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A Dynamic Auction for Differentiated Items under Price Rigidities

Dolf Talman1 and Zaifu Yang2

Abstract: A number of heterogeneous items are to be sold to several bidders.

Each bidder demands at most one item. The price of each item is not com-

pletely flexible and is restricted to some admissible interval. In such a market

economy with price rigidities, a Walrasian equilibrium usually fails to exist. To

facilitate the allocation of items to the bidders, we propose an ascending auc-

tion with rationing that yields a constrained Walrasian equilibrium outcome.

The auctioneer starts with the lower bound price vector that specifies the low-

est admissible price for each item, and each bidder responds with a set of items

demanded at those prices. The auctioneer adjusts prices upwards for a min-

imal set of over-demanded items and chooses randomly a winning bidder for

any item if the item is demanded by several bidders and its price has reached

its highest admissible price. We prove that the auction finds a constrained

Walrasian equilibrium outcome in a finite number of steps.

Keywords: Ascending auction, multi-item auction, constrained equilibrium,

price rigidities, rationing.

JEL classification: D44.

1 Introduction

Economists have extensively studied market environments where there may be restrictions

on the prices of commodities and services. There are many economic or political reasons

for the existence of price rigidities. For instance, to prevent breakdown of stock markets,

often ceilings and floors are imposed upon the price of each stock; price controls are used to
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reduce inflation or deflation; and minimum wages are employed to protect certain groups

of the society; see e.g., Drèze (1975), Dehez and Drèze (1984), Cox (1980), van der Laan

(1980), Kurz (1982), Azariadis and Stiglitz (1983), Weddepohl (1987), Herings et al. (1996)

among many others. When there are fixed prices or price rigidities, rationing is needed

to restrict how much agents are allowed to purchase or sell. As a result, rationing will

help prices to facilitate the distribution of commodities among agents. However, efficiency

cannot be fully attained in general.

While the literature has focused almost entirely on economic models with divisible

goods, we will study the efficient allocation of heterogeneous indivisible goods such as

houses or apartments among several agents. Each agent demands at most one item. The

price of each item is restricted to an admissible interval and thus is assumed to be not

perfectly flexible. The lowest admissible price of an item can be seen as a reservation price,

while the highest admissible price of an item may be exogenously given by the government

for the purpose of either preventing speculation or protecting low-income families so that

they can afford to buy necessary goods, such as an apartment. In such a market economy,

a Walrasian equilibrium usually fails to exist. To facilitate the allocation of items to the

bidders (or agents), we propose an ascending auction with rationing that produces a con-

strained Walrasian equilibrium outcome. The auctioneer starts with the lower bound price

vector that specifies the lowest admissible price for each item, and each bidder responds

with a set of items demanded at those prices. The auctioneer adjusts prices upwards for a

minimal set of over-demanded items and chooses randomly a winning bidder for an item if

this item is demanded by several bidders and its price has reached its highest admissible

price. We prove that the auction finds a constrained Walrasian equilibrium outcome in a

finite number of steps. At such an equilibrium a bidder can be rationed on his demand

for an item if the price of the item is on its upper bound, if the item is assigned to some

other bidder, and if he will demand the item when the rationing is removed from him.

Moreover, if an item is not assigned in equilibrium its price must be on its lower bound.

The auction can be seen as a variant of the auction of Demange et al. (1985) for selling

multiple items without price rigidities. Another related mechanism is due to Crawford and

Knoer (1981). Maskin (2000) studied an auction for the allocation of one item when buyers
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may be significantly budget-constrained.

This paper proceeds as follows. Section 2 sets up the model. Section 3 presents the

dynamic auction and establishes the main theorem.

2 The Model

An auctioneer wishes to sell a set of heterogeous items N = {0, 1, · · · , n}, to a group of

bidders M = {1, 2, · · · ,m}. The item 0 is a dummy good which can be assigned to more

than one bidder. Without loss of generality, we assume that the auctioneer values every

item at zero. Every bidder i ∈M attaches an integer monetary value to each item, namely,

each bidder i has a utility function V i : N → Z+ with V i(0) = 0. A feasible allocation π

assigns every bidder i ∈ M an item π(i) such that no item in N \ {0} is assigned to more

than one bidder. Note that a feasible allocation may assign the dummy good to several

bidders and a real item j 6= 0 may not be assigned to any bidder at all. An item j ≥ 1

is unassigned at π if there is no bidder i such that π(i) = j. A feasible allocation π∗ is

efficient if
∑
i∈M V i(π∗(i)) ≥ ∑i∈M V i(π(i)) for every feasible allocation π.

A price vector p ∈ IRN
+ indicates a price for every good. The price of each good

j ∈ N \ {0} is not completely flexible and is restricted to an interval [p
j
, p̄j], where p

j
and

p̄j are integers and 0 ≤ p
j
< p̄j. The set

P = {p ∈ IRN | p0 = 0, p
j
≤ pj ≤ p̄j, j = 1, · · · , n }

denotes the set of admissible prices. The price of the dummy good is always fixed at zero.

When rationing does not take place, the demand set of bidder i ∈M at any price vector

p ∈ IRN
+ is given by

Di(p) = {j | V i(j)− pj ≥ V i(k)− pk for every k ∈ N}.

A Walrasian equilibrium consists of a price vector p ∈ IRN
+ and a feasible allocation π such

that π(i) ∈ Di(p) for all i ∈M and pj = 0 for any unassigned good j at π. It is well-known

that a Walarasian equilibrium exists in the economy when there are no price rigidities.

In the case of price restrictions, a Walrasian equilibrium may not exist since the equilib-

rium price vector may not be admissible. In this case we may introduce a rationing scheme
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Ri ∈ {0, 1}N for each bidder i ∈M with Ri
0 = 1. For i ∈M , the vector Ri dictates which

goods bidder i ∈M can demand and which goods bidder i cannot demand, namely, Ri
j = 1

means that bidder i is allowed to demand good j, while Ri
j = 0 means that bidder i is not

allowed to demand good j. Given the rationing scheme Ri and an item j with Ri
j = 0, the

vector Ri
−j will denote that Ri

j is being ignored and bidder i is allowed to demand item j.

A list R = (R1, R2, · · · , Rm) of all bidders’ rationing schemes is called a rationing system.

At admissible price vector p ∈ P and rationing system R = (R1, R2, · · · , Rm), the

constrained demand set of bidder i ∈M is given by

Di(p,Ri) = {j ∈ N | Ri
j = 1 and V i(j)− pj = max{V i(h)− ph | Ri

h = 1}}.

Now we can adapt the classical notion of Walrasian equilibrium to the current model under

price rigidities.

Definition 2.1 A tuple (p∗, R∗, π∗) constitutes a constrained Walrasian equilibrium if

(i) π∗ is a feasible allocation, p∗ is an admissible price vector, and R∗ is a rationing

system;

(ii) π∗(i) ∈ Di(p∗, Ri∗) for i ∈M ;

(iii) p∗j = p
j

if π∗(i) 6= j for all i ∈M ;

(iv) p∗j = p̄j and π∗(h) = j for some h ∈M if Ri∗
j = 0 for some i ∈M ;

(v) j ∈ Di(p∗, Ri∗
−j) if Ri∗

j = 0.

Conditions (i) and (ii) need no explanation. Condition (iii) says that the price of an

unassigned item must be equal to its lower bound price. Condition (iv) states that a

bidder can be rationed on an item if the item is assigned to some other bidder and if its

price is on its upper bound. Condition (v) says that a bidder can be rationed on an item

only if without rationing on that item, the bidder will demand the item.

It is well-known (see e.g., Drèze (1975)) that an equilibrium allocation in a constrained

Walrasian equilibrium in economies with divisible goods is not efficient when there are

binding rationings on purchase or sale. It is, however, easy to show by example that this

observation may not be true for economies with indivisible goods as studied here.
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3 The dynamic auction

We now establish the existence of a constrained Walrasian equilibrium for the economy

under price rigidities.

Theorem 3.1 There exists at least one constrained Walrasian equilibrium in the model

under price rigidities.

We shall design a dynamic auction that can actually find in a finite number of steps a

constrained Walrasian equilibrium in the economy. Roughly speaking, the auctioneer starts

the auction at the lower bound prices of the items being sold. Then the bidders respond

with their demand sets. The auctioneer accordingly eliminates sets of over-demanded items

by increasing their prices or by a lottery to determine a rationing system so that no price of

any item crosses its upper bound. The auction stops when there are no set over-demanded

items left, which gives a constrained equilibrium as will be shown below. As a result, this

yields a constructive proof of the above theorem.

A set of real items S ⊆ N \ {0} is over-demanded at a price vector p ∈ IRN , if the

number of bidders who demand only items in S is strictly greater than the number of items

in S, i.e., |{i ∈ M | Di(p) ⊆ S}| > |S|. An over-demanded set S is said to be minimal if

no strict subset of S is an over-demanded set. Now we are ready to describe the dynamic

auction under price rigidities. Note that in the auction process, since the set of bidders

and the set of items are shrinking, the demand set of each bidder and the over-demanded

sets need to be adapted accordingly.

The Dynamic Auction under Price Rigidities

Step 1: The auctioneer announces the set of items N = {0, 1, · · · , n} for sale and the

lower bound price vector p. The bidders, denoted by M = {1, · · · ,m}, come to bid.

Let t := 0 and pt := p. Go to Step 2.

Step 2: The auctioneer asks every remaining bidder i to report his demand set Di(pt)

on the remaining items and checks whether there is any over-demanded set of items

at pt. If there is no over-demanded set of items, the auction stops. Otherwise,
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there is at least one over-demanded set. The auctioneer first chooses a minimal over-

demanded set S of items and next checks whether the price of any item in the set

S has reached its upper bound. Let S̄ := {j ∈ S | ptj = p̄j}. If S̄ is empty, the

auctioneer increases the price of each item in S by one unit and keeps the prices of

all other items unchanged. Let t := t+ 1 and return to Step 2. If S̄ is not empty, go

to Step 3.

Step 3: The auctioneer picks an item at random from S̄ and asks all bidders who

demand the item to draw lots for the right to buy the item. Then the (unique)

winning bidder gets the item by paying its current price and exits from the auction.

Delete this bidder from M and delete his won item from N . If M = ∅ or N = ∅, the

auction stops. Otherwise, let t := t+ 1 and return to Step 2.

Before proving the convergence of the auction, we illustrate by example how the auction

actually operates.
Example 1: Suppose that there are five bidders (1, 2, 3, 4, 5) and four items (0, 1, 2,
3, 4) in a market. The lower and upper bound price vectors are p = (0, 5, 4, 1, 5), and
p̄ = (0, 6, 6, 4, 7). Bidders’ values are given in Table 1.

Table 1: Bidders’ values on each item.

Items 0 1 2 3 4

Bidder 1 0 4 3 5 7

Bidder 2 0 7 6 8 3

Bidder 3 0 5 5 7 7

Bidder 4 0 9 4 3 2

Bidder 5 0 6 2 4 10

The auction starts at the price vector p0 = (0, 5, 4, 1, 5). Then bidders report their

demand sets: D1(p0) = {3}, D2(p0) = {3}, D3(p0) = {3}, D4(p0) = {1} and D5(p0) =

{4}. The set S = {3} is a minimal over-demanded set and the auctioneer adjusts p0 to

p1 = (0, 5, 4, 2, 5). The demand sets and price vectors and other relevant data generated

by the auction are illustrated in Table 2. In Step 3, the price of item 3 has reached its
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upper bound 4. The auctioneer assigns randomly item 3, say, to bidder 2. So bidder 2

gets item 3 by paying 4 dollars and leaves the auction. Then we have M = {1, 3, 4, 5}

and N = {0, 1, 2, 4}. The auctioneer adjusts p3 to p4 = (0, 5, 4, 5). In Step 6, there is no

over-demanded set of items at p6 and the auctioneer can assign item 2 to bidder 3, item 1

to bidder 4, and item 4 to bidder 5. In the end, bidder 1 gets no item and pays nothing;

bidder 2 gets item 3 and pays 4; bidder 3 gets item 2 and pays 4; Bidder 4 gets item 1

and pays 5; Bidder 5 gets item 4 and pays 7. Letting p∗ = (0, 5, 4, 4, 7), π∗ = (0, 3, 2, 1, 4),

R1∗ = (1, 1, 1, 0, 1), R2∗ = (1, 1, 1, 1, 1), R3∗ = (1, 1, 1, 0, 1), R4∗ = (1, 1, 1, 1, 1), and R5∗ =

(1, 1, 1, 1, 1), (p∗, π∗, R∗) is a constrained equilibrium.

Table 2: The data generated by the auction in Example 2.

Step Prices N M S D1(p) D2(p) D3(p) D4(p) D5(p)

0 (0, 5, 4, 1, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3} {3} {3} {1} {4}

1 (0, 5, 4, 2, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3} {3} {3} {1} {4}

2 (0, 5, 4, 3, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3, 4} {3} {3} {1} {4}

3 (0, 5, 4, 4, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} ∅ {4} {3} {3} {1} {4}

4 (0, 5, 4, 5) {0, 1, 2, 4} {1, 3, 4, 5} {4} {4} {3} {4} {1} {4}

5 (0, 5, 4, 6) {0, 1, 2, 4} {1, 3, 4, 5} {4} {4} {3} {2, 4} {1} {4}

6 (0, 5, 4, 7) {0, 1, 2, 4} {1, 3, 4, 5} ∅ {0, 4} {3} {2} {1} {4}

We can establish the following finite convergence theorem for the auction.

Theorem 3.2 The dynamic auction finds a constrained equilibrium in a finite number

of steps.

Proof: It is clear that the auction will stop at some step t. Let p∗ and π∗ be the price

vector and the allocation at step t generated by the auction. We will show that there is a

rationing system R∗ such that (p∗, π∗, R∗) constitutes a constrained Walrasian equilibrium.

To achieve this, we construct an equivalent version of the dynamic auction that yields the

same allocation π∗ and price vector p∗ and in addition generates a rationing system R∗. At
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price vector p ∈ IRN and rationing system R a set of real items S ⊆ N \ {0} is said to be

over-demanded if the number of bidders who given the rationing demand only items in S

is strictly greater than the number of items in S, i.e., |{i ∈M | Di(p,Ri) ⊆ S}| > |S|. An

over-demanded set S is said to be minimal if no strict subset of S is an over-demanded set.

We can now describe the equivalent version of the dynamic auction under price rigidities.

The Equivalent Dynamic Auction under Price Rigidities

Step 1: The auctioneer announces the set of items N = {0, 1, · · · , n} for sale and the

lower bound price vector p. The bidders, denoted by M = {1, · · · ,m}, come to bid.

The auctioneer sets rationing system R with Ri
j = 1 for every i ∈M and j ∈ N and

price p := p. The set W of winning bidders andO of sold items are both empty and

go to Step 2.

Step 2: The auctioneer asks every bidder i to report his demand set Di(p,R). The

auctioneer sets Ri
j = 0 for any bidder i 6∈ W and any j ∈ O∩Di(p,R), and asks such

bidder i to resubmit his demand set at p and this adjusted rationing system R. Then

the auctioneer checks whether there is any over-demanded set of goods at p and R.

If there is no over-demanded set of items, the auction stops. Otherwise, there is at

least one over-demanded set. The auctioneer chooses a minimal over-demanded set S

of items and checks whether the price of any item in the set S has reached its upper

bound. Let S̄ := {j ∈ S | pj = p̄j}. If S̄ is empty, the auctioneer increases in p the

price of each item in S by one unit and keeps the prices of all other items and the

rationing system R unchanged. Return to Step 2. If S̄ is not empty, go to Step 3.

Step 3: The auctioneer picks an item j ∈ S̄ at random and asks all bidders who

demand the item to draw lots for the right to buy the item. The seller sets Ri
j := 0

for every losing bidder i who demanded item j. The winning bidder and item j are

added to the sets W and O, respectively, and go to Step 2.

Clearly, both auctions produce the same price vector p∗ and the same allocation π∗. The

difference is that the second auction also produces a rationing system R∗. Following Roth
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and Sotomayer (1990, Section 8.3), it is not difficult to verify that (p∗, π∗, R∗) is indeed a

constrained Walrasian equilibrium.
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