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The Influence of Secrecy on the Communication Structure of
Covert Networks

Abstract

In order to be able to devise successful strategies for destabilizing terrorist organizations it
is vital to recognize and understand their structural properties. This paper deals with the opti-
mal communication structure of terrorist organizations when considering the tradeoff between
secrecy and operational efficiency. We use elements from game theory and graph theory to
determine the ‘optimal’ communication structure a covert network should adopt. Every covert
organization faces the constant dilemma of staying secret and ensuring the necessary coordina-
tion between its members. For several different secrecy and information scenarios this dilemma
is modeled as a game theoretic bargaining problem over the set of connected graphs of given
order. Assuming uniform exposure probability of individuals in the network we show that the
Nash bargaining solution corresponds to either a network with a central individual (the star
graph) or an all-to-all network (the complete graph) depending on the link detection probabil-
ity, which is the probability that communication between individuals will be detected. If the
probability that an individual is exposed as member of the network depends on the information
hierarchy determined by the structure of the graph, the Nash bargaining solution corresponds
to cellular-like networks.

Keywords: covert networks, terrorist networks, Nash bargaining, game theory, information, secrecy.

JEL classification: C50, C78.
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1 Introduction

Terrorist networks inside the Western world pose a challenge to the security environment (Ver-
maat 2002). Furthermore it is known that Europe is a key staging ground for jihadi activities
(Vidino 2007). These terrorist organizations are often characterized as cellular organizations com-
posed of quasi-independent cells and distributed command (Tsvetovat 2005). In addition they are
characterized as being organized decentralized rather than hierarchical (Tucker 2001). It is also
recognized that there are terrorist organizations that operate according to organizational structures
that lie somewhere between hierarchical and completely decentralized (Mishal 2005). Terrorist or-
ganizations are aware of the importance of their network structure and take this explicitly into
account when conducting operations: in a video lecture captured after the fall of Afghanistan in
2001 Mousab al Suri (aka Mustafa Nasar the Syrian, an alleged Al Qaeda affiliate) discusses the
structure a covert organization should adopt (Bergen 2006). He indicates that certain network
structures should be avoided to ensure the secrecy of the organization. Similar considerations are
taken into account in the field of military swarming. Here units resemble an array of dispersed
nodes set to act as an all-channel network. The challenge is to design military networks that depend
on stealth and secrecy. In this case the three most common designs are the ‘path’ the ‘star’ and
the ‘complete’ graph structure. However, Arquilla and Ronfeldt (2001) argue that hybrid forms
are also good candidates.

Explicit topologies of covert networks, based on theoretical considerations, are usually not
provided. Therefore, it is important to develop a more general framework in which the structure of
a covert network can be predicted and analyzed. Terrorist organizations, and more in general covert
organizations, constantly face the dilemma between secrecy and operational capability. Baker and
Faulkner (1993) discuss the structure of covert organizations and conclude that the requirement for
secrecy distinguishes the covert organization from the overt organization: ”every secret organization
has to solve a fundamental dilemma: how to stay secret and at the same time ensure the necessary
coordination and control of its members”. In this paper we analyze the question which network
structure design should be adopted taking the above mentioned dilemma explicitly into account.
That is, we consider both secrecy and information processing efficiency as key network design
parameters and we analyze several different scenarios corresponding to different assumptions on
those parameters. The first scenario corresponds to the situation of a covert operation in its initial
phase in a hostile environment. We assume that it is equally likely for network members to be
exposed and upon exposure of an individual all communication of this individual with others is
detected. In the second scenario we assume that an initial operation is conducted in an environment
of varying hostility. That is, we assume that there is a certain fixed probability that communication
of any exposed individual with others is intercepted. Finally, we consider the scenario of a covert
operation in a hostile environment that passed its initial stage. That is, we assume that exposure
of an individual depends on his centrality with regard to information exchange and upon exposure
all his communication with others is detected.

The relationships between individuals in a covert organization are modeled as a graph. A vertex
can be interpreted as either an individual, a terrorist cell or a military unit. In the latter two cases
we view a cell (or unit) as a single operational entity and we are interested in the communication
structure among cells (units). There exists an edge between two individuals whenever there is an
exchange of information between the corresponding vertices on a regular basis. The exchange of
information for instance may represent the fact that one individual facilitates weapons or false
documents to another, or it may represent target selection information exchange between differing
cells. The underlying idea is that for the covert organization to execute a mission successfully
cooperation and coordination are necessary.
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Secrecy will be defined by using two parameters: the exposure probability and the link detection
probability. In different scenarios these parameters will be varied. The information measure is
modeled in two ways, mainly to check the robustness of our results. First the average distance
is used in defining the network performance in the sense of information. Second a worse-case
performance bound of information exchange is taken by modeling the information measure using
the diameter of the underlying graph. Under the assumption of uniform exposure probability of
network members (an operation in its initial stage) we will show that either the all-to-all graph or
star graph is the optimal design solution, depending on the link detection probability. We show
that cellular networks are optimal if the exposure probability of network members depends on the
network structure.

In section 2 graph theoretical preliminaries will be discussed. The tradeoff between information
and secrecy, and the corresponding Nash bargaining problem, will be discussed in section 3. In
section 4 (approximate) optimal covert networks will be established for several different scenarios
regarding secrecy. To indicate the robustness of the results a variation on the information measure
and its corresponding optimal networks will be discussed in section 5. Section 6 concludes the
paper.

2 Graph Theoretical Preliminaries

In this section we present preliminaries from graph theory. For a general overview we refer to
Bollobas (1998). Note that the word graph and network will be used interchangeably throughout
the text.

A graph g is an ordered pair (V, E), where V represents the finite set of vertices and the set of
edges E is a subset of the set of all unordered pairs of vertices. An edge {i, j} connects the vertices
i and j and is also denoted by ij. The order of a graph is the number of vertices |V | and the size
equals its number of edges |E|. The set of all graphs of order n and size m is denoted with G(n, m).
The set of graphs of order n is denoted by Gn. In this paper we are only interested in connected
graphs because we study the organizational form of groups in which the actions of individuals are
coordinated. Therefore each graph under consideration is assumed to be connected. The degree
of a vertex is the number of vertices to which it is connected. We denote the degree of vertex i
in graph g by di(g). The star graph on n vertices is denoted by gn

star. We denote a ring graph of
order n with gn

ring and a path graph of order n with gn
path. A complete graph of order n is denoted

with gn
comp. See Figure 1 for an illustration of these graphs of order 5. The shortest distance (in

number of edges one has to travel) between vertex i and j is called the geodesic distance between i
and j. The geodesic distance between vertices i, j in g is denoted by lij(g). Clearly, lij(g) = lji(g).
We will write lij instead of lij(g) if there can be no confusion about the graph under consideration.
The total distance T (g) in the graph g = (V, E) is defined by

∑
i,j lij(g) =

∑
i∈V

∑
j∈V lij(g). The

diameter D(g) of a graph g = (V, E) is defined to be the maximum over the geodesic distances
between all pairs of vertices, i.e. D(g) = max(i,j)∈V×V lij(g). Furthermore, we assume without loss
of generality that n ≥ 3.
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Example 1: In figure 1 a star graph, a ring graph, a path graph and a complete graph, all of
order 5, are provided.

Figure 1: Star graph of order 5 (top left), ring graph of order 5 (top right), path graph of order 5
(down left) and complete graph of order 5 (down right).

T (g) D(g)
g5
star 32 2

g5
ring 30 2

g5
path 40 4

g5
comp 20 1

Table 1: Total distance and diameter for several order 5 graphs

We list the total distance and diameter of each graph in Table 1. For instance, the star graph
g5
star has one vertex with distance 1 to all the other vertices (the center vertex) and all other vertices

have distance 1 to the center vertex and distance 2 to the remaining three vertices. Therefore
T (g5

star) = 4 + 4(1 + 2 · 3) = 32. Clearly, the maximum of the geodesic distances in the star graph
equals 2: D(g5

star) = 2.
For the four standard types of graphs the total distances are provided in Lemma 2.1, the proof of
which can be found in the appendix.

Lemma 2.1

(i) T (gn
star) = 2(n− 1)2

(ii) T (gn
ring) =





n3−n
4 if n is odd

n3

4 if n is even

(iii) T (gn
path) = (n−1)n(n+1)

3

(iv) T (gn
comp) = n(n− 1)
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3 The Tradeoff between Information and Secrecy

Usually in graphs the time delay for sending information from one vertex to the other is assumed to
be proportional to the number of edges the information must travel. In covert networks the higher
the number of edges a ‘message’ must travel the more likely it becomes that it will be intercepted.
The average performance, I(g), of a network g ∈ Gn in the sense of information is therefore defined
by the (normalized) reciprocal of the total distance,

I(g) =
n(n− 1)

T (g)
.

Since T (g) ≥ n(n−1) for any g ∈ Gn it follows that 0 ≤ I(g) ≤ 1. If I(g) > I(g′), then in network g
it is easier (in an average sense) to send information around than in network g′. If everybody is able
to communicate with everybody else, information can flow freely which gives the best information
performance: I(gn

comp) = 1.

Example 2: Consider the complete graph g5
comp, the star graph g5

star, the path graph g5
path and

the ring graph g5
ring as in Example 1. It follows that I(g5

comp) = 1, I(g5
star) = 5

8 , I(g5
path) = 1

2 and
I(gring) = 2

3 . Thus we have, I(g5
comp) > I(g5

ring) > I(g5
star) > I(g5

path).

The performance of the network g = (V, E) in sense of secrecy will be indicated by S(g). We
assume that there are two factors for each individual in the network that contribute to this secrecy.
Consider for instance the case of Nawaf al Hazmi, selected by Bin Laden as one of the suicide
operatives for the 9-11 operation. As discussed in the 9-11 Commission Report: ”U.S. intelligence
would analyze communications associated with Midhar whom they identified during this travel,
and Hazmi, whom they could have identified but did not.” (Kean et al. 2002). Thus first, there
is a certain probability αi(g) that upon surveillance individual i will be exposed as member of the
network, and second if i is detected he will expose a fraction of the network which is represented
by 1− ui(g).

We define the secrecy measure S(g) by

S(g) =
∑

i∈V

αi(g)ui(g)

where ui reflects the fraction of the network that remains unexposed when i is detected. This
measure thus reflects the expected fraction of the network that remains undetected. Furthermore
we define,

µ(g) = S(g)I(g) (1)

as a total performance measure or criterion to compare graphs. A motiviation for this choice is
provided below.

Imagine that there are two agents responsible for setting up a covert operation, one tasked with
minimizing the danger of exposure and the other one tasked with ensuring sufficient communication
possibilities between members. The agents bargain over the set of all possible connected networks.
The bargaining will eventually result in a network structure. This approach differs from traditional
network formation models where equilibrium requirements are analyzed such that individuals do
not benefit from altering the structure of the network. In those models network formation is
considered to be a local process (see for instance Jackson 2001). Individuals form or break links
according to some local criterion. Instead, we consider the formation of a network in such a way
that all individuals are willing to adopt a global network structure that is optimal (in a bargaining
sense) in the possibility to coordinate while maintaining secrecy.

6



We thus model the problem of finding an optimal graph of given order by analyzing the tradeoff
between secrecy and operational efficiency as a two-person finite Nash bargaining problem. A two-
person finite bargaining problem is a pair (F, 0) where F ⊂ R2 is a finite set of feasible outcomes and
0 ∈ F represents the disagreement point. Let B denote the class of all finite bargaining problems
of this type. In our setting the set of feasible outcomes equals F∗ ≡ {(S(g), I(g))|g ∈ Gn}, where
each point (S, I) ∈ F∗ corresponds to those graphs g ∈ Gn with secrecy measure S(g) = S and
information measure I(g) = I.
A bargaining solution φ assigns to each (F, 0) ∈ B a non empty subset φ((F, 0)) of F . The Nash
bargaining solution, N(F, 0), is defined by

N(F, 0) = argmax {x1x2|x = (x1, x2) ∈ F} for all (F, 0) ∈ B.

In our application the Nash bargaining solution will lead to those graphs that maximize the product
of secrecy and information measure, that is

N(F∗, 0) = argmax {µ(g) = S(g)I(g)|g ∈ Gn}.

The Nash bargaining solution can be motivated on the basis of the following general properties
which have a strong appeal in our application framework.

1. For all x = (x1, x2) ∈ φ((F, 0)): if t = (t1, t2) such that t1 > x1 and t2 > x2, then t 6∈ F

2. Let F be such that for all (x1, x2) ∈ F it also holds that (x2, x1) ∈ F . Then (x1, x2) ∈ φ((F, 0))
implies (x2, x1) ∈ φ((F, 0)).

3. If F ⊂ G and φ(G) ∩ F 6= ∅, then φ(F ) = φ(G) ∩ F .

4. Let τ : R2 7→ R2 be a positive linear transformation given by τ(x) = (λ1x1, λ2x2), with
λ1, λ2 > 0, for all x = (x1, x2) ∈ R2. Then φ(τ(F )) = τ(φ(F )).

The first property, called Weak Pareto Optimality (WPO), translated to our framework, states
that for any ‘optimal graph’ there can not be another graph which has both a higher secrecy
measure and information measure. The second property of Symmetry (SYM) simply states that the
secrecy measure and information measure are equally relevant. The third property, Independence
of Irrelevant Alternatives (IIA), states that if the set of networks about which the agents bargain
is reduced, those solutions of the larger bargaining problem that are still available should form
the solutions of the smaller bargaining problem. The final property, covariance with positive scale
transformations (COV), states that a positive scaling of the secrecy and information measure (i.e.,
changing units of measurement) rescales the bargaining outcome in the corresponding way. In fact,
the Nash bargaining solution is characterized by the above four properties:

Theorem 3.1 (Mariotti 1998) Let φ be a bargaining solution on B. Then φ = N(F, 0) if and only
if φ satisfies WPO, SYM, IIA and COV.

4 Optimal Structures of Covert Networks

In this section we analyze several different scenarios and present network design solutions for each.
In section 4.1 it is assumed that individuals in the network are exposed randomly and that upon
exposure of an individual all his links with other members are detected. The main result under
those assumptions is that the network’s optimal structure is that of a star graph.

In section 4.2 it is assumed that with probability p communication over a link will be detected
independently and identically for all links. It will be shown that the optimal network structure will
be that of the complete graph for low values of p, and the star graph for high values of p, extending
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the result of section 4.1. Finally, in section 4.3 it is shown that if the network structure is taken
into account in defining the exposure probability of individuals and that if upon exposure all links
of this individual are detected the resulting optimal network structures are cellular. Exact results
are given for n ≤ 7 and algorithms are developed to analyze higher order graphs.

4.1 Scenario 1: Detecting all links of an exposed individual

Initially we define the secrecy individual i ‘contributes’ to the network as the fraction of individuals
that remain unexposed when upon monitoring individual i all his links with his neighbors are
detected. That is, for g ∈ Gn

ui(g) = 1− di(g) + 1
n

.

Moreover we set αi = 1
n . That is, we assume that individuals are uniformly exposed as being a

member of the network.
Let g ∈ G(n,m). It follows that (using subscript 1 to explicitly denote the scenario),

S1(g) =
1
n

∑

i∈V

ui(g) =
n2 − n− 2m

n2
.

With I(g) = n(n−1)
T (g) reflecting the average (information) measure of g and

µ1(g) = S1(g)I(g),

we derive that,

µ1(g) =
n2 − n

n2
· n2 − n− 2m

T (g)
. (2)

Example 3: Reconsider the graphs of Example 1. The values for the secrecy measure, informa-
tion measure and total performance measure of order 5 graphs corresponding to the first scenario
are given in Table 2 below.

S1(g) I1(g) µ1(g)

g5
star

12
25

5
8

3
10

g5
ring

10
25

2
3

4
15

g5
path

12
25

1
2

6
25

g5
comp 0 1 0

Table 2: Secrecy, information and bargaining criterion of order 5 graphs, scenario 1.

We will show that no graph of order n performs better than gn
star. To do this we first derive a

lower bound for the total distance T (g).

Lemma 4.1 Let g ∈ G(n,m). Then T (g) ≥ 2n(n− 1)− 2m

Proof: Since g has size m, there are exactly m tuples {i, j} of vertices for which lij = 1. For all other
n(n−1)

2 −m tuples {i, j} it holds that lij ≥ 2. Hence T (g) ≥ (m+2(n(n−1)
2 −m)) ·2 = 2n(n−1)−2m.

2
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Theorem 4.1 µ1(gn
star) ≥ µ1(g) for all g ∈ Gn

Proof: Suppose there exists a g ∈ G(n,m) such that µ1(g) > µ1(gn
star).

Then n2−n−2m
T (g) > n−2

2(n−1) or equivalently, T (g) < (2n(n− 1)− 4m)n−1
n−2 .

However, one readily checks that (2n(n− 1)− 4m)n−1
n−2 ≤ 2n(n− 1)− 2m.

Hence, T (g) < 2n(n− 1)− 2m, contradicting Lemma 4.1.2

4.2 Scenario 2: Detecting links with probability p

In this paragraph we assume that whenever an individual in the network is being monitored com-
munication between him and one of his neighbors is detected independently with probability p.
The case where p = 1 therefore corresponds to the first scenario as analyzed in the previous sec-
tion. If individual i has di neighbors the number of neighbors that will be detected is binomially
distributed. Consequently we define,

ui(g) = 1− pdi + 1
n

and again assume αi = 1
n . Therefore we have, for g ∈ G(n, m)

S2(g) =
n2 − n− 2pm

n2
.

With I(g) as before we find

µ2(g) = S2(g)I(g) =
n2 − n

n2
· n2 − n− 2pm

T (g)
. (3)

For low values of p the complete graph maximizes µ2.

Theorem 4.2 If p ∈ [0, 1
2 ], then µ2(gn

comp) ≥ µ2(g) for all g ∈ Gn .

Proof: Note that T (gcomp) = n(n − 1) and hence µ2(gn
comp) = n2−n

n2 · (1 − p). Suppose there

exists a g ∈ G(n,m) such that µ2(g) > µ2(gn
comp) then n2−n−2pm

T (g) > (1 − p), or equivalently

T (g) < n2−n−2pm
1−p . However, one readily checks that for all p ∈ [0, 1

2 ] n2−n−2pm
1−p ≤ 2n(n− 1)− 2m.

Hence T (g) < 2n(n− 1)− 2m, contradicting Lemma 4.1.2

For high values of p we extend the result of the previous section (p = 1).

Theorem 4.3 If p ∈ [12 , 1], then µ2(gn
star) ≥ µ2(g) for all g ∈ Gn

Proof: Note that T (gn
star) = 2(n − 1)2 and µ2(gn

star) = n2−n
n2 · n−2p

2(n−1) . Suppose there exists a

g ∈ G(n,m) such that µ2(g) > µ2(gn
star). Then n2−n−2pm

T (g) > n−2p
2(n−1) or equivalently

T (g) < 2(n−1)(n2−n−2pm)
n−2p . For p ∈ [12 , 1] however, it is readily verified that

2(n−1)(n2−n−2pm)
n−2p ≤ 2n(n− 1)− 2m, contradicting Lemma 4.1.2

In case p = 1
2 it follows from Theorem 4.2 and Theorem 4.3 that µ2 is maximal for both gstar and

gcomp. However, for p = 1
2 it is not the case that all graphs maximize µ2: µ2(g5

comp) = µ2(g5
star) = 10

25

whereas µ2(g5
ring) = 8

25 .
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4.3 Scenario 3: Non-uniform exposure probability

Up to now we assumed that αi = 1
n for all i ∈ V . It can be argued that this is the case when a covert

operation is in its initial phase. However, if an operation passed its initial stage the probability of
exposure will vary among network members. This because certain individuals, due to a more central
position in the network, are more likely to be discovered. We model this ‘information centrality’
by the equilibrium distribution of a random walk on the graph. This random walk chooses its next
vertex at random from the neighbors of the current vertex including itself. For g ∈ G(n,m), the
equilibrium distribution is denoted by π = (π1, ..., πn) and is given by πi = di+1

2m+n , see for instance
Tijms (2003). We set αi = πi and choose,

ui(g) = 1− di + 1
n

It follows that

S3(g) =
∑

i∈V

πiui(g)

=
2m(n− 2) + n(n− 1)−∑

i∈V d2
i

(2m + n)n
.

With

I(g) =
n(n− 1)

T (g)

we derive

µ3(g) =
(n− 1)
2m + n

· 2m(n− 2) + n(n− 1)−∑
i∈V d2

i

T (g)
(4)

We obtain explicit expressions of equation µ3 for the standard graphs. The proof is straight-
forward (using lemma 2.1), and therefore omitted.

Theorem 4.4

(i) µ3(gn
comp) = 0

(ii) µ3(gn
star) = n−2

3n−2

(iii)

µ3(gn
ring) =





4(n−1)(n−3)
n3 if n is even

4(n−3)
n(n+1) if n is odd

(iv) µ3(gn
path) = 3(n−2)(3n−5)

n(3n−2)(n+1)

Comparing the expressions provided in Theorem 4.4 we obtain

Corollary 4.1

(i) µ3(g4
path) > µ3(g4

star) > µ3(g4
ring) > µ3(g4

comp)

(ii) µ3(g5
ring) > µ3(g5

path) = µ3(g5
star) > µ3(g5

comp)

(iii) n = {6, 7, 8}: µ3(gn
ring) > µ3(gn

star) > µ3(gn
path) > µ3(gn

comp)

(iv) n = {9, ...}: µ3(gn
star) > µ3(gn

ring) > µ3(gn
path) > µ3(gn

comp)

10



Figure 2: Optimal graphs for scenario 3 for n ∈ {2, ..., 7}, with average information measure.

The graphs g ∈ Gn that maximize µ3(g) for n = 2, ..., 7 are shown in figure 2.

It can be seen that the optimal networks adopt a cellular structure. For large values of n it
is not possible to calculate exact solutions and we resort to a simulation technique. We provide
two algorithms to approximate the graph that maximizes µ3. The first algorithm (I) randomly
generates a graph. Each edge is present with probability 1

2 . If the resulting graph g is connected
µ3(g) is computed and stored. Next another graph g′ is generated and µ3(g′) is compared to µ3(g).
If µ3(g′) > µ3(g) the graph g is replaced by g′. If not, g is kept. This process is iterated for 500.000
times.

The second algorithm (II) is local in nature. The starting point is a connected graph g of small
size (a tree or a ring graph for instance) for which µ3(g) is computed. Next edges are randomly
added one by one as long as this increases the value of µ3. The algorithm ends when adding a single
edge does not increase the value of µ3. Different starting graphs may result in different outcomes.
Therefore several starting graphs are tried and the one yielding the graph g′ with maximum µ3(g′)
is selected. Finally, the outcomes of algorithm I and II are compared and the graph with the highest
value for µ3 is selected as the approximate solution for our µ3 maximization problem.

Figure 3: Local optimization starting graphs (top left and down left) and their resulting approxi-
mate optimal graphs (top right and down right respectively).

Example 6: Consider n = 9. Using algorithm I we generated and compared 500.000 connected
graphs yielding the best graph shown in Figure 3 above (down right) with a total performance
measure of 0.3348. The second algorithm was run starting from several different small order graphs
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of which two are shown in the same figure. Local optimization starting from the down left tree
resulted in the down right graph, the same as resulted from algorithm I. Starting algorithm II
from the top left graph resulted in the graph g shown in the top right, for which µ3(g) = 0.3355.
Actually, using other initial graphs did not yield a graph with a higher value of µ3.

In Figure 4 we present the results of this process for graphs of order n = 8, 9, and 10 respectively.

Figure 4: Approximate optimal graphs for scenario 3, for order 8,9 and 10.

It can be seen that for n = 10 the Petersen graph appears to approximate the optimal one.

Finally Figure 5 depicts approximate optimal graphs for some larger values of n: n = 25 and
n = 40.

Figure 5: Approximate optimal graphs for scenario 3, for n=25 (left) and n=40 (right), average
information measure.

It can be seen that for n = 25 a cellular structure emerges. The degree varies between 5 and
7. For the approximate optimal graph of order 40 also cellular structures appear but now it can
be seen that a central individual emerges (not connected to everyone but with high degree) around
which smaller cells are distributed.
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5 A Variation on the Information Measure

The analysis so far has been conducted with information performance measured by the (normalized)
reciprocal of the total distance in the network. This information measure represented the average
performance of the network with respect to the exchange of information. Here we repeat the
analysis, using an information measure taking worst case performance into account. Actually,
in considering problems in communication over networks or circuit layout optimization often the
diameter is considered to be the decisive parameter (Chung 1987). We define the worst case
performance information measure I(g) by

I(g) =
1

D(g)
. (5)

We use the upper bar to explicitly differentiate this measure from the information measure used
before. Obviously 0 ≤ I(g) ≤ 1 and I(gcomp) = 1. Moreover, if I(g) > I(g′), then worst case
performance in g is better than in g′.

First consider scenario 1: uniform exposure probability and detection of all links. For g ∈
G(n,m) with,

S1(g) =
n2 − n− 2m

n2

and I(g) as in equation (5) we have,

µ1(g) = S1(g)I(g) =
n2 − n− 2m

D(g)n2
. (6)

It turns out that gn
star maximizes µ1 over Gn.

Theorem 5.1 For all g ∈ Gn, µ1(gn
star) ≥ µ1(g)

Proof: Let g ∈ G(n,m). Clearly m ≥ n− 1 (we only consider connected graphs). With µ1(gn
star) =

(n−1)(n−2)
2n2 it follows readily that µ1(g) > µ1(gstar) implies D(g) < 2. This however would lead to

D(g) = 1 and thus g = gcomp. Since µ1(gcomp) = 0 we arrive at a contradiction. 2

Next we consider scenario 2 with a probability p of link detection, again assuming uniform
exposure of individuals. Using the worst case performance information measure I(g) and secrecy
measure

S2(g) =
n2 − n− 2pm

n2

we have for all g ∈ G(n,m),

µ2(g) = S2(g)I(g) =
n2 − n− 2pm

D(g)n2
(7)

Theorem 5.2 For all g ∈ Gn and all p ∈ [0, 1], we have,

(i) µ2(gn
comp) ≥ µ2(g) if p ≤ n

2(n−1)

(ii) µ2(gn
star) ≥ µ2(g) if p ≥ n

2(n−1)

Proof: If g ∈ Gn is such that µ2(g) > µ2(gstar) then D(g) = 1 and consequently g = gn
comp. Note

that µ2(gcomp) = (n2−n)(1−p)
n2 and µ2(gstar) = n2−n(1+2p)+2p

n2 . Therefore µ2(gn
comp) ≥ µ2(gn

star) if and
only if p ≤ n

2(n−1) . 2
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Finally we analyze scenario 3 (non-uniform exposure probability). With secrecy measure for
g ∈ G(n,m) given by

S3(g) =
2m(n− 2) + n(n− 1)−∑

i∈V d2
i

(2m + n)n

it follows that

µ3(g) = S3(g)I(g) =
2m(n− 2) + n(n− 1)−∑

i∈V d2
i

D(g)(2m + n)n
(8)

The graphs g ∈ Gn that maximize µ3 for n ∈ {2, ..., 7} are provided in Figure 6.

Figure 6: Optimal graphs for scenario 3 with n ∈ {2, ..., 7}, worst-case information measure.

It can be seen that the optimal graphs are similar to those for scenario 3 with I(g) = n(n−1)
T (g)

(see figure 2). Only the optimal graph of order n = 4 is different. This shows the robustness of our
results.

Finally we present approximate optimal graphs for larger orders, using the same approximation
technique as explained in the section 4.

Figure 7: Approximate optimal graphs for scenario 3 with n=25 (left) and n=40 (right), worst-case
information measure.
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6 Conclusion

In this paper we have analyzed the dilemma every covert organization faces: how to stay secret
and at the same time ensure good coordination. We modeled the structure of a covert organization
as an undirected graph. The vertices can either be interpreted as individuals in the organization,
military units or as terror cells. The selection of the optimal organizational structure was modeled
as a bargaining problem between an agent responsible for the secrecy of the organization and
another one responsible for ensuring operational efficiency.

Different scenarios were developed and analyzed by assigning a specific information measure
and a specific secrecy measure to the set of connected graphs. The first scenario corresponded
to a covert organization conducting an operation in its initial stage, in a hostile environment.
We established that centralizing information flow by adopting a star network is optimal. The
second scenario consisted of a covert organization in its initial stages in an environment of varying
hostility. We established that all-to-all communication is optimal in a friendly environment (for
instance in a safe-house) and that the star network is optimal in a hostile environment. Finally, the
communication structure of a covert network that passed its initial stages in a hostile environment
was analyzed (i.e., jihadi networks in Europe). In the event of such a scenario we established that
cellular networks are optimal.

Our results are consistent with the apparent organizational forms of current terrorist networks,
particularly Al Qaeda’s ‘network of networks’. The results are of twofold use. First they predict the
structure of terrorist networks which is important to be able to detect and combat them. Second
they aid in the design of military network structures that have to depend on stealth and secrecy
(i.e., military swarming). Finally, the analysis in this paper presents a quantitative theoretical
framework for reasoning about covert networks.
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A Appendix

Proof of lemma 2.1:

(i) Denote the center vertex of gn
star with index c. Clearly

∑
i∈V lci(gn

star) = n − 1. For j ∈ V ,
j 6= c

∑
i∈V lji(gn

star) = 1 + 2(n − 2) = 2n − 3. Therefore T (gn
star) =

∑
i∈V

∑
j∈V lij(gn

star) =
n− 1 + (n− 1)(2n− 3) = 2(n− 1)2.

(ii) First consider the case when n is odd. Then for all i ∈ V :
∑

j∈V lij(gn
ring) = 2(1 + 2 + ... +

n−1
2 ) = (n−1)(n+1)

4 . Hence, T (gn
ring) = (n−1)n(n+1)

4 for the case that n is odd. In case n is even
it follows that for all i ∈ V :

∑
j lij(gn

ring) = 2(1 + 2 + ... + (n
2 − 1)) + n

2 = n2

4 . Therefore

T (gn
ring) = n3

4 in case n is even.

(iii) There are n− 1 tuples {i, j} such that lij(gn
path) = 1, n− 2 tuples {i, j} such that lij(gn

path) =
2,..., 1 tuple {i, j} such that lij(gn

path) = n− 1. Each tuple has to be counted twice, therefore

T (gn
path) = 2{(n− 1) + 2(n− 2) + 3(n− 3) + ... + (n− 1)(n− (n− 1))}

= 2{n + 2n + 3n + ... + (n− 1)n− (1 + 22 + 32 + ... + (n− 1)2)}

= 2{n ·
n−1∑

k=1

k −
n−1∑

k=1

k2}

= 2{n · n(n− 1)
2

− (n− 1)n(2n− 2 + 1)
6

}

=
(n− 1)n(n + 1)

3

(iv) For all i ∈ V it holds that
∑

j∈V lij(gn
comp) = n− 1. Thus T (gn

comp) = n(n− 1). 2
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