
AJAE Appendix: Optimal Investment in Transportation

Infrastructure When Middlemen Have Market Power: A

Developing-Country Analysis

Pierre R. Mérel

Richard J. Sexton

Aya Suzuki

September 2008

Note: The material contained herein is supplementary to the article named in the title and

published in the American Journal of Agricultural Economics (AJAE)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6653336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Derivation of the Price Schedule (Stage 2 Equilibrium)

We start by deriving the supply function Qa(Pa,Pb;s,γ) representing the quantity of farm

product supplied to trader a under prices Pa and Pb. This enables us to derive the reaction

function P∗a (Pb;s,γ) (which by symmetry gives us P∗b (Pa;s,γ)). The intersection of the two

reaction curves represents the equilibrium prices (P̄a, P̄b). In what follows, we assume that

s ∈ [0,1).

The Supply Function

Note first that, given our assumption about the reservation utility of farmers, Pa and Pb must

be greater than the assessment s in order to attract suppliers. Further, it is never optimal for,

say, trader a, to offer a price strictly greater than Pb + γ , because the entire market supplies

trader a for Pa = γ + Pb. Similarly, it is not optimal for trader a to offer a price strictly

lower than Pb− γ , because then all farmers would prefer to supply to trader b. Therefore,

in deriving Qa(Pa,Pb;s,γ), we will take for granted that Pa ≥ s, Pb ≥ s, Pa ≤ γ + Pb and

Pa ≥ Pb− γ .

Second, note that either there exists a farmer who is indifferent between selling to trader

a or trader b, or such as farmer does not exist. Suppose first that the indifferent farmer

exists. He must be located at a point Y ∈ [0,1] satisfying Pa− s− γY = Pb− s− γ(1−Y ),

that is, Y = Pa−Pb+γ

2γ
. In addition, the profit of this indifferent farmer must be nonnegative

(which implies, given the structure of transportation costs, that the profit of all other farmers

is nonnegative). Hence, we have Pa− s− γY ≥ 0, or Pb+Pa−γ

2 − s ≥ 0. The conditions

Pa−Pb+γ

2γ
∈ [0,1] and Pb+Pa−γ

2 − s ≥ 0 imply that Pa ≤ γ + Pb and that Pa ≥ max(Pb− γ,γ +

2s−Pb). The supply to trader a is then Qa = Y .

Suppose now that an indifferent farmer does not exist. Because we have ruled out cases

where either trader captures the entire market, the case of no indifferent producer can occur

only when farmers located in the middle of the interval produce only for subsistence use.

This is the case if the farmer located at the market boundary of trader a (i.e., at point
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X = Pa−s
γ

) would not supply his product to trader b, that is, Pb− s− γ(1− Pa−s
γ

) < 0, i.e.,

Pa < 2s+ γ−Pb. The supply to trader a is then Qa = X .

Summarizing the above results, we can write the supply function to trader a as:

(A-1) Qa(Pa,Pb;s,γ) =


Pa−s

γ
if s≤ Pa < γ +2s−Pb

Pa−Pb+γ

2γ
if max(Pb− γ,γ +2s−Pb)≤ Pa ≤ γ +Pb

.

Note that γ + 2s−Pb ≥ Pb− γ ⇔ γ + 2s−Pb ≥ s⇔ Pb ≤ s + γ . Therefore, if Pb > s + γ ,

Qa = Pa−Pb+γ

2γ
for all relevant values of Pa.

The Reaction Functions

Trader a maximizes profit given price Pb by solving

(A-2) max
Pa

Πa(Pa,Pb;s,γ) = (1−Pa)Qa(Pa,Pb;s,γ).

We will first examine the case s≤ Pb ≤ s+ γ , and then the case Pb > s+ γ .

1. s≤ Pb ≤ s+ γ

In this case, Qa has two different expressions on the two subintervals s ≤ Pa ≤ γ +

2s−Pb and γ +2s−Pb≤Pa≤ γ +Pb. We thus need to solve problem (A-2) separately

on each subinterval and then compare the obtained maximized values, in order to find

the solution on the entire domain.

We first solve

(A-3) max
s≤Pa≤γ+2s−Pb

Πa(Pa,Pb;s,γ) = (1−Pa)
(Pa− s

γ

)
,

which yields the following solution:

• if Pb ≤ γ + 3
2s− 1

2 , then Pa = 1+s
2 and Πa = (1−s)2

4γ
;

• if Pb > γ + 3
2s− 1

2 , then Pa = γ +2s−Pb and Πa = (1−γ−2s+Pb)(γ+s−Pb)
γ

.
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We then solve

(A-4) max
γ+2s−Pb≤Pa≤γ+Pb

Πa(Pa,Pb;s,γ) = (1−Pa)
(Pa−Pb + γ

2γ

)
,

which yields the following solution:

• if Pb ≥max(γ + 4
3s− 1

3 ,1−3γ), then Pa = Pb−γ+1
2 and Πa = (1−Pb+γ)2

8γ
;

• if Pb < γ + 4
3s− 1

3 , then Pa = γ +2s−Pb and Πa = (1−γ−2s+Pb)(γ+s−Pb)
γ

;

• if Pb < 1−3γ , then Pa = γ +Pb and Πa = 1− γ−Pb.

Note that the three conditions above are mutually exclusive.1

We now need to compare the optimized values of Πa on the two subintervals. Sup-

pose first that Pb ≤ γ + 3
2s− 1

2 . The maximized value of Πa on [s,γ + 2s−Pb] is
(1−s)2

4γ
. Since Pb ≤ γ + 3

2s− 1
2 implies that Pb < γ + 4

3s− 1
3 for s < 1, the maximized

value of Πa on [γ +2s−Pb,γ +Pb] is (1−γ−2s+Pb)(γ+s−Pb)
γ

. It is then easy to show that
(1−s)2

4γ
≥ (1−γ−2s+Pb)(γ+s−Pb)

γ
, so that the optimal response of trader a for this range

of Pb is P∗a = 1+s
2 .2

Now suppose that Pb > γ + 3
2s− 1

2 . The maximized value of Πa on [s,γ + 2s−Pb]

is (1−γ−2s+Pb)(γ+s−Pb)
γ

, corresponding to price Pa = γ +2s−Pb. We need to compare

this value to those obtained on the subinterval [γ + 2s−Pb,γ + Pb] for each of the

subcases identified above. The comparisons lead to the following results:

• if Pb ≥max(γ + 4
3s− 1

3 ,1−3γ), P∗a = Pb−γ+1
2 ;

• if Pb < γ + 4
3s− 1

3 , P∗a = γ +2s−Pb;

• if Pb < 1−3γ , P∗a = γ +Pb.

2. Pb > s+ γ

1To see why Pb < γ + 4
3 s− 1

3 and Pb < 1−3γ are mutually exclusive, note that Pb < γ + 4
3 s− 1

3 is equivalent
to γ > Pb− s+ 1−s

3 , which by Pb ≥ s implies that γ > 1−Pb
3 , a condition incompatible with Pb < 1−3γ .

2All derivations are available from the authors upon request.
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In this case, the only relevant interval for Pa is [Pb− γ,γ +Pb], where Qa = Pa−Pb+γ

2γ
.

The solution to problem (A-2) in this case is as follows.

• If 1−3γ ≤ Pb ≤ γ +1, then P∗a = Pb−γ+1
2 .

• If Pb > γ + 1, then P∗a = Pb− γ . However, it is never optimal for trader b to

offer a price Pb greater than 1, because then he would make a negative margin.

Therefore, we can ignore this case.

• if Pb < 1−3γ , then P∗a = γ +Pb.

To summarize, the reaction function P∗a (Pb;s,γ) has the following form.

• If s≤ Pb ≤ s+ γ:

– if Pb ≤ γ + 3
2s− 1

2 , then P∗a = 1+s
2 ;

– if Pb > γ + 3
2s− 1

2 , then

∗ if Pb ≥max(γ + 4
3s− 1

3 ,1−3γ), P∗a = Pb−γ+1
2 ;

∗ if Pb < γ + 4
3s− 1

3 , P∗a = γ +2s−Pb;

∗ if Pb < 1−3γ , P∗a = γ +Pb.

• If Pb > s+ γ:

– if Pb ≥ 1−3γ , then P∗a = Pb−γ+1
2 ;

– if Pb < 1−3γ , then P∗a = γ +Pb.

By the symmetry of traders, P∗b (Pa;s,γ) has the same form as P∗a (Pb;s,γ).

The Equilibrium Prices

Equilibrium prices (P̄a, P̄b) are obtained as the intersection of the reaction curves P∗a (Pb;s,γ)

and P∗b (Pa;s,γ). As before, we assume that 0≤ s < 1. We also know that s≤ P̄i≤ 1, i = a,b.

The reaction curves have different shapes according to the relative values of γ and 1− s.

All possible scenarios are illustrated in figures A-1 to A-8, where the values γ + 4
3s− 1

3

and γ + 3
2s− 1

2 have been replaced by the symbols γ 1
3

and γ 1
2
, respectively, for clarity of

presentation. The results can be summarized as follows.
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1. If 0 < γ ≤ 2
3(1− s), then P̄a = P̄b = P̄ = 1− γ . The market is covered and the in-

different farmer, who receives a positive profit, is located at Ȳ = 1
2 (figures A-1, A-2

and A-3).

2. If 2
3(1− s) < γ ≤ 1− s:

• if 2
3(1− s) < γ ≤ 5

6(1− s), then P̄a, P̄b ∈ [1
3(1 + 2s),γ + 4

3s− 1
3 ] and P̄a + P̄b =

2s+ γ (figure A-4);

• if 5
6(1− s) < γ ≤ 1− s, then P̄a, P̄b ∈ [γ + 3

2s− 1
2 , 1+s

2 ] and P̄a + P̄b = 2s + γ

(figure A-5).

In both subcases, the market is covered and the indifferent farmer, who has zero

profit, is located at Ȳ = P̄a−P̄b+γ

2γ
= P̄a−s

γ
. For the subcase 2

3(1− s) < γ ≤ 5
6(1− s),

the indifferent farmer is located inside the segment [1−s
3γ

,1− 1−s
3γ

]. For the subcase

5
6(1− s) < γ ≤ 1− s, he is located inside the segment [1− 1−s

2γ
, 1−s

2γ
]. Those two

segments are widest for γ = 5
6(1− s) where they are both equal to [2

5 , 3
5 ].

3. If γ > 1− s, then P̄a = P̄b = P̄ = 1+s
2 . Only farmers located near the endpoints sell

their production, and the market radius of each trader is X̄ = 1−s
2γ

(figures A-6, A-7

and A-8).
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Investment Regimes When the Initial Market is Monopsonistic

To make the analysis tractable, we make the following assumptions.

Assumption A-1 The transportation improvement technology is described by the function

Γ(σ) = T
eασ , where σ represents the investment per unit distance, T > 1 represents the pre-

investment level of transportation costs per unit distance, and α is a positive parameter that

gives the constant rate at which transportation costs can be decreased with an investment

of $1 per unit distance.

Assumption A-2 The authority spends the assessment revenue to improve transportation

only on the portion of the market area that engages in commercial production in stage 2

equilibrium.

As argued in the article, the functional form in assumption A-1 has several desirable fea-

tures. It implies diminishing returns to per-unit distance investments, involves parameters

that have a direct interpretation, and allows us to simulate a broad variety of improvement

technologies while imposing minimal constraints on the technology.

Assumption A-2 reflects an efficient use of assessment funds by the revenue-generating

authority, compared to a scenario where, e.g., the entirety of the production region would

be improved even in cases where the market is only partially covered. It also implies that

when the market is partially covered in stage 2 equilibrium, the minimum transportation

cost achievable with an assessment of s dollars is exactly γ = Γ(s), because the investment

per unit of distance on the portion of the production area that is subject to improvement

is exactly equal to the nominal assessment, given the unit supply assumption.3 Therefore,

besides its intuitive appeal, assumption A-2 ensures that the transportation cost γ that can

3If transportation improvements take the form of investments in equipment, such as trucks, assumption A-2
ensures that the authority only purchases the volume of equipment needed to transport the output of farms
selling their product to the external market.
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be achieved with a per-unit assessment of s dollars only depends on s, and not on the

participation rate of farmers in stage 2 equilibrium.4

Figures A-9 to A-12 depict the four possible investment scenarios when starting from

monopsonistic competition, and illustrate the following proposition.

Proposition A-1 For each T > 1, there exists positive numbers α1(T ), α2(T ) and α3(T )

such that

• ŝ = 0 if α ≤ α1(T );

• ŝ > 0 and γ̂

1−ŝ > 1 if α1(T ) < α < α2(T );

• ŝ > 0 and γ̂

1−ŝ = 1 if α2(T )≤ α < α3(T );

• ŝ > 0 and γ̂

1−ŝ < 2
3 if α ≥ α3(T ).

Proposition A-1 implies that for any given initial transport cost, the potential of pos-

itive assessments to alter the nature of competition between traders directly depends on

the efficiency parameter α . For low values of α , producers are better-off not investing in

transportation. For slightly higher values of α , they have an incentive to invest in trans-

portation, although not to the extent where the market is completely covered. For α in the

intermediate range [α2,α3), producers will invest in transportation so that the final state

of competition is borderline monopsony/weak duopsony, so the market will be covered.

However, due to the non-monotonicity of the profit schedule, it is never optimal to move

inside the weak duopsony region. In this range of α , although marginal increases in α do

not change the nature of competition between traders, farm profits are still monotonically

increasing in α . Finally, for highly efficient technologies (α ≥ α3), optimal investments in

transportation enable farmers to move to the strict duopsony regime.

4Assumption A-2 is innocuous if the initial transportation cost lies in the weak or strict duopsony range,
since in stage 2 equilibrium the market will always be covered.
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Figure A-1. Equilibrium prices when 0 < γ ≤ 1
3(1− s). The solution is P̄a = P̄b = P̄ =

1− γ .
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Figure A-9. Optimal assessment with Γ(σ) = 3
e1.5σ . The arrow points at the optimum

(ŝ, γ̂).
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Figure A-10. Optimal assessment with Γ(σ) = 3
e2.95σ . The arrow points at the optimum

(ŝ, γ̂).
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Figure A-11. Optimal assessment with Γ(σ) = 3
e4σ . The arrow points at the optimum

(ŝ, γ̂).
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Figure A-12. Optimal assessment with Γ(σ) = 3
e6σ . The arrow points at the optimum

(ŝ, γ̂).
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