ability (k=0), the shortfall expectation (k=1) and the shortfall variance (k=2) as risk measures. 

The target was set to z=0 assuming that losses are considered as downside risk. Above the 

target level all three cases result in the same utility function which is given by u(x) = x. The 

differences between them occur in the range where x falls below the target. 

For k=0 the utility function is linearly increasing at constant slope but has a discontinu-

ity at the target z. It does not allow a general statement about the decision maker’s attitude 

towards risk which depends on the target level relative to the distribution of outcomes. The 

utility function implies risk neutral behaviour if all realisations of the random variable lie ei-

ther below or above the target level. In this case the shortfall probability of all alternatives is 

the same and equals either 1 or 0. Thus, the choice is only based on the expected value and the 

alternatives can be ordered using first degree stochastic dominance (FSD). In most cases 

however, the stochastic outcomes will scatter around the target. In this case the implied risk 

attitude depends on the target level. If this is low, the choice may be in accordance with sec-

 6



ond degree stochastic dominance (SSD) indicating risk aversion. At higher target levels how-

ever, alternatives may be chosen that require risk loving behaviour to become optimal in the 

sense of expected utility. Thus using the shortfall probability as risk measure in an optimisa-

tion approach is likely to yield ambiguous results.  

-5

-4

-3

-2

-1

0

1

2

-2,00 -1,50 -1,00 -0,50 0,00 0,50 1,00 1,50 2,00

  k = 0
  k = 1
  k = 2

u(x)

x

z=0

c

 

Figure 1: Corresponding utility functions of risk-value models 

The shortfall expectation, i.e. k=1, considers not only the shortfall probability but also 

its extent. The corresponding utility function is represented by the solid line in Figure 1. It is 

piecewise linear with the steeper slope in the lower part. Only if all possible outcomes fall 

either below or above the target level, respectively, the utility function implies risk neutral 

behaviour. Otherwise the shape of the utility function is approximately concave and therefore 

implies risk aversion. 

The use of higher order LPMs, i.e. higher values of k, implies stronger local risk aver-

sion in the lower part of the domain while above the target local risk neutrality remains (cf 

Nawrocki 1991, p. 466). Using LPM2(z), i.e. the shortfall variance, the shortfalls are squared, 

thus giving particular weight to the higher losses. The corresponding utility function is quad-

ratic in the range below the target level and therefore also implies risk aversion. Different 

from the former case, the utility function is strictly concave in the lower part. 
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From the above framework and given the assumption that most decision makers are risk 

averse to some extent the shortfall expectation and the shortfall variance appear as suitable 

risk measures. Since a desirable feature of any measure is that it has an obvious meaning for 

the decision maker we have chosen LPM1. The risk value model to be implemented in the 

following section therefore is based on the expected profit and the shortfall expectation as 

value and risk measures, respectively. 

3 The whole farm model 

Farms in Europe are typically multi-product operations. The decision problem for a farmer 

therefore is to choose a portfolio of risk management instruments and production activities 

that meets his objectives in terms of profit and the risk associated with it. The model devel-

oped for this purpose is a two step approach. In the first step the joint distributions of prices 

and yields are estimated. In the second step these estimates are incorporated in the optimisa-

tion model.  

3.1 Optimisation approach 

The model is set up as to compute a risk efficient frontier in the way that the expected profit 

enters the objective function while the risk measure is considered as a constraint. The objec-

tive function therefore is to select the portfolio of activities x that maximizes the expected 

profit π 

( ) ( ) ypΩypxyp
x

ddg |,,,max
0 0
∫ ∫
∞ ∞

π  (12) 

subject to the resource constraints bxA ≤  and the constraint on the risk measure 

, where c is parameterised in order to compute the efficient frontier. ( ) czLPM ≤1

In (12) the term π(⋅) denotes the profit function and g(⋅|Ω) is the joint density function 

of prices and yields conditional on Ω, the set of information available when the portfolio is 

selected. The random price vector p consists of cash prices for all products and in addition 

 8



futures prices for pigs and forward contract prices for potatoes. The random yield vector y 

contains the individual crop yields. The resource constraints reflect the physical capacities of 

the farm as well as institutional constraints, e.g. rotational restrictions and agricultural policy 

regulations.  The profit function consists of the following components: 
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The PA component is the profit from producing crops and selling them in the cash market 

without using other risk management instruments than a diversified crop mix itself.  Thus pj 

denotes the cash price, yj the yield and cj(yj) the variable cost function of commodity j. The 

chosen acreage is given by xj. The term PS represents the profit from pig production, where ps 

is the price of finished pigs, ys the carcass weight, pF the price of piglets and cs(ys) denotes the 

variable cost. The profit per head is multiplied by the number of finished pigs, xs. FO is the 

net return from forward contracting that applies for potatoes. Here, pFK is the contract price 

while pMK represents the cash price at harvest and xFO denotes the contracted amount. The FU 

component reflects the net return from hedging with futures which is possible only for pigs. In 

this context, xF,i is the amount of futures contracts with maturity date i that are sold, pft,t+i is 

the futures price at the time when xF,i is selected and pft+i,t+i is the futures price at maturity. 

Finally, CF accounts for cost and returns which are independent from the selected portfolio. 

These include all fixed costs minus the direct payments according to the present European 

agricultural policy. 
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3.2 Determination of price an yield distributions 

The generation of price distributions is based on an ARCH model that has been derived from 

time series data of the years 1992 to 2004 for cereals and 1985 to 2004 for potatoes. The 

ARCH model has the following structure: 

( ) tt
Z

ztztz
i

tititt TpTp εσεσθφ +−−+= ∑∑
=

−−
=

−−
11

1    (14) 

where 

( )∑ −− −+=
j

jtjtjtt e 2222 σασσ  

and the variables and coefficients have the following meaning: 

tp  = price at time t 

tT  = trend variable  (function of time and season) 

φi = auto regression coefficient for lag i  
θz  = moving average coefficient for lag z 

te   = residuals  

εt  = tt /e σ  standardized residuals with mean 0 and standard deviation 1 
2
tσ   = conditional variance  

2
tσ  = unconditional variance (function of time and season) 
t
jα  = auto regression coefficient for lag  j 

After estimating the parameters, the process of price generation is stochastically simu-

lated3 (1 000 random runs), using the price information available at the starting point t=0. For 

t>0 only the innovations εt are stochastic and represent realizations of independent and identi-

cally distributed random variables. Thus, conditional on the current market conditions, the 

probability density functions of the prices and their autocorrelations are determined for all 

relevant dates within the planning horizon (see Figure 2). The correlations between the re-

siduals of the different price processes are taken into account during the generation of the εt. 

This assures that existing correlations between the residuals are reflected in the generated 

forecasts. 

                                                 
3 The EXCEL add in @Risk from Palisade was used to carry out the stochastic simulation 
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Figure 2: Conditional probability density functions  
generated from a price process 

Crop yields are assumed to be normally distributed with the means and standard devia-

tions given in Table 1. Yield correlations were set to 0.3 between all crops. A negative price 

yield correlation of -0.5 was assumed for potatoes. In all other cases yield and price fluctua-

tions are assumed to be independent. 

On combining the generated prices and yields and considering the variable cost gross 

margins for all crops at harvest can be generated. The means and standard deviations of these 

distributions are also depicted in Table 1. The differences between the two years are due to 

the respective differences in price forecasts. 

Table 1: Means and standard deviation of crop yields and gross margins  

 Yields [dt/ha] GM*) 2005 [€/ha]  GM*) 2006 
 Mean Standard 

Deviation
Mean Standard 

Deviation 
Mean Standard 

Deviation 
Winter wheat 92 7,7 240 105 285 125 
Winter barley 83 7,8 157 91 174 98 
Spring Barley 60 6,6 172 94 256 117 
Potatoes 442 57 378 995 378 1043 
Land Set-aside 0 0 -86 0 -86 0 

*) GM = Gross Margin 
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3.3 Model results 

The following model calculations refer to a German farm. The farm size is 75 ha of arable 

land and a hog barn holding a total of 1 000 finishing pigs which are subdivided into 4 com-

partments. Each compartment contains 250 pigs that are sold at the same time. According to 

the actual policy regulations, 8.05 % of the land must be set aside in order to obtain the direct 

payments. The latter amount to roughly 21 000 € per year. The share of potatoes is limited to 

30 % of the total acreage on agronomic grounds. The fixed cost amount to 105 000 € per year.  

The planning process is assumed to take place at the beginning of the year 2005. Thus, 

winter grain is already planted so only the acreage of the spring crops (spring barley and pota-

toes) has to be allocated for the harvest 2005. Further activities include marketing of stored 

grain, forward contracting of potatoes and hedging with futures in the case of pigs. With re-

spect to pig production it is assumed that the capacity of the barn is always fully utilised. 

Since the model is run over two cropping years the crop mix for the 2006 harvest is also de-

termined by the model. 

Optimisation is carried out using Microsoft EXCEL along with Solver and Visual Basic 

for Applications. To compute the objective function according to (12) and (13), the model 

uses the random yield and price realisations generated during the prior step. The target z of the 

LPM1(z) that serves as risk measure is set to zero yielding the loss expectation. Six optimisa-

tions for different values of c are performed to obtain the efficient frontier. These include the 

minimisation of risk (no. 1) and the maximisation of expected profit (no. 6) as endpoints. The 

model results are depicted in Table 2 while Figure 3 illustrates the resulting efficient frontier. 

The principal changes of the portfolio of activities across the model runs can be summa-

rized as follows (see Table 2): With growing risk aversion potatoes are gradually replaced by 

wheat (harvest 2006) and spring barley (harvest 2005). At the same time forward contracting 

is suggested for 2005 potatoes. Hedging with hog futures also turns out to be a valid instru-
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ment to reduce risk. Increasing risk aversion furthermore results in an increase of the number 

and duration of hog futures contracts.  

Table 2: Model Results 

 Result 1 2 3 4 5 6 
E(X) → Max 32 617 37 299 38 482 39 293 39 357 39 804 
σ(X) 19 568 23 943 25 426 28 211 29 391 30 672 
γ(X) 0 .07 0 .14 0 .19 0 .29 0 .31 0 .40 
LPM0(0) 4 .6 % 5 .6 % 6 .1 % 7 .3 % 8 .2 % 8 .6 % 
LPM1(0) = c 304 443 581 720 859 998 
LPM1(0)/ LPM0(0) 6 638 7 977 9 578 9 824 10 486 11 572 
√LPM2(0) 2 124 2 695 3 186 3 650 4 081 4 471 
Crop mix as share of the total acreage (harvest 2005) 
Winter wheat 30 % 30 % 30 % 30 % 30 % 30 % 
Winter barley 10 % 10 % 10 % 10 % 10 % 10 % 
Spring barley 42 % 32 % 22 % 22 % 22 % 22 % 
Potatoes 10 % 20 % 30 % 30 % 30 % 30 % 
Land set-aside 8 % 8 % 8 % 8 % 8 % 8 % 
Forward contract ratio of 
potatoes (harvest 2005) 64 % 48 % 42 % 23 % 10 % 0 % 
Crop mix as share of the total acreage (harvest 2006) 
Winter wheat 87 % 83 % 79 % 72 % 66 % 62 % 
Potatoes 5 % 9 % 13 % 20 % 25 % 30 % 
Land set-aside 8 % 8 % 8 % 8 % 8 % 8 % 
Forward contract ratio of 
potatoes (harvest 2006) 0 % 0 % 0 % 0 % 0 % 0 % 
Number of futures contracts (date of maturity) 
Jan 05 0 0 2 0 1 0 
Feb 05 5 5 3 1 0 0 
Mar 05 3 0 0 0 0 0 
Apr 05 0 0 0 0 0 0 
May 05 0 0 0 0 0 0 
Jun 05 0 0 0 0 0 0 
Jul 05 0 0 0 0 0 0 
Aug 05 2 0 0 0 0 0 

 

Figure 3 depicts the efficient frontier. It can be seen that the use of risk management in-

struments can reduce the loss expectation by 70 %. However, this is achieved only at the ex-

pense of a declining expected profit, where the trade-off becomes less favourable as risk de-

creases. After all it is up to the decision maker to determine which trade-off between expected 

profit and the associated risk is still acceptable. 
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Figure 3: E(x)-LPM1(0)  efficient frontier 

For comparison with the risk-value approach the model is also used to maximise ex-

pected utility (EU) using the negative exponential utility function , where x 

denotes profit and λ is the absolute risk aversion parameter. λ was set to values ranging from 

0.000015 to 0.001 to account for increasing risk aversion. The computed expected profits and 

LPM

xexu λ−−= 1)(

1(0) values for these solutions are plotted in Figure 5 along with the efficient frontier of 

the risk-value model.  

 
Figure 5: Comparison of the E(x)-LPM1(0)  efficient frontier  

with the results of the EU model 
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The graph indicates that at moderate risk aversion the results of the EU model match the 

efficient frontier of the risk-value model. However, at higher degrees of risk aversion accord-

ing to the EU model, the respective solutions become inefficient in terms of LPM1(0). The 

reason for this is that the utility function associated with LPM1 (see Figure 1) can hardly ap-

proximate the exponential function at high degrees of risk aversion. 

4 Conclusions 

If we accept the hypothesis that risk aversion rather than risk indifference is the standard atti-

tude of farmers, then we can conclude from the model results that uncertainty of yields and 

prices significantly influences decision making. Applying risk management instruments ap-

propriately can reduce the income risk considerably. However, finding the right mix of in-

struments is a complex task that requires the support by computerised tools. Risk-value mod-

els, as the one presented in this paper, are intuitively appealing in this context, as the em-

ployed measures (expected value and shortfall expectation) are easily understood by decision 

makers. At moderate degrees of risk aversion the results of the presented risk-value model are 

very similar to those of the more general expected utility approach. At higher degrees of risk 

aversion, however, the approaches yield different results because the LPM1 model cannot ap-

proximate the utility function close enough. Using higher order LPMs might lead to im-

provements, but only at the expense of losing much of the understandability of the risk meas-

ure. 
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