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Abstract

The last decade methods for quantifying the research output of individual
researchers have become quite popular in academic policy making. The h-
index (Hirsch, 2005) constitutes an interesting quality measure that has
attracted a lot of attention recently. It is now a standard measure available
for instance on the Web of Science. In this paper we establish the asymptotic
normality of the empirical h-index. The rate of convergence is non-standard:√

h/(1 + nf(h)), where f is the density of the citation distribution and n

the number of publications of a researcher. In case that the citations follow
a Pareto-type or a Weibull-type distribution as defined in extreme value
theory, our general result nicely specializes to results that are useful for
constructing confidence intervals for the h-index.

JEL codes: C13, C14.

Key words: Asymptotic normality, confidence interval, extreme value theory,

research output, scientometrics, tail empirical process.

1 Introduction

Since its introduction in Hirsch (2005), the h-index has been used as a measure

to quantify the research output of individual scientists based on the distribution
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of citation counts of the different papers of the individual. It is now a standard

measure available in Citation Reports on the Web of Science. It can also be applied

to higher levels of aggregation such as the different papers that appeared in a given

journal over a particular period of time (Braun et al., 2005). If a researcher has

n publications and each of the m most cited publications has at least m citations,

then the maximal m is the empirical h-index of this researcher. In recent papers

(Glänzel, 2006 and Egghe and Rousseau, 2006) the first theoretical properties of

the h-index were derived. The underlying citation distribution was then assumed

to be of Pareto-type. Specifically the dependence of the h-index on the basic

parameters of the distribution and on the sample size was discussed. However the

distribution of the empirical h-index as an estimator of a statistical functional was

not discussed yet.

In order to be more precise, let us introduce some notation. Let X1, . . . , Xn be

i.i.d. random variables with common distribution function F . They denote the

numbers of citations of the n articles of a certain researcher (or from a particular

journal) with citation distribution F . Although the citation counts follow a discrete

distribution, we will henceforth assume that F is continuous. That is of course

mathematically convenient but, as shown below, it also allows to discover the

main characteristics of the asymptotics. Let x∗ denote the right endpoint of F :

x∗ = sup{x ∈ R : F (x) < 1}. We will assume x∗ = ∞, since the case x∗ < ∞ is

not of interest in scientometrics, see the monograph Egghe (2005). We will also

assume F (0) = 0, since this is natural in this context, but it is actually not needed.

From the definition above it follows that the theoretical h-index h = hn of a

researcher or a journal is defined by

1− F (h) =
h

n
;

see also Glänzel (2006). Observe that h is unique and that h = hn → ∞ and

h/n → 0, as n → ∞. Denoting the (right-continuous) empirical distribution

function of the Xi, i = 1, . . . , n, by F̂ , the empirical Hirsch index Ĥ is defined by

1− F̂ (Ĥ) ≤ Ĥ

n
and 1− lim

x↑Ĥ
F̂ (x) ≥ Ĥ

n
. (1)

These two inequalities indeed have a unique solution. In case F̂ puts only mass

at non-negative integer values this definition coincides with the aforementioned
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definition in Hirsch (2005). Ĥ is a simple and comprehensible measure that works

at any given level of aggregation. It combines citation impact with publication

activity. Because of the Glivenko-Cantelli theorem we have that Ĥ → ∞ a.s.

(n →∞).

It is the aim of this paper to study the precise asymptotic behavior of Ĥ in a

completely non-parametric setting. We will establish the expected asymptotic

normality, but the rate of convergence is rather non-standard. In Section 2 the

general asymptotic result will be stated and derived. In Section 3 we specify the

general result to the case of Pareto-type and Weibull-type distributions. This

allows to construct confidence intervals for h on the basis of Ĥ. In Section 4 we

apply these results to the publication-citation record of two well-known scientists.

2 Main results

In this section we present our general, main results. The next proposition leads to

the proper consistency result and is as well the main step to asymptotic normality

of Ĥ.

Proposition 1 If F is continuous and x∗ = ∞, then

Ĥ − h√
h

+
n(F (Ĥ)− F (h))√

h

d→ N(0, 1) as n →∞. (2)

Since the terms on the left in Proposition 1 have the same sign, we obtain con-

sistency of Ĥ. Obviously the result has to be stated in a ratio-setting; the usual

consistency formulation is pointless since h = hn →∞ as n →∞.

Corollary 1 (Consistency) Under the assumptions of Proposition 1, we have

Ĥ

h

P→ 1.

We now state the main result, asymptotic normality of Ĥ; note the unusual con-

vergence rate.

Theorem 1 (Asymptotic normality) Assume F is continuous, the density f = F ′
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exists in h, and x∗ = ∞. Assume also the following condition holds: for all R > 0,

sup
−R≤r≤R

∣∣∣∣∣∣
n

(
F

(
h + r

√
h

nf(h)

)
− F (h)

)

r
√

h
− 1

∣∣∣∣∣∣
→ 0 as n →∞. (3)

Then
1 + nf(h)√

h
(Ĥ − h)

d→ N(0, 1) as n →∞.

Proof of Proposition 1 Let αn be the uniform empirical process based on the

F (Xi), 1 ≤ i ≤ n, so √
n(F̂ − F ) = αn ◦ F a.s.

We have, almost surely,

Ĥ − h ≥ n(1− F̂ (Ĥ))− n(1− F (h))

= n(F (h)− F̂ (Ĥ))

= −n(F̂ (Ĥ)− F (Ĥ) + F (Ĥ)− F (h))

= −√nαn(F (Ĥ))− n(F (Ĥ)− F (h)).

Hence

Ĥ − h + n(F (Ĥ)− F (h)) ≥ −√nαn(F (Ĥ)) a.s.

Similarly we obtain

Ĥ − h + n(F (Ĥ)− F (h)) ≤ −√nαn(F (Ĥ)) + 1 a.s.

Hence
Ĥ − h√

h
+

n(F (Ĥ)− F (h))√
h

= −
√

n

h
αn(F (Ĥ)) + o(1) a.s. (4)

Let wn be the tail empirical process near 1, based on αn, i.e.

wn(s) =

√
n

h
αn

(
1− h

n
s

)
, 0 ≤ s ≤ n

h
.

Write

Tn =
n(F (Ĥ)− F (h))√

h
.

Using both these definitions and the definition of h, (4) translates to

Ĥ − h√
h

+ Tn = −wn

(
1− Tn√

h

)
+ o(1) a.s. (5)
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This yields
∣∣∣∣∣

Ĥ − h√
h(1 ∨ (1− Tn/

√
h))3/4

+
Tn

(1 ∨ (1− Tn/
√

h))3/4

∣∣∣∣∣ ≤ sup
0≤s≤n/h

|wn(s)|
(1 ∨ s)3/4

+o(1) a.s.

(6)

It is well-known that

sup
0≤s≤n/h

|wn(s)|
(1 ∨ s)3/4

= OP (1) (7)

see, e.g., Einmahl (1997). Recall that Ĥ − h and n(F (Ĥ)− F (h)) have the same

sign. Hence using (7), we obtain from (6) that

Tn

(1 ∨ (1− Tn/
√

h))3/4
= OP (1).

It follows that Tn1[Tn≥−1] = OP (1). If Tn < −1, we have for large n

1 ∨ (1− Tn/
√

h) = 1− Tn/
√

h ≤ 1− Tn ≤ −2Tn.

Hence Tn1[Tn<−1] = OP (1), so Tn = OP (1). This yields

1− Tn√
h

P→ 1.

Combining this with (5) and the weak convergence of wn on [0, 2] to a standard

Wiener process (see, e.g., Einmahl (1997)) yields (2). 2

Proof of Theorem 1 From Proposition 1 we see that
(

1 +
n(F (Ĥ)− F (h))

Ĥ − h

)
Ĥ − h√

h

d→ N(0, 1).

So it suffices to show that

1 + nf(h)

1 + n(F (Ĥ)−F (h))

Ĥ−h

P→ 1,

which is implied by
F (Ĥ)− F (h)

f(h)(Ĥ − h)

P→ 1. (8)

To prove (8), observe that it follows from Proposition 1 that F (Ĥ) − F (h) =

OP (
√

h/n), i.e. for ε > 0 we can find an Mε > 0 such that with probability greater

than 1− ε, for large n

|F (Ĥ)− F (h)| ≤ Mε

√
h

n
. (9)
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Define r̂ = nf(h)(Ĥ − h)/
√

h. Then (9) reads

∣∣∣∣∣F
(

h +
r̂
√

h

nf(h)

)
− F (h)

∣∣∣∣∣ ≤
Mε

√
h

n
. (10)

Assume |r̂| > 2Mε. Then from the condition, with R = 2Mε, it follows that

∣∣∣∣∣F
(

h +
r̂
√

h

nf(h)

)
− F (h)

∣∣∣∣∣ ≥
3

2

Mε

√
h

n
.

This contradicts (10). Hence with probability greater than 1 − ε, for large n,

|r̂| ≤ 2Mε. Now apply the condition again with R = 2Mε, then

1− ε ≤ n(F (Ĥ)− F (h))

r̂
√

h
≤ 1 + ε.

This is (8). 2

3 Pareto-type and Weibull-type tails

From our main theorem two important corollaries follow, which immediately yield

a confidence interval for h. These corollaries also show that the condition in The-

orem 1 is appropriate and can be validated under popular, semiparametric models

encountered in extreme value theory and scientometrics.

First assume that the distribution function F satisfies the von Mises condition for

heavy-tailedness, i.e. we have

lim
x→∞

xf(x)

1− F (x)
= α. (11)

with tail index α = 1/γ > 0, with γ the extreme value index. It is then immediate

that

lim
n→∞

nf(h) = lim
n→∞

hf(h)

1− F (h)
= α.

Nevertheless, it is remarkable that under this often-used, semiparametric model,

the complicated quantity nf(h) in the asymptotic normality statement can be re-

placed by α. For differentiable distribution functions, assumption (11) is equivalent
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to stating that the tail of the distribution is Pareto-type (or equivalently Zipfian

or Lotkaian):

1− F (x) = x−α`(x)

where ` is a slowly varying function:

`(tx)

`(t)
→ 1 as t →∞ for every x > 0.

This assumption is of fundamental importance in the field of informetrics (Egghe,

2005). When `(x) = C(1 + o(1)) for some positive constant C, when x → ∞,

one easily verifies that h = (Cn)1/(1+α)(1 + o(1)). Further we need Karamata’s

representation theorem (see Theorem 1.3.1 in Bingham et al., 1987):

`(x) = c(x) exp

(∫ x

1

δ(u)du/u

)
(12)

with c(x) → c0 > 0 and δ(x) → 0, as x →∞.

Let γ̂ be one of the many known consistent estimators of the extreme value index

γ > 0 and set α̂ = 1/γ̂; see for instance Chapters 4 and 5 in Beirlant et al. (2004).

Corollary 2 When (11) and (12) hold with c ≡ c0, we have

1 + α̂√
Ĥ

(Ĥ − h)
d→ N(0, 1).

Proof of Corollary 2 We only need to check condition (3) of Theorem 1. With

(12) it follows that

F

(
h +

r
√

h

nf(h)

)
− F (h)

= h−α`(h)

(
1−

(
1 + r/(

√
hnf(h))

)−α `(h + r
√

h/(nf(h)))

`(h)

)
.

When the function c is constant we have for large n

∣∣∣∣∣log

(
`(h + r

√
h/(nf(h)))

`(h)

)∣∣∣∣∣ =

∣∣∣∣∣
∫ h+r

√
h/(nf(h))

h

δ(u)du/u

∣∣∣∣∣ ≤
2|r|√

hnf(h)
sup

u≥h/2

|δ(u)|.
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Hence, since nh−α−1`(h) = 1 by the definition of h, we obtain after a straightfor-

ward calculation

sup
−R≤r≤R

∣∣∣∣∣∣
n

(
F

(
h + r

√
h

nf(h)

)
− F (h)

)

r
√

h
− 1

∣∣∣∣∣∣

= nh−α−1`(h)

(∣∣∣∣
α

nf(h)
(1 + o(1))− 1

∣∣∣∣ +
2 supu≥h/2 |δ(u)|

nf(h)
(1 + o(1))

)
→ 0. 2

Similarly the main theorem can be specified for the class of Weibull-type distribu-

tions, defined as

1− F (x) = exp (−xτ`(x)) (13)

with Weibull parameter τ > 0 and a slowly varying function `. Examples are the

gamma, normal and Weibull distributions. This subclass constitutes an important

subclass of the Gumbel domain of max-attraction, characterized by γ = 0. Con-

sistent estimators τ̂ of τ can be found for instance in Girard (2004) and Diebolt

et al. (2007). Remark that under (13) with `(x) = C(1 + o(1)) for some positive

constant C as x → ∞, we have hn = (C−1 log n)1/τ (1 + o(1)) as n → ∞. The

following result now follows using similar calculations as for Corollary 2.

Corollary 3 When (13) holds with ` satisfying (12) with the function c constant,

we have
τ̂ log n√

Ĥ
(Ĥ − h)

d→ N(0, 1).

It is interesting to note that for τ = 1/2 and `(x) = C(1 + o(1)) for some positive

constant C as x →∞, this result simplifies to Ĥ − h
d→ N(0, 4/C2).

4 Application

As an application we consider here the h-index of David R. Cox and of Pál Erdős,

two really outstanding scientists who do not need any further introduction.

In Figure 1 we see the functions 1 − F̂ (·) and ·/n, cf. (1), for the n = 450 papers

of Cox. We find an empirical Hirsch index ĤCox = 57. Figure 2 shows the Pareto

QQ-plot, plotting on a log-log scale the ordered data against their theoretical

values under the standard Pareto model, jointly with four well-known estimators
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Figure 1: The empirical Hirsch index for Cox.

of the extreme value index γ (see Chapters 4 and 5 in Beirlant et al. (2004)).

The QQ-plot is based on the 307 papers with non-zero citations. It shows linear

(a) (b)
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Figure 2: For the citation sizes of Cox: (a) Pareto QQ-plot (b) Hill (full line),

Moment (dotted line), ML (dashed-dotted), UH (dashed line) estimator.

behavior with positive slope for the large citations numbers, indicating that the

citation distribution is heavy tailed. In fact, the Hill estimator can be considered

as the slope of the QQ plot when using only the largest k observations. A careful

inspection of the plot of the estimators of the extreme value index leads to an

estimate γ̂ = 1.2; certainly for k running from 25 to 125 the four estimators show

stable behavior. Using α̂ = 1/γ̂ in Corollary 2, we obtain (50.2, 63.8) an asymptotic
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90%-confidence interval for hCox .

Based on the n = 519 papers of Erdős, we find an empirical Hirsch index ĤErdős =

22. The Pareto QQ-plot (based on the 393 papers with non-zero citations) and

the four estimators of γ are shown in Figure 3. We see again linear behavior in the

(a) (b)
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Figure 3: For the citation sizes of Erdős: (a) Pareto QQ-plot (b) Hill (full line),

Moment (dotted line), ML (dashed-dotted), UH (dashed line) estimator.

QQ-plot for the large citation numbers. The plot of the estimators of the extreme

value index leads to an estimate γ̂ = 0.6. This yields (19.1, 24.9) as an asymptotic

90%-confidence interval for hErdős .

References

[1] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes,
Theory and Applications. Wiley, New York.

[2] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation. Encyclo-
pedia of Mathematics and its Applications, 27. Cambridge University Press.

[3] Braun, T., Glänzel, W. and Schubert, A. (2005). A Hirsch-type index for journals.
The Scientist, 19, 8.

[4] Diebolt, J., Gardes, L., Girard S. and Guillou A. (2007). Bias-reduced estimators
of the Weibull tail-coefficient, Test, to appear.

10



[5] Egghe, L. (2005). Power Laws in the Information Production Process: Lotkaian
Informetrics. Wiley, New York.

[6] Egghe, L. and Rousseau, R. (2006). An informetric model for the h-index. Sciento-
metrics, 69, 121-129.

[7] Einmahl, J.H.J. (1997). Poisson and Gaussian approximation of weighted local em-
pirical processes. Stochastic Process. Appl., 70, 31-58.

[8] Girard, S. (2004). A Hill type estimate of the Weibull tail-coefficient. Comm. in
Statist. Theory and Methods, 33, 205-234.

[9] Glänzel, W. (2006). On the h-index - A mathematical approach to a new measure
of publication activity and citation impact. Scientometrics, 67, 315-321.

[10] Hirsch, J.E. (2005). An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences of the United States of America,
102, 16569-16572.

11


