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Abstract:  
This paper studies comparative risk aversion between risk averse agents in the 
presence of a background risk. Although the literature covers this question extensively, 
our contribution differs from most of the literature in two respects. First, background risk 
does not need to be additive or multiplicative. Second, the two risks are not necessary 
mean independent, and may be conditional expectation increasing or decreasing. We 
show that our order of cross Ross risk aversion is equivalent to the order of partial risk 
premium, while our index of decreasing cross Ross risk aversion is equivalent to 
decreasing partial risk premium.  These results generalize the comparative risk aversion 
model developed by Ross (1981) for mean independent risks. Finally, we show that 
decreasing cross Ross risk aversion gives rise to the utility function family belonging to 
the class of n-switch utility functions. 
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1 Introduction

Arrow (1965) and Pratt (1964) propose an important theorem stating that risk aversion compar-

isons using risk premia and measures of risk aversion always give the same result. Ross (1981)

shows that when an agent faces more than one risky variable, Arrow-Pratt measures are not

strong enough to support the plausible association between absolute risk aversion and the size

of the risk premium. He proposes a stronger ordering called Ross risk aversion. Several studies

extend Ross’ results. Most papers generalize them to higher-orders of risk aversion for univariate

utility functions (see Modica and Scarsini, 2005; Jindapon and Neilson, 2007; Li, 2009; Denuit

and Eeckhoudt, 2010a). This paper provides another direction to this line of research.

There is growing concern on risk attitudes of bivariate utility function in the literature (see

Bleichrodt et al., 2003; Eeckhoudt et al., 2007; Courbage and Rey, 2007; Menegatti, 2009 a,b;

Denuit and Eeckhoudt, 2010b; Li, 2011; Denuit et al., 2011a). To our knowledge, these studies

do not analyze comparative risk aversion. The first paper that looks at preservation of “more risk

averse” with general multivariate preferences and background risk is Nachman (1982). However,

in his setting, the background risk is independent. Pratt (1988) also considers the comparison

of risk aversion both with and without the presence of an independent background risk using a

two-argument utility function.

We generalize the model of comparative risk aversion developed by Ross (1981). We introduce

the notion of cross Ross risk aversion and show that more cross Ross risk aversion is associated

with a higher partial risk premium in the presence of a conditional expectation increasing (or

decreasing) background risk. Hence, we demonstrate that the index of cross Ross risk aversion is

equivalent to the order of partial risk premium. We also propose the concept of decreasing cross

Ross risk aversion and derive necessary and sufficient conditions for obtaining an equivalence

between decreasing cross Ross risk aversion and decreasing partial risk premium in the presence

of a conditional expectation increasing (or decreasing) background risk. We apply this result to

examine the effects of changes in wealth and financial background risk on the intensity of risk

aversion. Finally, we show that specific assumptions about the behavior of the decreasing cross

Ross risk aversion gives rise to the utility function form that belongs to the class of n-switch

utility functions (Abbas and Bell, 2011).

Our paper is organized as follows. Sections 2 and 3 offer the necessary and sufficient condi-

tions for comparing two agents’ attitudes towards risk with different utility functions and the
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same agent’s attitude at different wealth levels under a conditional expectation increasing (or

decreasing) background risk. Section 4 applies our results to financial background risks. Sec-

tion 5 relates decreasing cross Ross risk aversion to n-switch independence property. Section 6

concludes the paper.

2 Comparative cross risk attitudes

We consider an economic agent whose preference for wealth, w̃ and a random variable, ỹ, can be

represented by a bivariate model of expected utility. We let u(w, y) denote the utility function,

and let u1(w, y) denote
∂u
∂w and u2(w, y) denote

∂u
∂y . We follow the same subscript convention for

the derivatives u11(w, y), u12(w, y) and so on, and assume that the partial derivatives required

for any definition all exist and are continuous.

Pratt (1990) and Chalfant and Finkelshtain (1993) introduce the following definition of

partial risk premia into the economic literature.

Definition 2.1 For u and v, the partial risk premia πu and πv for risk x̃ in the presence of

risk ỹ,are defined as

Eu(w + x̃, ỹ) = Eu(w + Ex̃− πu, ỹ) (1)

and

Ev(w + x̃, ỹ) = Ev(w + Ex̃− πv, ỹ). (2)

The partial risk premia πu and πv are the maximal monetary amounts individuals u and v

are willing to pay for removing one risk in the presence of a second risk. We derive necessary

and sufficient conditions for comparative partial risk premia in the presence of a conditional

expectation increasing background risk. Extension of the analysis to conditional decreasing

background risk is discussed later. Let us introduce two definitions of comparative risk aversion

motivated by Ross (1981). The following definition uses −u12(w,y)
u1(w,y) and−v12(w,y)

v1(w,y) as local measures

of correlation aversion.

Definition 2.2 u is more cross Ross risk averse than v if and only if there exists λ1, λ2 > 0

such that for all w, y and y′

u12(w, y)

v12(w, y)
≥ λ1 ≥

u1(w, y
′)

v1(w, y′)
(3)

and

u11(w, y)

v11(w, y)
≥ λ2 ≥

u1(w, y
′)

v1(w, y′)
. (4)
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The interpretation of the sign of the second mixed derivative goes back to De Finetti (1952)

and has been studied and extended by Epstein and Tanny (1980); Richard (1975); Scarsini

(1988) and Eeckhoudt et al. (2007). For example, Eeckhoudt et al. (2007) show that u12 ≤ 0

is necessary and sufficient for defining “correlation aversion”, meaning that a higher level of the

second argument mitigates the detrimental effect of a reduction in the first argument. An agent

is correlation averse if she always prefers a 50-50 gamble of a loss in wealth or a loss in the

second argument over another 50-50 gamble offering a loss in both arguments.

When u(w, y) = U(w + y) in (3) and (4), we obtain the definition of comparative Ross

risk aversion for mean independent risks. However, we are interested in comparisons when the

agents face two dependent risks which is more general than mean independence. We consider

the notion of conditional background risk. Two random variables are conditional risk dependent

when they are not mean independent.

Definition 2.3 ỹ is a conditional background risk for x̃ if E[x̃|ỹ = y] ̸= E [x].

The following proposition provides an equivalent comparison between risk aversion and par-

tial risk premium in the presence of conditional increasing background risks.

Proposition 2.1 For u, v with u1 > 0, v1 > 0, v11 < 0, u11 < 0, u12 < 0 and v12 < 0, the

following three conditions are equivalent:

(i) u is more cross Ross risk averse than v.

(ii) There exists ϕ : R × R → R with ϕ1 ≤ 0, ϕ12 ≤ 0 and ϕ11 ≤ 0, and λ > 0 such that

u = λv + ϕ.

(iii) πu ≥ πv for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing in y.

Proof See the Appendix.

When an agent faces a conditional expectation increasing background risk, the cross Ross

risk aversion relationship establishes an unambiguous equivalence between more risk aversion

and a larger partial risk premium.

3 Decreasing cross Ross risk aversion with respect to wealth

In this section, we examine how the partial risk premium for a given risk x̃ is affected by a

change in initial wealth w, in the presence of a dependent background risk. Fully differentiating
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equation (1) with respect to w yields1

Eu1(w + x̃, ỹ) = Eu1(w + Ex̃− πu, ỹ)− π′(w)Eu1(w + Ex̃− πu, ỹ), (5)

hence,

π′(w) =
Eu1(w +Ex̃− πu, ỹ)− Eu1(w + x̃, ỹ)

Eu1(w + Ex̃− πu, ỹ)
. (6)

Thus, the partial risk premium is decreasing in wealth if and only if

Eh(w + Ex̃− πu, ỹ) ≥ Eh(w + x̃, ỹ), (7)

where h ≡ −u1 is defined as minus the partial derivative of function u. Since h1 = −u11 ≥ 0,

condition (7) then just states that the partial risk premium of agent h is larger than the partial

risk premium of agent u. From Proposition 2.1, this is true if and only if h is more cross Ross

risk averse than u. That is, ∃λ1, λ2 > 0, for all w,y and y′, such that

h12(w, y)

u12(w, y)
≥ λ1 ≥

h1(w, y
′)

u1(w, y′)
(8)

and

h11(w, y)

u11(w, y)
≥ λ2 ≥

h1(w, y
′)

u1(w, y′)
, (9)

or, equivalently,

−u112(w, y)

u12(w, y)
≥ λ1 ≥ −u11(w, y

′)

u1(w, y′)
(10)

and

−u111(w, y)

u11(w, y)
≥ λ2 ≥ −u11(w, y

′)

u1(w, y′)
. (11)

Proposition 3.1 introduces −u112(w,y)
u11(w,y) and −u111(w,y)

u11(w,y) as local measurements of cross-prudence

and prudence. These local measures of prudence are essentially identical to the measure proposed

by Kimball (1990). It is well known that, for the single-risk case, DARA is equivalent to the

utility function −u′(.) being more concave than u(.) (see for example, Gollier, 2001). Proposition

3.1 is an extension of this result to bivariate risks under a conditional expectation increasing

background risk.

We obtain the following proposition:

Proposition 3.1 For u with u1 > 0, u11 < 0, u12 < 0, u111 ≥ 0 and u112 ≥ 0, the following

three conditions are equivalent:

1Equation (5) has a univariate counterpart in Eeckhoudt and Kimball (1992).
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(i) the partial risk premium πu, associated with any (x̃, ỹ) such that E[x̃|ỹ = y] is non-

decreasing in y, is decreasing in wealth;

(ii) There exists ϕ : R × R → R with ϕ1 ≤ 0, ϕ12 ≤ 0 and ϕ11 ≤ 0, and λ > 0 such that

−u1 = λu+ ϕ;

(iii) ∃λ1, λ2 > 0, for all w, y and y′, such that

−u112(w, y)

u12(w, y)
≥ λ1 ≥ −u11(w, y

′)

u1(w, y′)
(12)

and

−u111(w, y)

u11(w, y)
≥ λ2 ≥ −u11(w, y

′)

u1(w, y′)
. (13)

The proof of Proposition 3.1 is obtained by (5) to (11).

An interpretation of the sign of u112 is provided by Eeckhoudt et al. (2007), who showed

that u112 > 0 is a necessary and sufficient condition for “cross-prudence in its second argument”,

meaning that a higher level of second argument mitigates the detrimental effect of the monetary

risk.

There are economic applications where negative dependence is more convenient. If E[x̃|ỹ = y]

is non-increasing in y, then E[−x̃|ỹ = y] is non-decreasing in y. We can define ū(x, y) = u(−x, y)

and v̄(x, y) = v(−x, y). Then Propositions 2.1 and 3.1 can be extended to ū(x, y) and v̄(x, y)

directly. More specifically, we can propose the following results.

Proposition 3.2 For ū, v̄ with ū1 > 0, v̄1 > 0, ū11 < 0, v̄11 < 0, ū12 < 0 and v̄12 < 0, the

following three conditions are equivalent:

(i) ū is more cross Ross risk averse than v̄.

(ii) There exists ϕ : R × R → R with ϕ1 ≤ 0, ϕ12 ≤ 0 and ϕ11 ≤ 0, and λ > 0 such that

u = λv + ϕ.

(iii) πū ≥ πv̄ for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-increasing in y.

and

Proposition 3.3 For ū with ū1 > 0, ū11 < 0, ū12 < 0, ū111 ≥ 0 and ū112 ≥ 0, the following

three conditions are equivalent:

(i) the partial risk premium πū associated with any (x̃, ỹ) such that E[x̃|ỹ = y] is non-

increasing in y, is decreasing in wealth;
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(ii) There exists ϕ : R × R → R with ϕ1 ≤ 0, ϕ12 ≤ 0 and ϕ11 ≤ 0, and λ > 0 such that

−u1 = λu+ ϕ;

(iii) ∃λ1, λ2 > 0, for all w, y and y′, such that

− ū112(w, y)

ū12(w, y)
≥ λ1 ≥ − ū11(w, y

′)

ū1(w, y′)
(14)

and

− ū111(w, y)

ū11(w, y)
≥ λ2 ≥ − ū11(w, y

′)

ū1(w, y′)
. (15)

4 Comparative risk aversion in the presence of a financial back-

ground risk

In the economic literature, the financial background risk has received much attention. For ad-

ditive financial background risk, we refer to Doherty and Schlesinger (1983a,b, 1986), Kischka

(1988), Eeckhoudt and Kimball (1992), Eeckhoudt and Gollier, (2000), Schlesinger (2000), Gol-

lier (2001), Eeckhoudt et al. (2007) and Franke et al. (2011). For multiplicative financial

background risk, see Franke et al. (2006, 2011). In this section, we consider some examples

to illustrate the use of Propositions 2.1 and 3.1 in the framework of additive or multiplicative

background risks.

4.1 Additive background risk

First, we show that Proposition 2.1 allows us to extend the results of Ross (1981) for an additive

background risk. Note that, for an additive background risk ỹ, we have

u(w, y) = U(w + y) (16)

and

v(w, y) = V (w + y). (17)

Here w can be interpreted as the random wealth of an agent and y as a random increment to

wealth, i.e., random income or financial portfolio.

Since,

u1 = U ′ , u11 = u12 = U ′′ and u111 = u112 = U ′′′ (18)

and

v1 = V ′ , v11 = v12 = V ′′ and v111 = v112 = V ′′′. (19)
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Ross (1981) proposed the following results

Proposition 4.1 (Ross (1981, Theorem 3)) For u(w, y) = U(w + y), v(w, y) = V (w + y) with

U ′ > 0, V ′ > 0, U ′′ < 0 and V ′′ < 0, the following two conditions are equivalent:

(i) ∃λ > 0

U ′′(w + y)

V ′′(w + y)
≥ λ ≥ U ′(w + y′)

V ′(w + y′)
for all w , y and y′. (20)

(ii) πu ≥ πv for ∀ w, any zero-mean risk x̃ and ỹ with E[x̃|ỹ = y] = Ex̃ = 0.

Proposition 4.2 (Ross (1981, Theorem 4)) For u(w, y) = U(w + y), with U ′ > 0, U ′′ < 0 and

U ′′′ > 0, the partial risk premium associated to any zero-mean risk x̃ with E[x̃|ỹ = y] = 0 is

decreasing in wealth if and only if, ∃λ > 0, for all w, y and y′,

−U ′′′(w + y)

U ′′(w + y)
≥ λ ≥ −U ′′(w + y′)

U ′(w + y′)
(21)

We now show that corollaries 4.2 and 4.3 generalize Ross’ conditions.

Conditions (3) and (4) imply

U ′′(w + y)

V ′′(w + y)
≥ λ ≥ U ′(w + y′)

V ′(w + y′)
for all w , y and y′. (22)

Then, Proposition 2.1, (18), (19) and (22) immediately entail the following result.

Corollary 4.3 For u(w, y) = U(w + y), v(w, y) = V (w + y) with U ′ > 0, V ′ > 0, U ′′ < 0 and

V ′′ < 0, the following two conditions are equivalent:

(i) ∃λ > 0

U ′′(w + y)

V ′′(w + y)
≥ λ ≥ U ′(w + y′)

V ′(w + y′)
for all w , y and y′. (23)

(ii) πu ≥ πv for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing in y.

Conditions (14) and (15) imply, for all w, y and y′,

−U ′′′(w + y)

U ′′(w + y)
≥ λ ≥ −U ′′(w + y′)

U ′(w + y′)
(24)

From Proposition 3.1, (18), (19) and (22), we obtain the following corollary:

Corollary 4.4 For u(w, y) = U(w + y), with U ′ > 0, U ′′ < 0 and U ′′′ > 0, the following two

conditions are equivalent:
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(i) the partial risk premium associated with any (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing

in y, is decreasing in wealth.

(ii) ∃λ > 0, for all w, y and y′,

−U ′′′(w + y)

U ′′(w + y)
≥ λ ≥ −U ′′(w + y′)

U ′(w + y′)
(25)

In Corollary 4.4, the condition for decreasing risk premia under conditional expectation

increasing risks is equivalent to that for a first-order stochastic dominance (FSD) improvement

in an independent background risk to decrease the risk premium, as shown by Eeckhoudt et al.

(1996).

4.2 Multiplicative background risk

For a multiplicative background risk ỹ, we have

u(w, y) = U(wy) (26)

and

v(w, y) = V (wy). (27)

Here w may represent the random wealth invested in a risky asset and y may represent a

multiplicative random shock on random wealth.

Since,

u1 = yU ′, u11 = y2U ′′, u12 = U ′ + wyU ′′, u111 = y3U ′′′ and u112 = 2yU ′′2U ′′′ (28)

and

v1 = yV ′, v11 = y2V ′′, v12 = V ′ + wyV ′′, v111 = y3V ′′′ and v112 = 2yV ′′2V ′′′. (29)

Conditions (3) and (4) imply, ∃λ1, λ2 > 0, for all w, y and y′,

U ′(wy) + wyU ′′(wy)

V ′(wy) + wyV ′′(wy)
≥ λ1 ≥

U ′(wy′)

V ′(wy′)
(30)

and

U ′′(wy)

V ′′(wy)
≥ λ2 ≥

U ′(wy′)

V ′(wy′)
. (31)

Then, from Proposition 2.1, (28), (29), (30) and (31), we obtain
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Corollary 4.5 For u(w, y) = U(wy), v(w, y) = V (wy) with U ′ > 0, V ′ > 0, U ′′ < 0 and

V ′′ < 0, the following two conditions are equivalent:

(i) ∃λ1, λ2 > 0, for all w,y and y′,

U ′(wy) + wyU ′′(wy)

V ′(wy) + wyV ′′(wy)
≥ λ1 ≥

U ′(wy′)

V ′(wy′)
(32)

and

U ′′(wy)

V ′′(wy)
≥ λ2 ≥

U ′(wy′)

V ′(wy′)
. (33)

(ii) πu ≥ πv for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing in y.

Since

U ′(wy) + wyU ′′(wy)

V ′(wy) + wyV ′′(wy)
(34)

=
U ′′(wy)( U ′(wy)

U ′′(wy) + wy)

V ′′(wy)( V ′(wy)
V ′′(wy) + wy)

=
U ′′(wy)(wy − 1

RAU (wy))

V ′′(wy)(wy − 1
RAV (wy))

,

where RAU (wy) = −U ′′(wy)
U ′(wy) and RAV (wy) = −V ′′(wy)

V ′(wy) are indices of absolute risk aversion. We

can obtain a more short cut sufficient condition from Corollary 4.5.

Corollary 4.6 For u(w, y) = U(wy), v(w, y) = V (wy) with w > 0, ỹ > 0 almost surely, U ′ > 0,

V ′ > 0, U ′′ < 0 and V ′′ < 0, If ∃λ > 0, for all w,y and y′,

U ′′(wy)

V ′′(wy)
≥ λ ≥ U ′(wy′)

V ′(wy′)
, (35)

then πu ≥ πv for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing in y.

Proof From the above argument, we know that for all w,y and y′,

U ′′(wy)

V ′′(wy)
≥ λ ≥ U ′(wy′)

V ′(wy′)
. (36)

RAU (wy) ≥ RAV (wy) implies that πu ≥ πv for ∀ w and (x̃, ỹ) such that E[x̃|ỹ = y] is non-

decreasing in y. Using the fact that “U is more Ross risk averse than V ⇒ RAU (wy) ≥

RAV (wy)”, we obtain the result. Q.E.D.

Corollary 4.5 states that “more Ross risk aversion” is a sufficient condition to order partial

risk premium in the presence of conditional expectation increasing multiplicative background

risk.

From Proposition 3.1, we obtain
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Corollary 4.7 For u(w, y) = U(wy), with U ′ > 0, U ′′ < 0 and U ′′′ > 0, the partial risk

premiums associated with any (x̃, ỹ) such that E[x̃|ỹ = y] is non-decreasing in y, is decreasing

in wealth if and only if, ∃λ1, λ2 > 0, for all w,y and y′,

− 2yU ′′2U ′′′(wy)

U ′(wy) + wyU ′′(wy)
≥ λ1 ≥ −y′U ′′(wy′)

U ′(wy′)
(37)

and

−yU ′′′(wy)

U ′′(wy)
≥ λ2 ≥ −y′U ′′(wy′)

U ′(wy′)
. (38)

Since

− 2yU ′′2U ′′′(wy)

U ′(wy) + wyU ′′(wy)
(39)

= −
yU ′′′(wy)(2 U ′′(wy)

U ′′′(wy) + wy)

U ′′(wy)( U ′(wy)
U ′′(wy) + wy)

= −
yU ′′′(wy)(wy − 2 1

PU (wy))

U ′′(wy)(wy − 1
RAU (wy))

,

where PU (wy) = −U ′′′(wy)
U ′′(wy) is the index of absolute prudence. We can obtain a shorter sufficient

condition from Corollary 4.7.

Corollary 4.8 For u(w, y) = U(wy), with w > 0, ỹ > 0 almost surely, U ′ > 0, U ′′ < 0

and U ′′′ > 0, The partial risk premium associated with any risk (x̃, ỹ) such that E[x̃|ỹ = y] is

non-decreasing in y, is decreasing in wealth if , ∃λ > 0, for all w, y and y′,

−yU ′′′(wy)

U ′′(wy)
≥ λ ≥ −y′U ′′(wy′)

U ′(wy′)
(40)

and PU (wy) ≥ 2RAU (wy).

Moreover, (40) can be multiplied by w on both sides to obtain the results in terms of measures

of relative risk aversion and relative prudence:

−wyU ′′′(wy)

U ′′(wy)
≥ λ ≥ −wy′U ′′(wy′)

U ′(wy′)
, (41)

which implies “min relative prudence ≥ max relative risk aversion”. Whereas in the literature,

PU ≥ 2RAU is an important condition for risk vulnerability (see Gollier 2001, p129), Corollary

4.8 shows that minPU ≥ maxRAU is an important condition for comparative risk aversion in

the presence of a conditional expectation increasing multiplicative background risk.
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5 Decreasing cross Ross risk aversion and n-switch indepen-

dence property

Because the conditions derived in Ross (1981) are fairly restrictive upon preference, some read-

ers may regard Ross’ results as negative, because no standard utility functions (logarithmic,

power, mixture of exponentials) satisfy these conditions. Pratt (1990) suggests that probabil-

ity distributions restrictions stronger than mean independence may provide more satisfactory

comparative statics. On a very different ground, Bell (1988) proposes that agents are likely to

be characterized by a utility function satisfying the one-switch rule: there exists at most one

unique critical wealth level at which the decision-maker switches from preferring one alternative

to the other. He shows that the linex function (linear plus exponential) is the only relevant

utility function family if one adds to the one-switch rule some very reasonable requirements.

Such utility function has been studied by Bell and Fishburn (2001), Sandvik and Thorlund-

Petersen (2010) and Abbas and Bell (2011). In a recent paper, Denuit et al. (2011b) show that

Ross’ stronger measure of risk aversion gives rise to the linex utility function and therefore they

provide not only a utility function family but also some intuitive and convenient properties for

Ross’ measure.

Abbas and Bell (2011) extend the one-switch independence property to two-attribute utility

functions and propose a new independence assumption based on the one-switch property: n-

switch independence.

Definition 5.1 (Abbas and Bell 2011) For utility function u(x, y),X is n-switch independent

of Y if two gamblers x̃1 and x̃2 can switch in preference at most n times as Y progresses from

its lowest to its highest value.

They provide the following propositions:

Proposition 5.1 (Abbas and Bell 2011) X is one-switch independent of Y if and only if

u(x, y) = g0(y) + f1(x)g1(y) + f1(x)g2(y), (42)

where g1(y) has constant sign, and g2(y) = g1(y)ϕ(y) for some monotonic function ϕ.

Proposition 5.2 (Abbas and Bell 2011) If X is n-switch independent of Y , then there exist

some functions fi, gi such that

u(x, y) = g0(y) +
n+1∑
i=1

fi(x)gi(y). (43)
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We now show that the one-switch property of Proposition 5.1 is a consequence of Proposition

3.1. We also argue that (43) is a utility function that satisfies the decreasing cross Ross risk

aversion condition proposed in Section 3.

From Proposition 3.1 we know that the partial risk premium πu, associated with any (x̃, ỹ)

such that E[x̃|ỹ = y] is non-decreasing in y, is decreasing in wealth, if and only if there exists

ϕ : R×R → R with ϕ1 ≤ 0, ϕ12 ≤ 0 and ϕ11 ≤ 0, and λ > 0 such that

−u1(x, y) = λu(x, y) + ϕ(x, y). (44)

Solving the above differential equation implies that u is of the form

u(x, y) = −
∫ x

−∞
eλtϕ(t, y)dte−λx. (45)

If we take ϕ(x, y) = −H(x)J(y) such that J(y) has a constant sign, then we get

u(x, y) =

∫ x

−∞
eλtH(t)dte−λxJ(y) (46)

= [
1

λ
eλxH(x)− 1

λ

∫ x

−∞
eλtH ′(t)dt]e−λxJ(y)

=
1

λ
H(x)J(y)− 1

λ

∫ x

−∞
eλtH ′(t)dte−λxJ(y).

Defining g1(y) = g2(y) = 1
λJ(y), f1(x) = H(x) and f2(x) = −

∫ x
−∞ eλtH ′(t)dte−λx, then we

recognize the functional form in Proposition 5.1.

Integrating the integral term of (46) by parts again and again, we obtain

u(x, y) =
n∑

i=1

eλx
(−1)i−1H(i−1)(x)

λi
+

1

λn

∫ x

−∞
eλt(−1)nH(n)(t)dt]e−λxJ(y) (47)

=
n∑

i=1

J(y)
(−1)i−1H(i−1)(x)

λi
+

1

λn

∫ x

−∞
eλt(−1)nH(n)(t)dte−λxJ(y)

=
n+1∑
i=1

fi(x)gi(y),

where fi(x) = (−1)(i−1)H(i−1)(x) for i = 1, ..., n, fn+1(x) =
∫ x
−∞ eλt(−1)nH(n)(t)dte−λx, gi(y) =

1
λiJ(y) for i = 1, .., n and gn+1(y) = 1

λnJ(y). Therefore we obtain the functional form in

Proposition 5.2 from decreasing cross Ross risk aversion. Although coming from very different

approaches, decreasing cross Ross risk aversion and n-switch independence reach the same func-

tional form. Our result thus provides a connection between decreasing cross Ross risk aversion

and n-switch independence.
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6 Conclusion

In this paper we consider expected-utility preferences in a bivariate setting. The analysis focuses

on random variables that satisfy the conditional expectation dependence. The main focus is on

the risk premium for removing one of the risks in the presence of a second risk. To this end, we

extend Ross’ (1981) contribution by defining the concept of “cross Ross risk aversion.” We derive

several equivalence theorems relating measures of risk premia with measures of risk aversion.

We then consider additive risks and multiplicative risks as two special cases. We also show that

decreasing cross Ross risk aversion assumption about behavior gives rise to the utility function

family that belongs to the class of n-switch utility functions. The analysis and the index of

risk aversion in this paper may be instrumental in obtaining comparative static predictions in

various applications.

7 Appendix: Proof of Proposition 2.1

Proof (i) implies (ii): We note that

u12(w, y)

v12(w, y)
≥ λ1 ≥

u1(w, y
′)

v1(w, y′)
⇔ −u12(w, y)

−v12(w, y)
≥ λ1 ≥

u1(w, y
′)

v1(w, y′)
. (48)

u11(w, y)

v11(w, y)
≥ λ2 ≥

u1(w, y
′)

v1(w, y′)
⇔ −u11(w, y)

−v11(w, y)
≥ λ2 ≥

u1(w, y
′)

v1(w, y′)
. (49)

Defining ϕ = u − λv, where λ = min{λ1, λ2}, and differentiating, one obtains ϕ1 = u1 − λv1,

ϕ12 = u12 − λv12 and ϕ11 = u11 − λv11 , then (48) and (49) imply that ϕ1 ≤ 0, ϕ12 ≤ 0 and

ϕ11 ≤ 0.

(ii) implies (iii): From Theorem 2 of Finkelshtain et al. (1999), we know that,

(a) ϕ11 ≤ 0 and ϕ12 ≤ 0 ⇔ Eϕ(w + x̃, ỹ) ≤ Eϕ(w + Ex̃, ỹ) for any risk (x̃, ỹ) such that

E[x̃|ỹ = y] is non-decreasing in y;

(b) when v1 ≥ 0, v11 ≤ 0 and v12 ≤ 0 if and only if πv ≥ 0 for any risk (x̃, ỹ) such that

E[x̃|ỹ = y] is non-decreasing in y.

Since πv ≥ 0, we have ϕ1 ≤ 0 ⇒ ϕ(w, y) ≤ ϕ(w − πv, y).

The following proof is as in Ross (1981):

Eu(w + Ex̃− πu, ỹ) = Eu(w + x̃, ỹ) (50)

= E[λv(w + x̃, ỹ) + ϕ(w + x̃, ỹ)]
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= λEv(w + Ex̃− πv, ỹ) + Eϕ(w + x̃, ỹ)

≤ λEv(w + Ex̃− πv, ỹ) + Eϕ(w + Ex̃, ỹ)

≤ λEv(w + Ex̃− πv, ỹ) + Eϕ(w + Ex̃− πv, ỹ)

= Eu(w + Ex̃− πv, ỹ).

Since u1 > 0, πu ≥ πv.

(iii) implies (i): We prove this claim by contradiction. Suppose that there exists some w, y

and y′ such that u12(w,y)
v12(w,y) < u1(w,y′)

v1(w,y′) . Because u1, v1, u12 and v12 are continuous, we have

u12(w, y)

v12(w, y)
<

u1(w, y
′)

v1(w, y′)
for (w, y), (w, y′) ∈ [m1,m2]× [n1, n2], (51)

which implies

−u12(w, y)

−v12(w, y)
<

u1(w, y
′)

v1(w, y′)
for (w, y), (w, y′) ∈ [m1,m2]× [n1, n2], (52)

and then

v1(w, y
′)

−v12(w, y)
<

u1(w, y
′)

−u12(w, y)
for (w, y), (w, y′) ∈ [m1,m2]× [n1, n2]. (53)

If G(x, y) is a distribution function and GY (y) is the marginal distribution function of ỹ. such

that GY (y) has positive support on interval [n1, n2] then we have

Ev1(w, ỹ)

−v12(w, y)
<

Eu1(w, ỹ)

−u12(w, y)
for (w, y) ∈ [m1,m2]× [n1, n2], (54)

which can be written as

u12(w, y)

Eu1(w, ỹ)
>

v12(w, y)

Ev1(w, ỹ)
for (w, y) ∈ [m1,m2]× [n1, n2]. (55)

Let us consider w0 ∈ [m1,m2] and x̃ = kz̃ with k > 0, where z̃ is a zero-mean risk with a

distribution function G(z, y) such that GZ(z̃ ≤ z|ỹ = y) is non-increasing in y. We notice that

(a) GZ(z̃ ≤ z|ỹ = y) is non-increasing in y ⇒ E[z̃|ỹ = y], is non-decreasing in y;

(b) GZ(z̃ ≤ z|ỹ = y) is non-increasing in y ⇒ G(ỹ ≤ y, z̃ ≤ z) ≥ GY (ỹ ≤ y)GZ(z̃ ≤ z) (see

Lehmann 1966, Lemma 4).

Let πu(k) denote its associated partial risk premium, which is

Eu(w0 + kz̃, ỹ) = Eu(w0 − πu(k), ỹ). (56)

Differentiating the above equality with respect to k yields

Ez̃u1(w0 + kz̃, ỹ) = −π′
u(k)Eu1(w0 − πu(k), ỹ). (57)
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Observing that πu(0) = 0, we get

π′
u(0) = −Ez̃u1(w0, ỹ)

Eu1(w0, ỹ)
(58)

= −Ez̃Eu1(w0, ỹ) + Cov(z̃, u1(w0, ỹ))

Eu1(w0, ỹ)

= −Cov(z̃, u1(w0, ỹ))

Eu1(w0, ỹ)

= −
∫ ∫

[G(z, y)−GZ(z)GY (y)]dzdyu1(w0, y)

Eu1(w0, ỹ)
(by Cuadras 2002, Theorem 1)

= −
∫ ∫

[G(z, y)−GZ(z)GY (y)]
u12(w0, y)

Eu1(w0, ỹ)
dzdy

Similarly, for v we have

π′
v(0) = −

∫ ∫
[G(z, y)−GZ(z)GY (y)]

v12(w0, y)

Ev1(w0, ỹ)
dzdy. (59)

Now πu and πv can be written as the forms of Taylor expansion around k = 0:

πu(k) = −k

∫ ∫
[G(z, y)−GZ(z)GY (y)]

u12(w0, y)

Eu1(w0, ỹ)
dzdy + o(k) (60)

and

πv(k) = −k

∫ ∫
[G(z, y)−GZ(z)GY (y)]

v12(w0, y)

Ev1(w0, ỹ)
dzdy + o(k). (61)

Then, from (55), we know that, when k → 0, we get πu < πv for G(z, y) such that GY (y) has

positive support on interval [n1, n2] and G(z, y)−GZ(z)GY (y) is positive on domain [m1,m2]×

[n1, n2]. This is a contradiction.

Now let us turn to the other condition. Suppose that there exists some w, y and y′ such

that u11(w,y)
v11(w,y) < u1(w,y′)

v1(w,y′) . Because u1, v1, u11 and v11 are continuous, we have

u11(w, y)

v11(w, y)
<

u1(w, y
′)

v1(w, y′)
for (w, y), (w, y′) ∈ [m′

1,m
′
2]× [n′

1, n
′
2], (62)

which implies

−u11(w, y)

−v11(w, y)
<

u1(w, y
′)

v1(w, y′)
for (w, y), (w, y′) ∈ [m′

1,m
′
2]× [n′

1, n
′
2], (63)

and then

−u11(w, y)

u1(w, y′)
<

−v11(w, y)

v1(w, y′)
for (w, y), (w, y′) ∈ [m′

1,m
′
2]× [n′

1, n
′
2]. (64)

If G(x, y) is a distribution function such that GY (y) has positive support on interval [n′
1, n

′
2],

then we have

−Eu11(w, ỹ)

u1(w, y′)
<

−Ev11(w, ỹ)

v1(w, y′)
for (w, y′) ∈ [m′

1,m
′
2]× [n′

1, n
′
2] (65)
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and

−Eu11(w, ỹ)

Eu1(w, ỹ)
<

−Ev11(w, ỹ)

Ev1(w, ỹ)
. (66)

Let us consider w0 ∈ [m′
1,m

′
2] and x̃ = kz̃, where z̃ is a zero-mean risk and z̃ and ỹ are

independent. Let πu(k) denote its associated partial risk premium, which is

Eu(w0 + kz̃, ỹ) = Eu(w0 − πu(k), ỹ). (67)

Differentiating the equality above with respect to k yields

Ez̃u1(w0 + kz̃, ỹ) = −π′
u(k)Eu1(w0 − πu(k), ỹ), (68)

and so π′
u(0) = 0 since Ez̃ = 0. Differentiating once again with respect to k yields

Ez̃2u11(w0 + kz̃, ỹ) = [π′2
u Eu11(w0 − πu(k), ỹ)− π′′

u(k)Eu1(w0 − πu(k), ỹ). (69)

This implies that

π′′
u(0) = −Eu11(w0, ỹ)

Eu1(w0, ỹ)
Ez̃2. (70)

Similarly, for v we have

π′′
v (0) = −Ev11(w0, ỹ)

Ev1(w0, ỹ)
Ez̃2. (71)

Now πu and πv can be written as the forms of Taylor expansion around k = 0:

πu(k) = −Eu11(w0, ỹ)

Eu1(w0, ỹ)
Ez̃2k2 + o(k2) (72)

and

πv(k) = −Ev11(w0, ỹ)

Ev1(w0, ỹ)
Ez̃2k2 + o(k2). (73)

From (66) we know that, when k → 0, we get πu < πv for G(x, y) such that GY (y) has positive

support on interval [n′
1, n

′
2]. This is a contradiction. Q.E.D.
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