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Abstract.  We present a review of the last few years’ literature on the economic feasibility 

of variable rate technology in agriculture.  Much of the research on this topic has 

involved the estimation of site-specific yield response functions.  Data used for such 

estimations most often inherently lend themselves to spatial analysis.  We discuss the 

different types of spatial analyses that may be appropriate in estimating various types 

yield response functions.  Then, we present a taxonomy for the discussion of the 

economics of precision agriculture technology and information.  We argue that precision 

agriculture technology and information must be studied together since they are by nature 

economic complements. We contend that longer-term, multi- location agronomic 

experiments are needed for the estimation of ex ante optimal variable input rates and the 

expected profitability of variable rate technology and information gathering.  We use our 

taxonomy to review the literature and its results with consistency and rigor. 
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Introduction and Background 

Bullock, Lowenberg-DeBoer, and Swinton (2002) emphasized that for farmers’ demand 

for precision agriculture (PA) technology to grow, future research would have to produce 

two specific types of information.  The first type of research is run long-run, wide-

ranging agronomic experiments to estimate a yield-response "meta-function" revealing 

the relationships between yield, managed inputs, field characteristics, and weather 

variables.  The second type of research is long-run agronomic experiments on particular 

farms.  Over the past five years, a number of research projects have been begun to 

produce both these types of information, principally using spatial econometric techniques 

to estimate crop yield response-to-fertilizer functions.  Current research issues include the 

estimation of the values of information with and without precision agricultural 

technology, the modeling of temporal correlation in spatial data sets, experimental design 

(classical strip trials vs. replicated large block design using spatial statistical analysis), 

and the comparison of spatial lag versus spatial error models.  We review, discuss, and 

critique the current state of the research, emphasizing that precision agriculture 

technology itself greatly lowers the cost of on-farm experimentation, thus shifting out the 

supply-of- information curve, which will result in increased adoption of precision 

agriculture technology. 

Spatial Regression Alternatives 

Classical statistics applied to agronomic and on-farm experiments assume that 

observations are independent.  But in the case of PA data this assumption of 

independence is untenable.  Data from crop yield sensors and soil sensors is almost 

always spatially correlated.  Kessler and Lowenberg-DeBoer (1998) showed that spatial 
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correlation is an issue even when 2.5 acre grid soil sample points (separated by roughly 

330 feet) are used.  When spatial correlation is present field heterogeneity may be 

underestimated, and inferences about crop response to variable fertilizer rates may be 

misleading. 

Spatial dependence occurs when the dependent variable or error term at any 

location is correlated with observations of the dependent variable or error terms at other 

locations (Anselin, 1992).  Regression methods that model spatial correlation have been 

developed in a variety of disciplines (e.g., geography, agronomy, regional economics, 

and geology).  A key difference in these methods is whether spatial relationships between 

observations are best described as discrete or continuous (for details on this distinction, 

see Anselin (1988)).   

Other differences revolve around estimation methods (e.g., OLS, maximum 

likelihood, general method of moments) and how data at different spatial scales are 

combined for analysis.  For example, raw yield data is often available at 5 to 10 feet 

between observations within the pass, and at a header width between passes (10 to 40 

feet) , while soil sample information is often only available from grid sampling (often 

over 300 feet between samples).  In some disciplines interpolated data is used to estimate 

the sparse data layer at the resolution of the dense data layer.  Other disciplines are 

concerned about the spatial patterns that might be introduced by interpolation and prefer 

to aggregate the dense data layers to the resolution of the least dense layer.  This might be 

done by a simple or weighted average of observations in the more dense layers over a 

certain search distance around each data point in the least dense layer.   
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The most common spatial regression techniques are:  (i) a restricted maximum 

likelihood (REML) geostatistical approach (GEO) (Cressie, 1993; Schabenberger and 

Pierce, 2002);  (ii) a spatial regression approach using polygons as discrete units of 

observation (or spatial autoregression, SAR) (Anselin, 1988);  (iii) a polynomial trend 

(PTR) approach (Tamura et al., 1988);  and (iv) a classical nearest neighbor (NN) 

approach first suggested by Papadakis (1937).   

Nearest Neighbor 

Nearest neighbor is the oldest approach to spatial statistical analysis.  Fisher introduced 

randomized complete block designs in the 1920s as a way to deal with spatial 

heterogeneity.  Papadakis (1937) responded to Fisher’s blocking methodology with the 

nearest-neighbor approach (NN).  Brownie et al.  (1993) describe the NN model proposed 

by Papadakis as: 

(1) Yij = µ + t ij + ?zij + eij, 

where Y is yield, µ is the overall mean yield, t ij is the treatment effect, zij is the set of 

nearest neighbor residuals perpendicular to yij, and ? is a slope coefficient of the 

covariance between the residual errors of yield yij and its zij neighbors.  The residual error 

differences are expressed as kijij Yyr ˆ−= , where kŶ  is the overall mean for treatment k.  

The average of the NN residuals for yij is determined as zij = (ri,j-1 + ri,j+1 + ri-1,j + ri+1,j)/4.  

The structure of the NN model as expressed in (1) is that of the familiar ANOVA model 

commonly used to test for treatment differences for on-farm trials.  Equation (1) can be 

generalized into the familiar regression model by inserting the zij into an n x k matrix of 

explanatory variables, X.  This re-specification is important since the primary interest of 

this study is to estimate site-specific yield response to nitrogen (N).  The NN model 
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becomes y = Xß + ?z + e, where the covariance parameter ? is an averaging parameter 

for the neighborhood of residual errors perpendicular to observation yij.  In this modified 

NN model, ? explains the residual error caused by spatial structure.  Equation (1) is 

estimated with OLS.    

Polynomial Trend Regression 

Tamura, et al. (1988) proposed another alternative to modeling spatial dependence by 

inserting a polynomial trend variable (Tij) into the familiar ANOVA model Yij = µ + Tij + 

eij.  This approach is somewhat related to the spatial expansion regression methodology 

that has received attention in urban and regional geography (Anselin, 1988).  A trend 

surface is introduced into the model specification to capture spatial relationships between 

observations.  This approach assumes that omission of spatial dependence is analogous to 

the omitted variable problem in the econometric literature.  The omitted variable problem 

is handled by inclusion of trend variables in ANOVA models.  Like the NN method 

proposed by Papadakis, Tamura et al.’s PTR model was developed to account for 

spatially structured error processes not dealt with by conventional blocking techniques.  

The simultaneous estimation of a polynomial response surface with the regression model 

separates systematic error components caused by spatial dependence from the 

unsystematic portion of eij (Kirk, et al., 1980).  Parameter estimates are derived only with 

respect to remaining random components, the eij.  In effect, addition of a system of 

coordinates relating observation i to j into the familiar regression model y = Xß + e 

expressed in terms of polynomials eliminates the omitted variable problem, assuming the 

trend surface specified by the polynomial expression is the correct specification.  The 
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omitted variable(s) in question would be those that explain spatial structure in error 

residuals. 

The PTR model is specified as 

(2) Yij = µ + t k(ij) + Tij + eij, 

where Y is the yield, µ is the overall mean, t k is the treatment effect, T is a polynomial 

trend, and e is an independent and identically distributed (i.i.d.) random error component.  

The quadratic trend term is estimated as Tij =f 1x + f  2y + f  3x2 + f  4y2 + f  5xy, where f i 

is a slope coefficient for the Cartesian (x, y) coordinate of observation yij.  The (x, y) 

coordinates are expressed as row/column pairs.  That is, the first observation in the first 

row i = 1,…,n and column j = 1, …,m is identified with the coordinates (1,1), and the last 

observation is identified with coordinates (m, n).  Like the NN approach, the PTR method 

was developed for ANOVA of treatment effects controlling for spatial dependence. 

Geostatistical Approach 

Many agronomists have used geostatis tical tools to model crop and soil spatial 

relationships.  Perhaps this is because of the disciplinary links between soil science and 

geology.  Originally, geostatistics was developed to produce maps by interpolation 

between observations.  To facilitate mapping, geostatistics assumes that spatial variability 

is a continuous function of distances modeled by a semivariogram.  Within the 

geostatistical framework inferential testing of the relationships between variables (for 

example, layers in the crop GIS) at a given point has been developed relatively recently.  

Cressie (1993) introduced the REML-geostatistical approach.  Little, et al. (1996) and 

Schabenberger and Pierce (2002) elaborated upon this approach, which entails estimating 
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empirical semivariograms, and then using semivariogram parameter estimates as priors in 

a regression model to characterize spatial correlation between observations. 

The semivariogram is the backbone of the REML-geostatistical regression model.  

The semivariogram parameters (range, nugget, and sill) are estimated and then used as 

priors to model the regression covariance matrix.  The regression model is estimated with 

the familiar model y = Xß + e, but spatial covariance (R) is modeled through R = Var(e), 

where Var(e) = I s n
2 + s s

2F, F is an N x N matrix whose i,j-th element is characterized by 

a distance decay function, and s n
2 and s s

2 are nugget and sill semivariogram estimates 

(Little, et al., 1996).  The REML parameter estimates are estimated generalized least 

squares (EGLS) estimates adjusted for spatial autocorrelation.   

Discrete Spatial Regression 

The discrete spatial regression approach assumes that spatial dependence is a relationship 

among discrete observations, or polygons.  Spatial structure may be found in either the 

dependent variable (e.g., yield) or in regression residuals.  Spatial structure is modeled 

assuming that the dependent variable or residuals are a function of a weighted average of 

neighboring observations.  This approach has been used extensively in epidemiology, 

geography, and regional economics.  In agriculture the structure of the data is similar, but 

the polygons are often soil types or management zones instead of states, counties, 

districts, or neighborhoods.  This approach uses polygon data, enabling the simultaneous 

maximum likelihood estimation of the spatial structure and the relationships between GIS 

layers. 

A spatial weights matrix is constructed to identify neighbors in a dataset.  The 

matrices are designed to incorporate processes such as gravity, entropy, or decay into 
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regression models (Anselin, 1988).  Data arranged in regular rectangular lattices are 

defined using three criteria:  bishop, rook, or queen.  These classes describe the level of 

contiguity, or common boundaries, between polygons.  In spatial terms, contiguity is 

defined as a function of the distance that separates one cell from another.  Blocks 

belonging to the same neighborhood share the same weight, and the composite of 

neighborhoods covering the entire grid defines the spatial weights matrix.  This matrix 

(W) is an N × N, positive definite matrix with elements wij, with zeroes along the 

diagonal.  Before spatial weights matrices are used to estimate spatial effects in 

regression models, they are row-standardized.  This facilitates comparison of spatial 

characteristics across neighborhoods.  Each element in a row is divided by the row sum.   

Anselin (1988) identifies two general patterns whereby spatial dependence may 

manifest itself in regression analysis: spatial lag and spatial error.  If spatial error 

processes are ignored, OLS estimates are inefficient, but remain unbiased.  If spatial lag 

processes are ignored, then OLS estimates are inconsistent and biased.  For lag processes, 

the modified regression model becomes y = ?Wy +Xß + e; with ? as the autoregressive 

moving average parameter for neighboring yj’s.  The spatial error model is specified as y 

= Xß + e with e = ?W e + u, where u represents well-behaved, non-heteroskedastic, 

uncorrelated errors.  The ßi’s are EGLS estimates corrected for spatial autocorrelation. 

 

A Taxonomy  

Ruffo et al. (2006) present a taxonomy for the discussion of the economics of precision 

agriculture and information, which builds upon the ideas presented in Bullock and 
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Bullock (2000) and Bullock, et al. (2002) by modeling information.  Here we briefly 

present that taxonomy.  We refer the reader to Ruffo et al. (2006) for details.    

Response Functions 

Model crop yield y on any small, uniform piece of ground as a function of a managed 

inputs x = (x1, … , xJ), unmanaged spatially dependent field characteristics c = (c1, … , 

cK), and unmanaged time-dependent variables (z = (z1, … , zL):  

(3) y = f x, c,z( ). 

We refer to z as “weather,” though pest infestations and other variables may be included. 

Function f(x, c, z) is nature’s meta-response function. 

Subdivide a producer’s field into sites, indexed s = 1, … , S.  We assume that each 

site is small enough so that the characteristics vector c takes on the same value 

everywhere on a site.  Let ck
s be the level of characteristic k ∈ {1, … , K} at site s ∈ {1, 

… , S}.  Then cs = (c1
s, …, cK

s) be the vector of characteristic levels of site s, and c´ = (c1 

, … , cS) is the entire field’s characteristics map.  Let xs = (x1
s, …, xJ

s) be the vector of 

management inputs used on site s.  Then x´ = (x1 , … , xS) is the entire field’s 

management map. 

The site-specific response function at site s is a function of managed inputs and 

weather: 

(3) f s x,z( )≡ f x, cs , z( ), s ∈ 1,..., S{ }. 

The map of site-specific response functions is f 1 x, z( ),..., f S x, z( )( ).  Should cs be the 

same at every site in the field, then there exists a field-specific response function ffield(x, 

z) ≡ f1(x, z) ≡ … ≡ fS(x, z).  
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Assume that weather is not spatially variable within a field in a given year t, and 

let zt denote the field’s weather in year t.  The site-and-year-specific response function at 

site s in year t is a function of managed inputs: 

(4) f s,t x( )≡ f x,cs , z t( ), s ∈ 1,..., S{ }. 

The map of site-and-year-specific response functions in year t is f 1,t x( ),..., f S,t x( )( ).  

The term climate and the function h(z) denote nature’s joint probability density 

function of weather on the field.  Let H denote the support of h(z).  Assume that the 

producer knows the climate of his field, though before he makes decisions he may not 

know the weather, which is the draw to be taken from the climate. 

States of Nature and Information-and-Technology Structures without Noise 

In general, when he makes decisions in year t, the producer does not know his site-and-year 

specific response function map with certainty.  Nor does he know with certainty what the 

weather will end up being during the growing season.  Rather, he lacks information.  We 

refer to Laffont (1990, chapter 4) to formalize what we mean by information.  (Our 

presentation here will be very brief.  Details are provided in Ruffo, et al. (2006).)  Let  Ω = 

ω1,ω2 ,...,ωN{ } be our model’s set of states of nature, defined as the set of all conceivable 

site-and-year specific response function maps.  For simplicity we assume that there are a 

finite number N states of nature, though N may be very large.  Following Laffont (1990), 

any partition of Ω is an information structure without noise.  For example, if the farmer 

faces the partition ω1,ω3{ }, ω2 ,ω4 ,...,ωN{ }{ }, it is as if he has hired an expert who will 

give exactly one of two responses: when the true site-and-year-specific response function 

map is in ω1,ω3{ } the expert will tell him so, and if the true site-and-year-specific response 
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function map is in ω2 ,ω4 ,...,ωN{ } the expert will tell him so.  Another expert might 

partition Ω more finely, say providing information structure ω1,ω3{ }, ω2{ }, ω4 ,...,ωN{ }{ }, 

meaning that if the true production map is in ω1,ω3{ }, the producer will be told, if it is ω2  

the producer will be told, and if it is in ω4 ,...,ωN{ }, the producer will be told.   

We define an information-and-technology structure as an ordered pair, with the first 

element being an information structure, and the second element being a technology level.  

There are several information-and-technology structures assumed in the literature. They 

can be efficiently denoted using the form (Φδ,η,σ, τ), with δ ∈ {ante, post}, η ∈ {exp, 

noexp}, σ ∈ {STAN, REML, SAR-ERR, SAR-LAG, SAR-GEN, PTR, NN, NULL}, and τ 

∈ {URT, VRT}.  Here δ denotes whether production decisions are made ex ante or ex post, 

η denotes whether a site-specific agronomic experiment is run to gather data, σ represents 

the technique that was used to estimate the response function (either the standard OLS 

approach (STAN), the restricted maximum likelihood geostatistical approach (REML), the 

spatial autoregressive approach that uses spatial errors (SAR-ERR), etc.), and τ denotes the 

technology, either variable rate or uniform rate, that the producer uses.  For example, 

Φpost,exp,sar-lag, is the set of possible site-specific response function maps when the weather is 

known before management decisions are made (so decisions are made ex post), an 

agronomic experiment has been run, and the data from the experiment have been analyzed 

using spatial lag techniques.  Similarly, Φante,noexp,null, is the set of possible site-specific 

response function maps when the weather is not known before management decisions are 

made (so decisions are made ex ante), no agronomic experiment has been run (so perhaps 

the producer follows university-recommended managed input rates), and since there is no 
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experiment, then there is no data from the experiment to analyze, so σ = null.  The 

economically optimal management map will depend on the information and technology 

structure, and so is denoted x´*(Φδ,η,σ, τ) =  (x1*(Φδ,η,σ, τ), … ,xS*(Φδ,η,σ, τ)).  The studies in 

the literature generally assume that the producer’s objective is to maximize expected 

profits.  (If decisions are made ex post, then there is no uncertainty in the model, and 

expected profits are simply profits.)  Letting p denote the output price, total optimal 

expected revenues on the entire field are R*(Φδ,η,σ, τ) = pf s,σ xs * Φδ ,η,σ ,τ( ),z( )
s =1

S

∑ h z( )
H
∫ dz .  

Letting w = (w1, . . . , wJ) denote managed input prices, optimal managed input costs for the 

entire field are Cx
*(Φδ,η,σ, τ) = wxs* Φδ,η,σ ,τ( )

s =1

S

∑ .  In some studies, the costs of employing 

the technology employed, Cτ, and the costs of running the experiment and analyzing the 

data, Cσ, are modeled.  Optimized expected profits are Π*(Φδ,η,σ, τ) = R*(Φδ,η,σ, τ) - 

Cx
*(Φδ,η,σ, τ) - Cτ, - Cσ.  Optimized expected gross margins over application costs of a 

particular input, say input j, are GMj
*(Φδ,η,σ, τ) = R*(Φδ,η,σ, τ) - w jx j

s * Φδ ,η,σ ,τ( )
s =1

S

∑ . 

 

Using the Taxonomy to Review Recent Literature on the Value of Variable Rate 

Technology and Information 

Peone, et al. (2004) have provided a detailed review of the literature on the profitability of 

precision agriculture up through the year 2003.  In the following, we will update that 

review, using our taxonomy freely for brevity, clarity, and rigor. 

Anselin, Bongiovanni, and Lowenberg-DeBoer (2004) 
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Anselin, Bongiovanni, and Lowenberg-DeBoer (ABL) (2004) wanted to find a low-cost 

technique providing evidence of spatial heterogeneity in a field that can lead to more 

efficient estimation of site-specific response functions.  As an inexpensive alternative to 

plugging estimated site characteristics cs and the year’s weather zt into an estimate of 

nature’s meta-response function f(x, c, z) to obtain estimated site-and-year-specific 

response functions f(x, cs, zt) ≡ fs,t(x), they used different landscape positions to define sites 

for which they directly estimated site-and-year specific yield response functions fs,t(x) from 

experimental data.  

ABL examined the spatial error model and the spatial lag model, and deemed the 

former superior for their data.  They argued that many characteristics that affect yield 

response to managed inputs, such as subsoil characteristics, vary spatially.  But when such 

characteristics are unobserved, their contribution to yield variation is subsumed in the error 

term, and therefore the error term should display a spatial pattern.  They described their 

spatial error model (SAR) as a “spatial regimes model with spatial autoregressive error 

term as well as groupwise heteroskedasticity” (p. 682). 

ABL assumed throughout their welfare analyses that the SAR model perfectly 

estimates site-specific response functions.   They employ three information structures.  All 

three are ex post information structures (that is, the producer is assumed to have no 

uncertainty about what the yield response functions are, even though he may be wrong 

about them).  Under information structure Φpost,exp,sar-err the producer knows the estimated 

parameters from the SAR model, and believes that the SAR model perfectly estimates site-

specific response functions.  Under information structure Φpost,exp,stan the producer believes 

that the standard model perfectly estimates the site-specific response functions.  Under 
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information structure Φpost,noexp,null the producer believes that the economically optimal N 

rate is the university-recommended rate.   

ABL stated (p. 675) their specific objectives to be the following.  

1) “To analyze the potential value of spatial econometrics in the 

estimation of site-specific crop N responses from yield monitor data.”   

That is, in terms of our taxonomy, they wished to estimate [Π*(Φpost,exp,sar-err,, URT) - 

Π*(Φpost,exp,stan, URT)] and [Π*(Φpost,exp,sar-err,, VRT) - Π*(Φpost,exp,stan, VRT)]. 

 2)  “[t]o estimate the profits from site-specific N management using the 

yield responses estimated from both spatial and non-spatial models.”   

That is, in terms of our taxonomy, they wished to estimate [Π*(Φpost,exp,sar-err,, VRT) - 

Π*(Φpost,exp,sar-err, URT)] and [Π*(Φpost,exp,stan, VRT) - Π*(Φpost,exp,stan, URT)]. 

3) “[t]o compare profits from site-specific N management using crop 

response functions with uniform rate management and VRT management 

strategies.”   

That is, in terms of our taxonomy, they wished to estimate [Π*(Φpost,exp,sar-err,, VRT) - 

Π*(Φpost,noexp,null, URT)] and [Π*(Φpost,exp,sar-err,, VRT) - Π*(Φpost,noexp,null, VRT)]. 

To pursue these objectives, ABL conducted a one-year, one-field agronomic 

experiment in Córdoba, Argentina, gathering data on corn yield response to nitrogen 

fertilizer.  They varied nitrogen fertilizer rates in their experiment, and applied all other 

managed inputs at conventional levels.  Their experiment was set up with three repetitions 

of six N rates in each of four landscape positions (sites).  For each of various models and 

econometric methods, they estimated four site-and-year specific response functions, 

assuming a quadratic functional form:  f s,σ N s, j( )= α s,σ + β s,σ N s, j + γ s,σ Ns , j
2 + εs,σ , where s 
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is the site index (s = Slope W, Hilltop, Slope E, Low E, or s = 1, 2, 3, 4), j is the repetition 

index, Ns,j is the amount of nitrogen fertilizer applied in replication j on site s, σ is the 

index of the model/econometric method, and εs,j is the error term for that observation.  For 

the various models/econometric techniques σ, they calculated ex-post site-specific 

economically optimal N rate maps, N*(Φpost,exp,σ,, VRT), N*(Φpost,exp, σ,, URT).  They used a 

university-recommended rate for N*(Φpost,noexp,null,, URT).  Principally, they estimated the 

model using standard (OLS) and SAR specifications (their results are shown in their table 

1, p. 682).  They also conducted sensitivity analysis by using twelve different combinations 

of model specification, spatial weights, and estimation techniques.  In all cases, they 

obtained the same main result that SAR models estimated higher returns from VRT greater 

than the $6 ha-1 that the authors used as a benchmark for VRT application costs. 

They used net revenues per ha for the producer utility function.  In their table 2 (p. 

684), they reported the difference in net revenues per ha when a profit-maximizing 

producer using uniform rate technology uses the spatial error model instead of the standard 

model to estimate the response function map.  Put in terms of our taxonomy, they reported 

[Π*(Φpost,exp,sar-err,, URT) - Π*(Φpost,exp,stan, URT)] = $2.62.  Similarly, they reported the 

difference in net revenues per ha when a profit-maximizing producer using variable rate 

technology uses the spatial error model instead of the standard model to estimate the 

response function map:  [Π*(Φpost,exp,sar-err,, VRT) - Π*(Φpost,exp,stan, VRT)] = $4.78. 

Since spatial regression provides better estimations of response functions that do 

standard OLS methods, the results above illustrate the argument made in Bullock and 

Bullock (2000) and in Bullock, Lowenberg-DeBoer, and Swinton (2002) that information 

and variable rate technology are economic complements:  switching from uniform to 
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variable rate technology increases the value of obtaining better information from $2.62 ha-1 

to $4.78 ha-1.  The implication is that when we lower the marginal costs of obtaining 

information (shift the information supply curve out), we in turn shift the schedule of 

marginal value product of variable rate technology—we shift the VRT demand curve out.  

This implies that spatial econometrics may play a role in increasing the adoption of 

variable rate technology. 

 

Ruffo, et al. (forthcoming) 

The objectives of the Ruffo, et al. (forthcoming) were to develop site-and-year-specific 

corn yield response functions for variable fertilization, and to determine the characteristic 

variables affecting corn response to N fertilizer.  The authors conducted agronomic 

experiments on eight different commercial production fields (four in 2002 and four in 

2003).  Fields were divided into 13 to 20 sites, each composed of five plots. Each plot 

received one N fertilizer rate.  Five fertilizer rates were applied, two below the University 

of Illinois recommended rate, one at that rate, and two above that rate.   

Site-and-year-specific response functions were estimated by multiple regression 

maximum likelihood procedures.  Model development started with a second-degree 

polynomial for N fertilizer rate, and then the characteristic variables were added starting 

with the variable that had the largest correlation with yield.  Once a characteristic was 

allowed into the model, its interaction with the linear term for N fertilizer rate was tested.  

If significant, its interaction with the quadratic term for N fertilizer was also tested.  

Characteristic variables included in the regressions were primary and secondary 

terrain attributes, and the Illinois Soil Nitrogen Test (ISNT).  Nitrogen fertilizer 
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significantly increased corn yield.  The ISNT characteristic variable interacted with N 

fertilizer in most fields.  In general, parameter estimates indicated that well drained areas 

(i.e. small specific catchment area, moderate slopes) had higher yields and responded less 

to N fertilizer than did poorly drained areas.  The authors stated that these results indicate 

that terrain attributes as proxies for soil water content and the ISNT as a measure of soil 

mineralizable nitrogen are site-specific characteristics that affect corn yield and its 

response to N fertilizer.   

The spatial structure of the regression model was tested with a likelihood-ratio test 

between the spatial covariance model and an independent error model, with the same 

variables included in the fixed effect.  Normality and homoskedasticity of the errors were 

assessed. 

In both years and in all fields, the response of corn yield to N fertilizer was 

quadratic and N fertilizer interacted with at least one site-specific characteristic. 

The authors state that their results indicate that ISNT has a spatial structure that will 

allow mapping with a relatively sparse grid (approximately a 1 ha grid), that the soil 

samples for ISNT would not need to be collected every year but rather every 4 or 5 and 

that therefore ISNT is a suitable soil test for VRN. 

 

Ruffo, et al. (2006) 

Ruffo et al. (2006) used the estimated response functions reported in Ruffo et al. 

(forthcoming) to conduct economic analysis.  Specifically, their aims were to estimate for 

each field i) the ex-ante optimal uniform application rate with site-specific experimental 

information, Nfield*(Φante,esp ,sar-err, URT);  ii) the ex-ante optimal uniform application rate 
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without site-specific experimental information, Nfield*(Φ ante,noexp,null, URT); iii) the ex-ante 

optimal variable application map with site-specific experimental information, 

Nfield´*(Φante,esp ,sar-err, VRT) ;  iv) the value of site-specific information with URT, 

[Π*(Φante,exp,sar-err,, URT) - Π*(Φante,noexp,null, URT)];  v) the ex-ante value of VRT given 

site-specific information, [Π*(Φante,exp,sar-err,, VRT) - Π*(Φante,exp,sar-err,, VRT)];  and vi) the 

ex-ante combined value of site-specific information and of VRT, [Π*(Φante,exp,sar-err,, VRT) 

- Π*(Φante,noexp,null, URT)].   

Ruffo et al. (2006) estimated ex ante values by including weather variables in 

their response function estimates, and then using historical weather data in a simulation. 

Their data came from farms in two different counties over two years, and they used it to 

estimate what they called “county meta-response functions,” f1(x, c, z) and f2(x, c, z).  In 

their regressions the vector of managed variables x had a single element, N.  Vector c had 

as elements the topographical attributes and the ISNT variable.  Initially, precipitation 

amounts in each month of the calendar year made up the elements of z.  Then for each 

field they obtained site-specific response functions by inserting the site-specific 

characteristics c into the estimated county meta-response function, as in equation (3).  

They state that because of the small number of years in their experiment, they assumed 

the quadratic functional form in their regressions. 

Ruffo, et al. (2006) reported that their experiments and analysis implied an 

average (across the eight fields) value of site-specific information under uniform rate 

technology was  [Π*(Φante,exp,sar-err,, URT) - Π*(Φante,noexp,null, URT)] = $0.28 ha-1. The 

average value of site-specific information under variable rate technology was 

[Π*(Φante,exp,sar-err,, VRT) - Π*(Φante,exp,sar-err,, VRT)] = $ 1.90 ha-1 and ranged from $0.57 
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ha-1 to $4.86 ha-1 among fields  Finally, the average ex-ante value of site-specific 

information and of VRT was [Π*(Φante,exp,sar-err,, VRT) - Π*(Φante,noexp,null, URT)] = $2.16 

ha-1, and ranged from $0.67 ha-1 to $5.11 ha -1. 

Ruffo, et al. (2006) state that their results predict that while VRT would not be 

profitable in every field, there was enough variability in most fields for VRT to be 

profitable.  Most of the value of site-specific information and of VRT was provided by 

VRT, since the value of site-specific information was very small for all their fields. This 

is the case even though VRT would be useless without the site-specific information and 

the meta-response functions that relate site-specific characteristics, N rate weather, and 

corn yield. 

 

Liu, Swinton, and Miller (2006) 

Liu, Swinton, and Miller (LSM) (2006) ran agronomic experiments to study corn yield 

response to N fertilizer rates in Michigan.  Their experiments were typically run on forty 

acres, and took up eight fields in 1999, nine fields in 2000, and seven fields in 2001. Their 

unbalanced panel data set represented “a longer time series and wider cross section than 

any research published to date” (p. 472).  They included both site characteristics and 

weather variables in their data, providing the temporal and spatial variability necessary for 

simulating profitability of ex ante site-specific application rates.  (Almost all other studie s 

have only examined ex post rates, though ex ante rates are more appropriate for decision 

makers.)  The characteristic variables they attempted to measure were organic matter, 

cation exchange capacity, electrical conductivity (a proxy for potential soil moisture), water 
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availability (with a soil wetness index variable as its proxy), and sunlight reception (with an 

index of topological variables as its proxy).   

LSM tried three functional forms for their response function estimates:  the 

quadratic, the von Liebig linear-plateau, and the von Liebig quadratic-plateau.  Conducting 

statistical inference, they could not reject the quadratic functional form, and so conducted 

their economic analysis under the assumption that the yield response functions were 

quadratic.  They ran their regressions using OLS, the spatial error model, the spatial lag 

model, and the general spatial model.  Similar to ABL, LSM found that coefficient 

estimates under OLS “did not differ significantly from the spatial models estimated” (p. 

477), but that the coefficient standard errors were significantly reduced by the spatial 

models when compared to OLS (p. 478).   

LSM (2006) statistically examined three questions:  (1) whether corn yield responds 

to N fertilizer, and whether any such response varies by site;  (2) whether corn yield 

response to N fertilizer varies across seasons;  and (3) whether, if a predictive model of 

yield response can be developed, the site-specific N fertilizer management is likely to be 

profitable.  They addressed these questions within a framework of expected profit 

maximization, taking into account the costs of gathering information via experimentation, 

and the costs of hiring variable rate technology equipment.  They rejected the hypothesis 

that corn yield did not respond to N fertilizer, they rejected the hypothesis that site 

characteristics did not interact with N fertilizer (these results were especially strong in 

years in which water was not a limiting factor), and they concluded that yield response 

does vary by site.  However, they concluded that while yield response varies by site in 

some years, it does not do so in a consistent manner across years, and nor is the effect of 
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individual variables consistent across years.   But they also stated that their results 

supported the conjecture when water is not a limiting factor, yield response to N did not 

change over seasons.   

LSM tested the hypothesis that site-specific research (under various econometric 

techniques) and variable rate N fertilizer application togethe r are more profitable than is 

uniform rate application.  To do this, they ran Monte Carlo simulations, assuming that the 

coefficients of their estimated response functions followed a multivariate normal 

probability distribution with their estimated mean va lues and the corresponding covariance 

matrix.  Then they bootstrapped confidence intervals for the simulated profits.  With their 

simulations they were able to estimate ex ante economically optimal N fertilizer rates for 

each field.  They examined five N management strategies in particular:  (1) running 

experiments to gather site-specific data, analyzing the data with the general SAR methods, 

and using this information to obtain the site-specific ex ante optimal N application map 

N´*(Φante,exp,sar-gen,, VRT);  (2) running experiments to gather site-specific data, and 

analyzing the data with the general SAR methods to obtain the uniform rate ex ante optimal 

N application map N´*(Φante,exp,sar-gen,, URT);  (3) forgoing experimentation, and instead 

relying on recommended area-wide N fertilization rates to derive the ex ante optimal 

uniform rate application map given no site-specific information N´*(Φante,noexp,null,, URT); 

(4) running experiments to gather site-specific data, analyzing the data with standard OLS 

methods, and using this information to obtain the site-specific ex ante optimal N 

application map N´*(Φante,exp,stan,, VRT);  and (5) running experiments to gather site-specific 

data, and analyzing the data with standard OLS methods to obtain the uniform rate ex ante 

optimal N application map N´*(Φante,exp,stan,, URT).  They also calculated the corresponding 
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expected gross margins over N application costs: GMN
*(Φante,exp,sar-gen,, VRT), 

GMN
*(Φante,exp,sar-gen,, URT), GMN

*(Φante,noexp,null,, URT), GMN
*(Φante,exp,stan,, VRT), and 

GMN
*(Φante,exp,stan,, URT).   

In table 6 of p. 481, for each of their eight fields LSM list the bootstrapped 80% 

confidence intervals for the following differences in gross expected margins over N 

application costs: [GMN
*(Φante,exp,stan,, VRT) - GMN

*(Φante,exp,stan,, URT)], [GMN
*(Φante,exp,sar-

gen,, VRT) - GMN
*(Φante,exp,sar-gen,, URT)], [GMN

*(Φante,exp,stan,, VRT) - GMN
*(Φante,noexp,null,, 

URT)], and [GMN
*(Φante,exp,sar-gen,, VRT) - GMN

*(Φante,noexp,null,, URT)].  They conclude that 

in no instances does the difference in gross margins exceed the $5 per acre cost of variable 

rate application of nitrogen fertilizer.  That is, even if running the experiments and 

analyzing the data were costless so that nitrogen fertilizer could be applied optimally, it still 

would not pay to adopt variable rate technology on any of the eight field-years in the study.  

Moreover, one could gather no more information, but rather rely on the tri-state 

recommended algorithm with URT, and still make more money than if one were to gather 

the information and pay for VRT. 

 

Kahabka, et al. (2004) 

Kahabka, et al. (2004) conducted agronomic experiments on a 12 ha field in central New 

York in 1998, 1999, and 2000.  Nitrogen fertilizer, tillage me thod, and rotation were the 

managed inputs varied in the experiment.  Maize was the output.  Other management inputs 

were applied at conventional levels.  The pre-sidedress soil nitrate test (PSNT) was used to 

measure the characteristic variable.  Each site received a base application of 50 kg ha-1, and 

then later sidedress applications of 0, 60, 110, and 170 kg ha-1 were applied.  The authors 
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did not attempt to estimate yield response functions, but instead averaged the observations 

in each year-tillage-rotation-N-rate, and then used ANOVA to test whether profits differed 

significantly among N-rates in each year-tillage-rotation.  They assumed a nitrogen price to 

maize price ratio of 0.2.  The value of the ex post economically optimal N rate varied 

greatly among years, and rotation affected the optimal N rate only in the dry year 1999.  

They concluded that “the lack of year-to-year consistency in N response, in terms of the 

field average and spatial structure, indicate that appropriate site-specific rates cannot be 

predicted with reasonable accuracy” (p. 473), and “The poorly spatial structures of both 

PSNT and profit response to N make the site-specific application of N impractical” (p. 

474).  They also concluded that the PSNT results could not be simply applied to 

determined site-specific management practices, and that yield potential in itself was not a 

strong predictor of ex post optimal N rates. 

 

Ehlert, Schmerler, and Voelker (2004) 

Ehlert, Schmerler, and Voelker (ESV) (2004) attempted to address the high costs that can 

come with measuring characteristics variables c.  They emphasized that the high cost of 

soil sampling may make the value of gathering information and hiring VRT to be less 

profitable than simply following the conventional uniform rate.  (In terms of our notation, 

for any data analysis method σ, [GMN
*(Φpost,exp,σ,, VRT) - GMN

*(Φpost,noexp,null,, URT)] is less 

than the costs of hiring VRT and obtaining the site-specific information.)  To lower the cost 

of gathering necessary information, the authors searched for an inexpensively obtainable 

proxy for the characteristic variables obtained from soil sampling.  In particular, they 

studied whether using a pendulum-meter as an indirect sensor of plant mass could 
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profitably provide sufficient informa tion about nitrogen fertilizer application rates.  Soil-

based nitrogen was the characteristic variable for which they attempt to use plant mass as a 

proxy.  Knowing the soil-based nitrogen map gives the producer important information 

about how to more profitably apply nitrogen fertilizer.  The authors theorized that in parts 

of the field with low plant growth there was stress from lack of water, and therefore plant 

roots could not absorb well the fertilizer applied. 

ESV (2004) ran agronomic experiments to examine the response of winter wheat to 

nitrogen fertilizer in three fields: one field in 2000, and two other fields in 2001.  The value 

of the plant mass index obtained ranged from 18 to 58.  They report having used 7 kg N 

ha-1 of calcium-amonium-nitrate (CAN) fertilizer on the parts of the fields with the sparsest 

plant mass, and they used 68 kg N ha-1 of CAN on the parts of the fields with the densest 

plant mass.1  Their results were that in two of the three site-years their site-specific 

management algorithm resulted in increased yields and decreased N fertilizer application 

than did the conventional application of nitrogen fertilizer at a uniform rate.  In another 

site-year their site-specific management algorithm led to decreased yields and decreased N 

fertilizer application.  Clearly, in the two fields in which yields rose and N application fell, 

the gross margin of the authors’ method exceeded that of the conventional practice: 

GMN
*(Φpost,exp,σ,, VRT) > GMN

*(Φpost,noexp,null,, URT).  Unfortunately, the authors do not 

attempt to report whether this increase in the gross margin was greater than or less than the 

costs of hiring VRT and obtaining the site-specific information.  Therefore the implications 

                                                 
1 The authors do not state the specific formula used to determine the nitrogen application 
rate for each plant mass index value.  They do mention that it was “stepwise linear 
adjusted according to measured pendulum angle.  The maximum and minimum rates 
were determined by the agronomist of the farm” (p. 265).”  The authors do not offer an 
explanation for why this formula was used. 
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of their research for the economic feasibility of variable rate technology remains unclear.  

Nor is it clear that that the nitrogen rates given by their algorithm were economically 

optimal.  Additionally, the authors point out that the years of their study were very dry.  

Since their analysis is ex post, the results can only be used to interpret the yield and profit 

effects of their methods in unusually dry years.  Since no attempts are made to deal with 

the weather variables z, their results cannot be used to make general inferences about 

nitrogen fertilizer management. 

 

Berntsen, et al. (2006) 

Berntsen, et al. (2006) ran a total of nine one-year agronomic experiments in nine fields in 

Denmark and used the data to estimate nine field-and-year-specific winter wheat response 

functions, fi(x, c) for i = 1, . . . , 9.  Some of the experiments were run in 2001, some in 

2002, and the rest in 2003.  Nitrogen fertilizer was the managed input they varied in the 

experiments;  other managed inputs were applied at conventional rates uniformly 

throughout the sites. Three functional forms were examined with each being the sum of 

three functions:  (i) a function of N fertilizer applied (assumed to be either quadratic, 

linear-plus-exponential, and Mischerlich;  (ii) a quadratic function of one or two of the 

characteristics variables; and (iii) a polynomial function of the interactions between N 

fertilizer applied and the characteristics variables.  After examination of the estimations 

using each of the three forms in (i), the authors settled on using the quadratic, implying tha t 

yield response in field i took the functional form: 

(5) f i N , c( )≡ α N 2 + β + φc + γc2 + ηc3( )N + χ i +δic+ ε ic
2 . 
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Coefficients α, β , φ, γ, and η were constrained to be equal for all fields, and thus are not 

subscripted by the field index i in (5).  Coefficients χi, δ i, and ε i were estimated for each 

field.  The authors estimated (5) seven times for each field, letting c be each of the 

following in turn: the ratio vegetation index (RVI), the Yara Biomass, and the soil apparent 

electrical conductivity (ECa), which were characteristics measured by sensors; and 

topographic characteristic variables height, slope, solar insolation index (SII), and aspect.  

All estimations were conducted using the general linear model (GLM).  Spatial regression 

methods were not used. 

Using their field-specific response functions, the authors obtained estimates of site-

specific response functions by measuring the value of the characteristics variable c in site s 

of field i, and inserting it into the field-specific response function: 

(6) f field, s N( )≡ f field N ,c field ,s( )≡ αN2 + β + φc field, s + γ c field,s 
2

+ η c field, s 
3( )N +  

 χi + δ i c field ,s  + ε i c field,s 
2
,  for field = 1,..., 9,  and for s = 1,...,S. . 

Using (6), the authors used OLS to estimate N*(Φpost,exp,stan,, VRT), the ex post 

economically optimal site-specific N-rate for each site on each field, as that rate that 

maximized revenues minus nitrogen fertilizer costs.  They also addressed the question of 

how to maximize yield by redistributing N fertilizer among a field’s sites without 

increasing the total amount of N fertilizer used in the original experiment. 

The authors concluded that benefits derived from using their algorithms were not 

large enough to offset the extra expenses of running the experiments and hiring the 

variable rate technology. They write, “The . . . benefits resulting from using the 

algorithms described were too small . . . to warrant their application in practice.  The 
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limited benefits are due to the limited capability of the currently available sensors to 

predict yield at harvest” (p. 80).  In terms of our notation, this can be written 

Π*(Φpost,exp,σ, τ) = R*(Φpost,exp,σ, VRT) – CN
*(Φpost,exp,σ, VRT) – CVRT, - Cσ. < 

Π*(Φpost,noexp,null, URT) = R*(Φpost,noexp,null, URT) – CN
*(Φpost,noexp,null, URT) – CURT, - Cnull, 

which implies GMN
*(Φpost,exp,σ, VRT) - GMN

*(Φpost,noexp,null, URT) < [CVRT, + Cσ.] – [CURT, 

+ Cnull]. 

 

Hurley, Oishi, and Malzer (2005) 

Hurley, Oishi, and Malzer (HOM) (2005) used data from agronomic experiments on corn 

yield response to N fertilizer conducted on 4.5 ha areas in two fields in Minnesota in 1995.  

They estimate site-and-year-specific response functions fs,t(x) by imposing a rectangular 

grid on each field, and delineating the grid cells as sites.  They made no attempt to 

incorporate characteristic or weather variables (c or z) in their estimations.  Within the 4.5 

ha areas were six replications with six treatments each in a randomized complete block 

design.  The treatments ran the length of the 4.5 ha areas, and were randomized between 

but not within strips.  HOM noted that Lambert, Bongiovanni, and Lowenberg-DeBoer 

(2002), used both a geostatistical model to deal with spatial correlation and a spatial 

econometric model to deal with spatial correlation and site heteroskedasticity.  Lambert, 

Bongiovanni, and Lowenberg-DeBoer (2002) concluded that the spatial model best 

represented the data from their agronomic experiment in Argentina.  The purpose of the 

Huley, Oishi, and Malzer (2005) paper was to present a spatial autoregressive error (sar-

err) model incorporating site, treatment, and strip dependent heteroskedasticity and 
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correlation, to estimate site-specific response functions, and then to compare their results to 

earlier results from application of a geostatistical (geo) model to the same data.   

Hurley, Oishi, and Malzer (2005) assumed quadratic functional forms for their yield 

response functions.  They investigated the importance of incorporating site, treatment, and 

strip effects in their response function estimation by estimating five nested models and 

comparing them using a likelihood ratio statistic.  They concluded that yield response to N 

fertilizer varied considerably among sites in each field, and that the group-wise 

heteroskedastic SAR model performed better than the regular SAR model and the GEO 

model.   

Using both the SAR and the GEO models, Hurley, Oishi, and Malzer (2005) 

estimated site-specific ex post optimal variable and uniform application rates, and 

estimated the ex post value of variable rate technology given site-specific information: 

Π*(Φpost,exp,σ, VRT) - Π*(Φ post,noexp,null, VRT) for σ = SAR, GEO, and the ex post value of 

site-specific information under uniform rate technology: Π*(Φpost,exp,σ, URT) - 

Π*(Φpost,noexp,null, URT) for σ = SAR, GEO.  They also report the total value of va riable rate 

technology and site-specific information combined: Π*(Φpost,exp,σ, VRT) -- Π*(Φpost,noexp,null, 

URT).  (They assumed that without site-specific information, the producer would apply N 

at the standard recommended rate.)  They concluded that in both of their fields the 

estimated value of Π*(Φpost,exp,σ, VRT) - Π*(Φpost,noexp,null, URT),was less than the costs of 

hiring variable rate technology.  Their GEO model implied that in one of their fields, they 

could not reject at a 10% level of statistical significance the hypothesis that the value of 

Π*(Φpost,exp,geo, URT) - Π*(Φpost,noexp,null, URT), was greater than the cost of obtaining the 

site-specific information.  Their SAR model did not lead to the same conclusion.  
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Shanahan, et al. (2004) 

Shanahan, et al. (2004) conducted agronomic experiments in Colorado in 1997, 1998, and 

1999 and estimated eighteen field-and-year-and-hybrid-and-yield-potential-specific yield 

response functions of corn to plant density.  They also pooled their data, then estimated two 

hybrid-specific response functions of corn yield to plant density.  Their regression method 

was standard OLS, and they assumed quadratic functional forms throughout.  In conducting 

their agronomic experiments, Shanahan et al. (2004) used as treatments a factorial 

combination of two hybrids (early maturing and late maturing) and four plant densities.  To 

identity management zones, they sorted their data into low- medium- and high-yield areas.  

They estimated plant density response curves for each management zone and each hybrid, 

assuming a quadratic functional form.   

In addition to estimating corn response to plant density, the authors incorporated in 

their analysis nine characteristic variables or proxies of characteristics variables, including 

elevation, slope, soil brightness (red, green and blue bands of images), electrical 

conductivity (shallow and deep readings), pH, and soil organic matter.  They write that 

because, unlike Bullock and Bullock (1998), they used inexpensively obtainable proxies 

(“indirect measures”) for characteristics variables, that it is important to examine whether 

variable rate plant density might be economically feasible in the Great Plains.  They did not 

model in their regressions yield as a function of characteristic variables or weather 

variables, but rather examined the effects that characteristics variables had on yield 

differences between field-years.   
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To examine the importance of the impacts of the various characteristics variables on 

yield variation between field-years, they used step-wise regression analysis, retaining only 

significant variables in their final prediction models.  They concluded that the elevation 

variable was the most important landscape attribute for explaining spatial variation in yield, 

and that pH, soil organic matter, and soil brightness were also important.   In general, they 

observed negative correlation between soil organic matter and elevation, and positive 

correlation between pH and elevation. 

In an attempt to judge which inexpensively obtainable proxies could be used for 

more expensively-obtainable characteristics variables such as pH and soil organic matter, 

Shanahan, et al. (2004) calculated linear correlation matrices for yield and the 

characteristics variables and proxies.  They found electrical conductivity to be correlated 

with the important characteristics pH and soil organic matter, and that measuring soil 

brightness by aerial photography has potential for delineating areas of important 

characteristics, in particular soil organic matter.  They concluded that “general landscape 

attributes like elevation may provide an indirect means of assessing spatial variation in soil 

properties that have direct impact on crop productivity” (p. 223). 

Shanahan et al. (2004) used their estimated response functions to estimate ex post 

economically optimal plant density rates, and to chart out the implied derived demand 

curve for the managed input. They found that these rates differed by as much as 5000 

plants ha-1 between high- and low-yield field areas.  They stated that this finding implies a 

potential savings in seed costs of $6.25 ha-1, implying that the benefits of variable rate plant 

density may be greater than the costs.  But in their approach they do not attempt to account 

for weather.  Since their experiments are run on a different field every year, then it may be 
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that their results confound the effects of weather with the effects of “management zone” 

characteristics, and that their estimates of economically optimal plant densities suffer from 

omitted variable bias. 

 

Khosa, Inman, and Westfall (2005) 

In estimating site-and-year specific response functions of corn to N fertilizer, Khosa, 

Inman, and Westfall (KIW) (2005) conducted on one field one two-year agronomic 

experiment, and on another field one one-year agronomic experiment.  The experiments 

were located in northeast Colorado, on irrigated fields in which corn is grown continuously.  

They delineated sites using a commercial a commercial software program using aerial 

imagery of bare soil, the farmer’s perception of field topography, and the farmer’s past sol 

and crop management practices.  They set three N rates:  the recommended rate (as 

determined from an N rate algorithm), approximately half the recommended rate, and a 

control treatment of 0 kg ha-1.  Treatments were replicated once, nested within sites, and 

randomly allocated to experimental strips running the length of the field.  Response curves 

were estimated with standard OLS, assuming a curvilinear functional form.  KIW found 

that N response functions and yields differed significantly across the “management zone” 

sites delineated in their study.  They conducted no economic analysis with their estimated 

response functions.  

Whelan and Taylor (2005) 

Whelan and Taylor (2005) report the results of a 2003 agronomic experiment in South 

Australia measuring wheat yield to N fertilizer on a 50-ha field they call “Bill’s Field,” and 

then in the same field measuring barley yield to N fertilizer in 2004.  They also report the 
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results of N-rate experiments conducted on “Field 44,” a 130-ha field in Victoria, Australia.  

In 2003 the Field 44 experiment measured canola response to N fertilizer, and in 2004 the 

Field 44 experiment measured wheat response.  Whelan and Taylor divided each field into 

three sites (“management zones.”)  In each field in each year, they used their data to 

estimate site-and-year-specific response functions fs,t(N), assuming quadratic functional 

forms and using standard OLS.  They use the estimated response functions to estimate ex 

post site-and-year specific economically optimal N rates Ns,t*(Φpost,exp,stan, VRT), and site-

and-year specific optimal gross margins GMN
s,t*(Φpost,exp,stan, VRT).  They compared this to 

an estimate of the gross margin that would have been earned at that site-year had it been 

fertilized at the farmer’s customary uniform rate GMN
s,t*(Φpost,noexp,null, URT).  They report a 

difference in gross margin of A$23.38 ha-1 in 2003 in Field 44:  

GM N
s,2003,Field 44 * Φpost ,exp,stan ,VRT( )s=1

3∑ −  GM N
s,2003, Field 44* Φ post,noexp,null ,VRT( )  = A$12.08 ha-1. 

Similarly, in Bill’s field in 2004, they report a difference in gross margin of A$1.94 ha-1: 

GM N
s, 2004 ,Bill* Φ post,exp,stan ,VRT( )s=1

3∑ − GM N
s,2004,Bill * Φpost ,noexp,null ,VRT( ) = A$1.94 ha-1. 

Whelan and Taylor (2005) conclude that their methods could be used to aid 

decision-making anywhere:  “all fields on all farms can provide the information relevant 

for individual management…  Input response data from individually fields may then e used 

directly or as a replacement for generic models in crop simulation programs” (p. 871).  The 

authors state explicitly that, “there is potential for a more sophisticated spatial analysis of 

the N response data” (p. 871). 

 

Lambert, Lowenberg-DeBoer, and Malzer (2006) 
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Lambert, Lowenberg-DeBoer, and Malzer (LLM) (2006) conducted a five-year agronomic 

experiment on a 12.2 ha field in Minnesota to analyze corn response to N and P and 

soybean response to N.  Their stated objectives were to test whether corn response to N and 

P and soybean response to N are spatially and/or temporally stable, and to evaluate ex-post 

net present value profitability of using variable rate technology over a 5-year corn-soy 

rotation. 

LLM designed their experiment with 3 replications of 13 treatments, in a split-plot 

arrangement of a randomized block design, where P was the main plot and N treatments 

were randomized within the P treatments.  Every year, they divided the experimental area 

year into 69 “sub-blocks” (sites).  Assuming quadratic functional forms, they estimated 

site-and-year-specific response functions for all 69 sites in every one of the five years.  

When spatial correlation among observations was significant (as it was for corn in 1999 

and 2001 (p. 46)), they used a geostatistically weighted generalized method of moments 

procedure to estimate their response functions.  Because their yield observations were not 

evenly dispersed, they claimed that it was not appropriate to use a spatial weighted design 

based on a lattice contiguity matrix. 

By statistically comparing the estimated linear N and P coefficients, LLM tested the 

spatial and temporal stability of corn and soy crop response to N and P.  Their results 

indicated that spatial variation of crop response to N and P was significant, and that the 

responses of corn and soybean to P was temporally table in parts of the field but not in all 

of the field.  Crop response to N was not temporally stable. 

LLM compared the ex post profitabilities of URT and VRT using partial budget 

analysis.  They used net present values of five-year profit streams on the whole field as 
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measures of profitability.  The solved for economically optimal input application rates 

using standard analytical methods.  They included in their calculations estimates of site-

specific management and information gathering.  They compared URT and VRT 

management strategies in four ex post scenarios.  In all scenarios, the uniform rate was 

obtained by following the University of Minnesota recommended fertilizer rate algorithms. 

In the first scenario, LLM estimated the difference between the (1) the profitability of 

experimentation, analysis, and use of variable rate technology, (the per ha net present value 

of the five-year stream 1+ ρ( )− t Π* Φ post, exp,σ t
,VRT( )t =1

5∑ , where ρ was a discount rate and σt 

was either GEO or STAN, depending on which method was most appropriate in year t), and 

(2) the profitability of following University of Minnesota recommended rates using URT (the 

per ha net present value of the five year stream 1+ ρ( )− t Π* Φpost ,noexp,null ,URT( )t =1

5∑ .  LLM 

estimated that the net present value of the plan using experimentation, analysis, and VRT  

was $28.38 ha-1 greater than the net present value of following the University of Minnesota 

recommended rates using URT: 

 1 + ρ( )− t Π t
* Φ post ,exp,σt

,VRT( )− Π t
* Φpost ,noexp,null ,URT( ) t =1

5∑  = $28.38 ha-1. 

This estimate was deemed significant at the 1% level using a paired t test. 

In the second scenario, LLM developed an estimate that is comparable to those of 

several other published studies, in that they ignored the costs of information gathering, 

analysis, and the use of the uniform or variable rate technology.  That is, they compared the 

difference between gross margins, and found 

 1 + ρ( )− t GM NP
* Φ post ,exp,σt

,VRT( )− GM NP
* Φpost ,noexp,null ,URT( ) t =1

5∑ = $68.47 ha-1.   

This estimate was also deemed significant at the 1% level using a paired t test. 
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In the third scenario, LLM compare the net present value streams derived from (1) 

conducting experiments, analyzing data, and spreading P at the informed variable rate while 

following the recommended rate for uniform N application, and (2) following the 

recommended rates for uniform N and P application.  They estimated that the net present 

value of management plan (1) to be $0.25 ha-1 greater than that of management plan (2). 

However this estimate was not deemed significant at the 1% level using a paired t test. 

Finally, in their fourth scenario, LLM compare the net present value streams derived 

from (3) conducting experiments, analyzing data, and spreading N at the informed variable 

rate while following the recommended rate for uniform P application, and (2) following the 

recommended rates for uniform N and P application.  They estimated that the net present 

value of management plan (3) to be $19.81 ha-1 less than that of management plan (4). This 

estimate was deemed significant at the 1% level using a paired t test. 

 

 

 

Conclusions  

It is clear from our review of recent literature on the profitability of variable rate 

technology that much has been accomplished in that literature over the past two years.  

Even recently published studies have claimed that not much applied work combing 

agronomic experiments and economic theory has been done to study the economic 

feasibility of variable rate technology.  For example, Lambert, Lowenberg-DeBoer, and 

Malzer (2006) wrote, “Until recently, mulit-year on-farm production data from controlled 

variable rate technology (VRT) experiments hve been limited” (p. 43).  Similarly, Liu, 



 37 

Swinton, and Millier (2006) stated, “[t]he published research to date has not demonstrated 

how inter-year moisture variability affects [site-specific] yield crop response to N” (p. 

472).  Along these same lines, Ruffo, et al. (forthcoming) wrote, “the estimation of site-

specific response functions will allow the estimation of the economically optimal NF rate 

site-specifically at a management scale and detail required for VRN application.  

Unfortunately, very little research has attempted to explain the causes of this variability or 

to develop site-specific response functions.”  As the current literature shows, agricultural 

economists and agronomists are energetically pursuing the shortcomings in the literature 

mentioned in the three articles quoted above.  A good deal of research has been reported 

that has used agronomic experimentation to estimate economically optimal variable rate 

application of managed inputs, and to compare the profitability of seeking information and 

using variable rate technology to that of following “recommended rate” algorithms and 

using uniform rate technology.   

The empirical results of the research on the profitability of generating information 

and using variable rate technology are mixed.  Some studies find information seeking and 

VRT to be profitability, and others find just the opposite.  There may be three reasons for 

these inconsistent results:  insufficient use of spatial analysis, the need for longer-term data, 

and the need for ex ante analysis.  Significant progress has been made in all three of these 

research areas over the past few years. 

Of the papers reviewed in this article, Lambert, Lowenberg-DeBoer, and Malzer 

(2006), Liu, Swinton, and Miller (2006), Ruffo et al. (forthcoming), Ruffo, et al. (2006), 

Anselin, Bongiovanni, and Lowenberg-DeBoer (2004), Hurley, Oishi, and Malzer (2005), 

use spatial econometrics in the estimation of response functions.  While it remains an open 
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question how much practical difference using spatial econometrics makes, some evidence 

is beginning to be brought forth.  The result of Anselin, Bongiovanni, and Lowenberg-

DeBoer that using spatial methods increased profits in their experiment by over $2.00 ha-1 

is very pertinent. 

Several authors have begun to emphasize the growing need for longer-term 

experimental data (Lambert, Lowenberg-DeBoerr, and Malzer 2006, p. 43;  Liu, Swinton, 

and Miller 2006, p. 472;  Ruffo, et al. forthcoming).  A principal reason that longer-term, 

multi- location data is needed is to estimate ex ante optimal variable management rates.  

Except for Liu, Swinton, and Millier (2006) and Ruffo et al. (2006), all current research on 

the economic feasibility of variable rate technology and its information have been ex post 

in nature.  Thus, the inference space provided by research to date is too small.  Allmost all 

studies report results for specific site-years.  When longer-term experimental data is 

generated, and weather variables are included in estimations of yield response functions, it 

will be possible to begin examining the more pertinent question of whethe r using variable 

rate technology and generating the information required are economically feasibility ex 

ante. 

    ****As our discussion in the section on Spatial Regression Alternatives makes 

clear, there remain many issues within spatial econometrics that still need to be examined 

in the context of the estimation of yield response functions.  …***   ***Emphasize shifting 

out the supply curve.*** 

 



 39 

References 

Anselin., L, Bongiovanni, R., Lowenberg-DeBoer, J., 2004.  A spatial econometric 

approach to the economics of site-specific nitrogen management in corn 

production.  Amer. J. Agric. Econ. 86, 675-687. 

Berntsen, J., Thomsen A., Schelde, K., Hansen, O.M., Knudsen, L., Broge, N., Hougaard, 

H., Hørfarter, R., 2006.  Algorithms for sensor-based redistribution of nitrogen 

fertilizer in winter wheat.  Precision Agric. 7, 65-83. 

Bullock, D.S., Bullock, D.G., 2000.  From agronomic research to farm management 

guidelines:  a primer on the economics of information and precision agriculture.  

Precision Agric. 2, 71-101. 

Bullock, D.S., Lowenberg-DeBoer, J., Swinton, S., 2002.  Adding value to spatially 

managed inputs by understanding site-specific yield response. Agric. Econ. 27, 

233-245. 

Bullock, D.S., Bullock, D.G., 2000.  From agronomic research to farm management 

guidelines:  a primer on the economics of information and precision agriculture.  

Prec. Agric. 2, 71-101. 

Cressie, N.A.C., 1993.  Statistics for Spatial Data.  John Wiley & Sons, New York. 

Hurley, T.M., Oishi, K., Malzer, G.L., 2005.  Estimating the potential value of variable 

rate nitrogen applications: a comparison of spatial econometric and geostatistical 

models.  J. Agric. and Resource Econ. 30, 231-249. 

Kessler, M.C., Lowenberg-DeBoer, J., 1998.  Regression analysis of yield monitor data 

and its use in fine-tuning crop decisions.  In: Precision Agriculture:  Proceedings 

of the 4th International Conference, July 19-22, Madison, WI, p. 821-828. 



 40 

Khosa, R., Inman, D., Westfall, D.G., 2005.  Optimum N management using site-specific 

management zones.  In:  Precision Agriculture ´05.  J.V. Stafford (Ed.), 

Wageningen, The Netherlands:  Wageningen Academic Publishers, pp. 827-834. 

Kirk, H.J., Haynes, F.L., Monroe, R.J., 1980.  Application of trend analysis to 

horticultural field trials.  J. Amer. Hort. Soc. 105, 189-193. 

Lambert, D., Bongiovani, R., Lowenberg-deBoer, J., 2002.  Spatial regression, an 

alternative statistical analysis for landscape scale on-farm trials:  case study of soil 

density trials in central Illinois.  6th International Congress on Precision 

Agriculture and Other Precision Resource Management.  July 15, Minneapolis, 

MN. 

Lambert, D., Lowenberg-DeBoer, J., Malzer, G.L., 2006.  Economic analysis of spatial-

temporal patterns in corn and soybean response to nitrogen and phosphorous.  

Agron. J. 98, 43-54. 

Lark, R.M., Wheeler, H.C., 2003.  A method to investigate within-field variation of the 

response of combinable crops to an input.  Prec. Agric. 95, 1093-1104. 

Little, R.C., Milliken, G.A., Stroup, W., Wolfinger, R.D., 1996.  SAS System for Mixed 

Models.  SAS Institute, Inc., Cary, NC. 

Liu, Y., Swinton, S.M., Miller, N.R., 2006.  Is site-specific yield response consistent over 

time?  Does it pay?  Amer. J. Agric. Econ. 88, 471-483. 

Papadakis, J.S., 1937.  Méthode Statistique Pour Des Experiences Sur Champs.  Bulletin 

de l‘Institut de l’Amelioration des Plantes, Thessalonique, 23. 



 41 

Peone, J., Lowenberg-DeBoer, J., Lambert, D.M., Griffin, and T.W., 2004.  Precision 

agriculture profitability review - part 2.  Site-Specific Management Center, 

Purdue University. 

Ruffo, M., Bollero, G., Bullock, D.S., Bullock, D.G., forthcoming.  Site-specific 

production functions for variable rate corn nitrogen fertilization.  Precision 

Agriculture. 

Ruffo, M., Bullock, D.S., Bullock, D.G., Bollero, G., 2006.  Using precision technology 

to gather information necessary to make precision agriculture profitable:  an on-

farm demonstration. Working paper, University of Illinois Department of Crop 

Sciences. 

Schabenberger, O., Pierce, F.J.,  2002.  Contemporary Statistical Models for the Plant and 

Soil Sciences.  CRC Press, Boca Raton, FL. 

Shanahan, J.F., Doerge, T.A., Johnson, J.J., Vigil, M.F., 2004.  Feasibility of site-specific 

management of corn hybrids and plant densities in the Great Plains.  Prec. Agric. 

5, 207-225. 

Tamura, R.N., Nelson, L.A., Naderman, G.C., 1988.  An investigation of the validity and 

usefulness of trend analysis for field plot data. Agron. J. 80, 712-718. 

Whelan, B.M., Taylor, J.A., 2005.  Local response to nitrogen inputs:  advancing SSCM 

within Australia.  In:  Precision Agriculture ´05.  J.V. Stafford (Ed.), Wageningen, 

The Netherlands:  Wageningen Academic Publishers, pp. 827-834. 


