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Abstract

Some new axiomatic characterizations and recursive formulas of the Shapley value are
presented. In the results, dual games and the self-duality of the value implicitly play an
important role. A set of non-cooperative games which implement the Shapley value on the
class of all games is given.
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1 Introduction

Axiomatic characterizations of the Shapley value (Shapley (1953)) have been studied by many
researchers. For example, Shapley (1953), Myerson (1980), Young (1985), Hart and Mas-Colell
(1989), Chun (1989), Hamiache (2001) and Brink (2001) characterized it on the class of all
games. On subclasses of games, Dubey (1975) characterized it on the class of simple games
and Neyman (1989) showed that the set of axioms used in the original Shapley’s axiomatic
characterizations also characterize the Shapley value on the additive class spanned by a single
game.

Those various characterizations give us new viewpoints of the Shapley value. For instance,
by consistency used in Hart and Mas-Colell (1989), the Shapley value is represented in a recur-
sive manner (see Hart and Mas-Colell (1989) and Maschler and Owen (1989)). In addition, by
the recursive representation, Pérez-Castrillo and Wettstein (2001) construct a non-cooperative
game whose subgame perfect equilibrium payoffs coincide with the Shapley value. The non-
cooperative game is called the bidding mechanism.
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In this paper, we give some new axiomatic characterizations of the Shapley value. Given a
cooperative game and a coalition, we define two modified games: the marginal game and the
extended marginal game. The two games differ only in the player set. For the two games, we
give some new axioms related to the balanced contributions property. The marginal games are
closely related to the dual games; hence, in our results, the dual games and the self-duality
of the value implicitly play an important role. By our axiomatic characterizations, some new
recursive formulas for the Shapley value are given. One of the recursive formulas can be seen as
a dual game representation of the above mentioned recursive formula. Moreover, we give a set
of non-cooperative games which implement the Shapley value as subgame perfect equilibrium
payoffs on the class of all games. That game is a modification of the bidding mechanism and
the difference is that when someone rejects the offer made by a proposer, the remaining players
play the marginal game instead of just a subgame.

The paper is organized as follows. Notations and definitions are presented in Section 2. The
axiomatic characterizations of the Shapley value are given in Section 3. The recursive formulas
of the Shapley value are provided in Section 4. The implementation of the Shapley value is
presented in Section 5. Further discussions are included in Section 6.

2 Preliminaries

A pair (N, v) is a cooperative game or a TU game where N ⊆ N is a finite set of players and
v : 2N → R with v(∅) = 0 is a characteristic function. Let |N | = n where | · | represents the
cardinality of a set. A subset S of N is called a coalition. For any S ⊆ N , v(S) represents the
worth of the coalition. For simplicity, each singleton is represented as i instead of {i} when
there exists no fear of confusion. For any S ⊆ N , the subgame of (N, v) on S is a pair (S, v|S)
where v|S(T ) = v(T ) for any T ⊆ S.

Let G be a set of all cooperative games. A value is a mapping from G into |N |-dimensional
vector (xi)i∈N that satisfies

∑
i∈N xi = v(N). One of the well-known values on the class of

cooperative games is the Shapley value introduced by Shapley (1953). Let π be a permutation
on N and Π be a set of all permutations on N . Given (N, v) ∈ G, the Shapley value ϕ(N, v) is
defined as follows: For each i ∈ N ,

ϕi(N, v) =
1
n!

∑
π∈Π

(
v({j|π(j) ≤ π(i)}) − v({j|π(j) < π(i)})

)
.

The Shapley value satisfies the following balanced contributions property (see Myerson (1980)):
For any i, j ∈ N with i ̸= j,

ϕi(N, v) − ϕi(N\j, v) = ϕj(N, v) − ϕj(N\i, v).

The dual game (N, v∗) of (N, v) is the game that assigns to each coalition S ⊆ N the worth
that is lost by the grand coalition N if S leaves N , that is, for each S ⊆ N ,

v∗(S) = v(N) − v(N\S).
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A value φ is self-dual if φ(N, v) = φ(N, v∗) for each (N, v). It is well-known that the
Shapley value is self-dual.

Let S ⊆ N . The S-marginal game (N\S, vS) of (N, v) is the game that assigns to each
coalition T ⊆ N\S the worth of T ∪ S minus the worth of S, that is, for each T ⊆ N\S,

vS(T ) = v(S ∪ T ) − v(S).

In the S-marginal game, any subset of N\S can win the cooperation of S by paying the value
v(S) to S.

Between the dual games and the marginal games, the following holds.

Proposition 1. For any S ⊆ N , it holds vS = (v∗|N\S)∗.

Proof. For any S ⊆ N and any T ⊆ N\S,

(v∗|N\S)∗(T ) = v∗(N\S) − v∗(N\S\T )

= v(N) − v(S) − v(N) + v(S ∪ T )

= vS(T ).

A dummy coalition S of (N, v) is a coalition that satisfies the following condition: for any
T ⊆ N\S, v(S ∪T ) = v(S)+ v(T ). In particular, if S is a singleton, we call it a dummy player.

Let S ⊆ N . The extended S-marginal game (N, v̄S) of (N, v) is the game that assigns to
each coalition T ⊆ N the worth of T ∪ S minus the worth of T\S, that is, for each T ⊆ N ,

v̄S(T ) = v(S ∪ T ) − v(S\T ).

By definition, given (N, v) ∈ G and S ⊆ N , for any T ⊆ N\S,

v̄S(T ∪ S) = v(S ∪ T ) − v(∅)

= v(S ∪ T ) − v(S) + v(S) − v(∅)

= v(S ∪ T ) − v(S\T ) + v(S ∪ S) − v(S\S)

= v̄S(T ) + v̄S(S).

Thus, S is a dummy coalition of (N, v̄S). Moreover,

v̄S |N\S(T ) = v(S ∪ T ) − v(S) = vS(T ),

that is, the difference between the extended S-marginal game and the S-marginal game is
whether or not a dummy coalition S is included in the player set. For the Shapley value of the
two games, the following holds.

Proposition 2. Given (N, v) ∈ G, for any S ⊆ N and any i ∈ N ,

ϕi(N, v̄S) =

ϕi(S, v) if i ∈ S

ϕi(N\S, vS) if i ̸∈ S.
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Proof. Given (N, v) ∈ G and S ⊆ N , let

wS(T ) = v(S) − v(S\T )

and
uS(T ) = v(S ∪ T ) − v(S)

for any T ⊆ N . Then, wS + uS = v̄S . By additivity of the Shapley value,

ϕ(N, v̄S) = ϕ(N,wS) + ϕ(N,uS).

By definition, any i ̸∈ S is a null player in (N,wS) and any player i ∈ S is a null player in
(N,uS), respectively.1 The null player property of the Shapley value implies that

ϕi(N, v̄S) =

ϕi(N,wS) if i ∈ S

ϕi(N,uS) if i ̸∈ S.

By the fact that any null player in (N, v) is also a null player in any subgame of (N, v), the null
player property and the balanced contributions property, we obtain that for any player i ∈ N

and any null player j ̸= i,

ϕi(N, v) − ϕi(N\j, v) = ϕj(N, v) − ϕj(N\i, v) = 0 − 0 = 0,

which implies ϕi(N, v) = ϕi(N\j, v) for any i ̸= j when j is a null player, that is, in the Shapley
value, any null player has no effect on the other players.

By definition,

(wS |S)∗(T ) = wS(S) − wS(S\T ) = v(S) − v(S\S) − v(S) + v(S\(S\T )) = v(T )

for any T ⊆ S and uS(T ) = vS(T ) for any T ⊆ N\S. Thus, for any i ∈ S, since any j ∈ N\S
is a null player in (N,wS),

ϕi(N,wS) = ϕi(S,wS |S) = ϕi(S, (wS |S)∗) = ϕi(S, v),

and for any i ∈ N\S, since any j ∈ S is a null player in (N,uS),

ϕi(N,uS) = ϕi(N\S, uS |N\S) = ϕi(N\S, vS).

3 Axiomatizations

By using the marginal games, the Shapley value is axiomatized in the following way. Let φ be
a value for cooperative games.

Balanced M-contributions property: For each (N, v) ∈ G and any i, j ∈ N with i ̸= j,

φi(N, v) − φi(N\j, vj) = φj(N, v) − φj(N\i, vi).
1A null player in the game (N, v) is a player i ∈ N that satisfies v(S) = v(S\i) for any S ⊆ N .
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Theorem 1. The Shapley value is the unique value which satisfies the balanced M-contributions
property.

Proof. First, we show that the Shapley value satisfies the balanced M-contributions property.
In the case of |N | = 1 this is obvious. Let |N | ≥ 2. For any i, j ∈ N with i ̸= j, by the fact that
the Shapley value is self-dual, satisfies the balanced contributions property and by Proposition
1,

ϕi(N, v) − ϕj(N, v) = ϕi(N, v∗) − ϕj(N, v∗)

= ϕi(N\j, v∗) − ϕj(N\i, v∗)

= ϕi(N\j, (v∗|N\j)
∗) − ϕj(N\i, (v∗|N\i)

∗)

= ϕi(N\j, vj) − ϕj(N\i, vi).

For the uniqueness, we use the induction with respect to the number of players. Let φ be a
value on the class of cooperative games. In the case of |N | = 1, φi(N, v) = v(i) = ϕi(N, v) for
i ∈ N . If |N | = 2, by the balanced M-contributions property,

φi(N, v) − φj(N, v) = φi(N\j, vj) − φj(N\i, vi)

= v(N) − v(j) − v(N) + v(i)

= v(i) − v(j),

which implies

φi(N, v) =
v(N) + v(i) − v(j)

2
and φj(N, v) =

v(N) − v(i) + v(j)
2

.

This is exactly the Shapley value of (N, v).
Let n ≥ 2 and suppose φ = ϕ in case of there are less than n players. Consider the case

of n players. Fix i ∈ N ; by the balanced M-contributions property and the supposition above,
for any j ∈ N\i,

φi(N, v) − φj(N, v) = φi(N\j, vj) − φj(N\i, vi)

= ϕi(N\j, vj) − ϕj(N\i, vi)

= ϕi(N, v) − ϕj(N, v).

Summing up the above equalities over j ∈ N\i, we obtain

(n − 1)φi(N, v) −
∑

j∈N\i

φj(N, v) = (n − 1)ϕi(N, v) −
∑

j∈N\i

ϕj(N, v),

or
nφi(N, v) − v(N) = nϕi(N, v) − v(N).

Since n ≥ 2, φi(N, v) = ϕi(N, v). For any j ∈ N , φj(N, v) = ϕj(N, v) in the same manner.
Hence, φ = ϕ in the case of n players.

By using the extended marginal games instead of the marginal games, the following is
obtained.
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Balanced EM-contributions property: For each (N, v) ∈ G and any i, j ∈ N with i ̸= j,

φi(N, v) − φi(N, v̄j) = φj(N, v) − φj(N, v̄i).

Dummy invariance: For each (N, v) ∈ G, any dummy player j ∈ N of (N, v) and any
i ∈ N\j,

φi(N, v) = φi(N\j, v).

Theorem 2. The Shapley value is the unique value which satisfies the balanced EM-contributions
property and dummy invariance.

Proof. First, we show that the Shapley value satisfies the balanced EM-contributions property
and dummy invariance, respectively. In the case that |N | = 1 this is obvious. If |N | ≥ 2, for
any i, j ∈ N with i ̸= j, by Proposition 2 and Theorem 1,

ϕi(N, v) − ϕi(N, v̄j) = ϕi(N, v) − ϕi(N\j, vj)

= ϕj(N, v) − ϕj(N\i, vi)

= ϕj(N, v) − ϕj(N, v̄i).

By the fact that a dummy player j of (N, v) is also a dummy player of (N\i, v), for any i ̸= j,
and since the Shapley value satisfies the dummy player property and the balanced contributions
property, we have

ϕi(N, v) − ϕi(N\j, v) = ϕj(N, v) − ϕj(N\i, v) = v(j) − v(j) = 0,

which implies dummy invariance.
For the uniqueness, let φ be a value which satisfies the two axioms. In the case when

|N | = 1, φi(N, v) = v(i) = ϕi(N, v) for i ∈ N . If |N | ≥ 2, for any i, j ∈ N with i ̸= j, the
dummy invariance together with the balanced EM-contributions property imply,

φi(N, v) − φi(N\j, vj) = φi(N, v) − φi(N, v̄j)

= φj(N, v) − φj(N, v̄i)

= φj(N, v) − φj(N\i, vi).

Thus, the value which satisfies dummy invariance and the balanced EM-contributions property
must satisfies the balanced M-contributions property. By Theorem 1, the uniqueness is shown.

For the independence of the two axioms, we consider the values χ1 and χ2 defined by for
each i ∈ N ,

χ1
i (N, v) =

v(N) if i = minj∈N j

0 if i ̸= minj∈N j,

and

χ2
i (N, v) =


v(N)
|N\D| if i is not a dummy player of (N, v)

0 if i is a dummy player of (N, v),
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where D is a set of all dummy players in (N, v). It is easy to show that χ1 satisfies the balanced
EM-contributions property but not dummy invariance and that χ2 satisfies dummy invariance
but not the balanced EM-contributions property.

The following is obtained as a corollary of Theorem 2.

Corollary 1. The Shapley value is the unique value which satisfies dummy invariance, addi-
tivity and the following property: For each (N, v) ∈ G and any i, j ∈ N with i ̸= j,

φi(N, v − v̄j) = φj(N, v − v̄i),

where for any S ⊆ N , (v − v̄k)(S) = v(S) − v̄k(S) for k = i, j.

4 Recursive formulas

It is well-known that the Shapley value is characterized in the following recursive manner. (See
Maschler and Owen (1989) and Hart and Mas-Colell (1989)):

ϕi(N, v) =
1
n

(v(N) − v(N\i)) +
1
n

∑
j∈N\i

ϕi(N\j, v). (1)

By using the (extended) marginal games, we give other recursive representations of the Shapley
value as follows.

Proposition 3. For each (N, v) ∈ G and any i ∈ N ,

ϕi(N, v) =
1
n

v(i) +
1
n

∑
j∈N\i

ϕi(N\j, vj).

Proof. By (1), the self-duality of the Shapley value and Proposition 1,

ϕi(N, v) = ϕi(N, v∗)

=
1
n

(v∗(N) − v∗(N\i)) +
1
n

∑
j∈N\i

ϕi(N\j, v∗)

=
1
n

v(i) +
1
n

∑
j∈N\i

ϕi(N\j, (v∗|N\j)
∗)

=
1
n

v(i) +
1
n

∑
j∈N\i

ϕi(N\j, vj).

We notice that Proposition 3 can be seen as the particular case of the following Proposition
4 when r = 1.

Proposition 4. Let r = |R| be fixed, where R ⊆ N . Then for each (N, v) ∈ G and each i ∈ N ,

ϕi(N, v) =
1(
n
r

) ∑
R⊆N,|R|=r,R∋i

ϕi(R, v) +
1(
n
r

) ∑
R⊆N,|R|=r,R ̸∋i

ϕi(N\R, vR).
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Proof. Let r = |R| be fixed, where R ⊆ N . Let ΠR = {π ∈ Π|π(j) ≤ r for each j ∈ R}. Then
for any R ̸= R′ which satisfy |R| = |R′| = r, we have ΠR ∩ ΠR′

= ∅ and
∪

R⊆N,|R|=r ΠR = Π.
Thus,

ϕi(N, v) =
1
n!

∑
R⊆N,|R|=r

∑
π∈ΠR

(
v({j|π(j) ≤ π(i)}) − v({j|π(j) < π(i)})

)
=

1
n!

∑
R⊆N,|R|=r,R∋i

∑
π∈ΠR

(
v|R({j|π(j) ≤ π(i)}) − v|R({j|π(j) < π(i)})

)
+

1
n!

∑
R⊆N,|R|=r,R ̸∋i

∑
π∈ΠR

(
vR({j|r < π(j) ≤ π(i)}) − vR({j|r < π(j) < π(i)})

)
=

1
n!

∑
R⊆N,|R|=r,R∋i

r!(n − r)!ϕi(R, v) +
1
n!

∑
R⊆N,|R|=r,R ̸∋i

r!(n − r)!ϕi(N\R, vR)

=
1(
n
r

) ∑
R⊆N,|R|=r,R∋i

ϕi(R, v) +
1(
n
r

) ∑
R⊆N,|R|=r,R ̸∋i

ϕi(N\R, vR).

The following is obtained as a corollary of Propositions 2 and 4.

Corollary 2. Let r = |R| be fixed, where R ⊆ N . For each (N, v) ∈ G and each i ∈ N ,

ϕi(N, v) =
1(
n
r

) ∑
R⊆N,|R|=r

ϕi(N, v̄R).

5 Implementation

In this section, given a cooperative game, we consider a non-cooperative game which implements
the Shapley value of the cooperative game as equilibrium payoffs. In that non-cooperative
game, the marginal games and the recursive formula we mentioned in the previous section play
important roles.

Given a cooperative game (N, v) ∈ G, the non-cooperative game Γ(N, v) is defined in the
following recursive manner.

In case |N | = 1, player i ∈ N obtains v(i) and the game is over.
Assume that the non-cooperative game is known when there are less than n players. We

define the case where there are n players.

t=1 Each player i ∈ N makes bids bi
j ∈ R for every j ̸= i.

For each i ∈ N , the net bid Bi is the sum of the bids he made minus the sum of the bids
the others made to him, that is, Bi =

∑
j ̸=i b

i
j −

∑
j ̸=i b

j
i . Let α = argmaxiB

i, where in
the case of multiple maximizers, one of them is randomly chosen. The chosen player α

pays bα
j to every player j ̸= α.

t=2 Player α makes an offer xα
j ∈ R to every player j ∈ N\α.
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t=3 Players in N\α respond to the offer in a sequential manner, say (j1, . . . , jn−1). An order
of the players makes no matter. Response is either “accept it” or “reject it”.

In case player jh accepts the offer, the next player jh+1 responds to it. If every jh accepts
the offer, the players come to an agreement. If there is some rejection, an agreement is
not reached.

When an agreement is reached, proposer α pays the proposed payoff xj for any j ∈ N\α
in return for obtaining the value of their total cooperation, v(N). Thus, the payoff for
responder j is

bα
j + xα

j

and the payoff for proposer α is

v(N) −
∑
j ̸=α

bα
j −

∑
j ̸=α

xα
j .

Then the game is over.

On the other hand, when an agreement is not reached, the proposer is weakly split off by
the other players. He leaves the game with obtaining v(α). Then, the remaining players
N\α continue a non-cooperative game Γ(N\α, vα).

This non-cooperative game is inspired by the bidding mechanism presented in Pérez-Castrillo
and Wettstein (2001). The difference between the above mentioned non-cooperative game and
the biding mechanism is what will happen when someone rejects an offer. In our games, in
the case of rejection, the proposer α is weakly split off by the other players and the remaining
players play the α-marginal game (N\α, vα), while in the bidding mechanism, the proposer
just leaves the game and the remaining players play just the subgame (N\α, v).

We obtain the following theorem.

Theorem 3. Γ(N, v) produces the Shapley value payoff for (N, v) in any subgame perfect
equilibrium.

Proof. The proof proceeds by induction with respect to the number of players. If |N | = 1,
the Shapley value is equal to the value of his stand-alone coalition; hence, the theorem holds.
Assume that the theorem holds in case there are less than n players and consider the case when
there are n players.

First, we show that there exists an SPE whose payoff coincides with the Shapley value of
the game (N, v). Consider the following strategy for each player.

t=1 Each player i ∈ N announces bi
j = ϕj(N, v) − ϕj(N\i, vi) for every j ̸= i.

t=2 A proposer α offers xα
j = ϕj(N\α, vα) for every j ∈ N\α.

t=3 A responder j accepts the offer if xα
j = ϕj(N\α, vα) and rejects it otherwise.

9



If all players take the above strategies, an agreement is formed at t=3 and the game is over.
It is clear that the above strategy profile yields the Shapley value for any player who is not the
proposer α since bα

j + xα
j = ϕj(N, v) for any j ̸= α. The proposer obtains v(N) −

∑
j ̸=α bα

j −∑
j ̸=α xα

j = v(N)−
∑

j ̸=α ϕj(N, v) = ϕi(N, v). Note that all players obtain their Shapley value
whether or not the player is a proposer. In other words, given the strategies, an outcome is the
same regardless of who is chosen as a proposer.

To check whether the above strategies constitute an SPE, first, we show that the strategies
at t=3 are best responses for each of the players. Let jn−1 be the last player who has to
decide whether accept or reject the offer. If no other players reject an offer, player jn−1’s best
response is accept the offer if xα

jn−1
= ϕjn−1(N\α, vα) and reject it otherwise.2 Knowing that

the above mentioned reaction of the last player, the second last player jn−2’s best response is
accept the offer if xα

jn−2
= ϕjn−2(N\α, vα) and reject it otherwise. Using the same argument

to go backward, we can show that the strategies mentioned above constitute an SPE of the
subgame starting from t=3.

Next, we prove that the strategies at t=2 are best responses for each of them. By this
strategy, the proposer obtains v(N) −

∑
j ̸=α ϕj(N\α, vα) = v(N) − vα(N\α) = v(α) in the

subgame starting from t=2. If he offers some player j the value x̄α
j less than ϕj(N\α, vα), the

offer is rejected by the player and the proposer obtains v(α) which is not strictly better off. If
he offers some player j the value x̂α

j larger than ϕj(N\α, vα) without lowering the offer to the
other players, the offer is accepted but the share of the proposer is strictly worse off. Thus, the
above mentioned strategies constitute a SPE of the subgame starting from t=2.

Then, we show that the strategies t=1 are best responses for each of them. Given the
strategies, for any i ∈ N ,

Bi =
∑
j ̸=i

bi
j −

∑
j ̸=i

bj
i =

∑
j ̸=i

(ϕj(N, v) − ϕj(N\i, vi)) −
∑
j ̸=i

(ϕi(N, v) − ϕi(N\j, vj)) = 0,

since ϕ satisfies the balanced M-contributions property. Hence, all players are chosen to be
a proposer with probability 1

n . As seen before, the outcome is the same regardless of who is
chosen as a proposer. Given the above mentioned strategies, consider the case that player i

changes his strategy to b̄i
j = bi

j + aj for each of j ̸= i. If
∑

j ̸=i aj < 0, i is not chosen as a
proposer; hence, his final payoff is unchanged. If

∑
j ̸=i aj = 0, i may be chosen to be a proposer.

In the case that he is not chosen as a proposer, his final payoff is unchanged. In the case that
he is chosen as a proposer, his final payoff is

v(N) −
∑
j ̸=i

b̄i
j −

∑
j ̸=i

ϕj(N\i, vi) = v(N) −
∑
j ̸=i

bi
j −

∑
j ̸=i

ϕj(N\i, vi) = ϕi(N, v),

which means his final payoff is unchanged. If
∑

j ̸=i aj > 0, i must be chosen to be a proposer.
However, by the previous result, he obtains

v(N) −
∑
j ̸=i

b̄i
j −

∑
j ̸=i

ϕj(N\i, vi) < v(N) −
∑
j ̸=i

bi
j −

∑
j ̸=i

ϕj(N\i, vi) = ϕi(N, v).

2Note that it is not a unique best response.
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Thus, his share is strictly worse off. Therefore, the above mentioned strategies constitute a
SPE.

Next, we prove that any SPE implements the Shapley value payoff as an equilibrium out-
come by the following series of claims.

Claim 1: In any subgame starting from t=2, a proposer α obtains v(α) and each of the other
players obtains his Shapley value of the game (N\α, vα) in any SPE.

Let α be a proposer. There are two types of SPEs: (a) SPEs in which someone rejects the
offer at t=3 and (b) SPEs in which players reach an agreement at t=3.

In case (a), by the definition of the non-cooperative game Γ(N, v) and the induction hy-
pothesis, α obtains v(α) and each of the other players obtains his Shapley value of the game
(N\α, vα).

By the induction hypothesis, each player j ̸= α surely obtains ϕj(N\α, vα) by rejecting
the offer. Hence, in case (b), each player j ̸= α obtains not less than ϕj(N\α, vα). Thus, the
proposer α obtains at most v(α) since v(N) −

∑
j ̸=α ϕj(N\α, vα) = v(N) − vα(N\α) = v(α).

But, the proposer α surely obtains v(α) when the offer is rejected. Hence, he must obtain v(α)
in case (b). Therefore, the claim also holds in this case.

Claim 2: In any SPE, Bi =
∑

j ̸=i b
i
j −

∑
j ̸=i b

j
i = 0 for any i ∈ N .

Claim 3: In any SPE, each player’s payoff is the same regardless of who is chosen as a proposer.

The above two claims are the same as Claim (c) and (d) of Pérez-Castrillo and Wettstein
(2001), and are shown in the same manner, respectively.

Claim 4: In any SPE, the final payoff coincides with the Shapley value.

Let ui
j be j’s equilibrium payoff when the proposer is i at t=1. By Claim 1,

ui
i =

∑
k ̸=i

bi
k + v(i)

and for each j ̸= i,
uj

i = bj
i + ϕi(N\j, vj).

Thus, ∑
k∈N

uk
i =

∑
k ̸=i

bi
k + v(i) +

∑
k ̸=i

bk
i +

∑
k ̸=i

ϕi(N\k, vk).

By Claim 2, the above equality is equivalent to∑
k∈N

uk
i = v(i) +

∑
k ̸=i

ϕi(N\k, vk).

By Claim 3,
∑

k∈N uk
i = nuj

i for each j ∈ N . Therefore, for each j ∈ N ,

uj
i =

1
n

v(i) +
1
n

∑
k ̸=i

ϕi(N\k, vk).

By Proposition 3, the right-hand side of the above equality coincides with ϕi(N, v).
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6 Concluding remarks

As we mentioned before, the difference between our non-cooperative game and the bidding
mechanism is what will happen when someone rejects an offer. That difference yields the
difference of the implementability of the class of games. Our non-cooperative game implements
the Shapley value as an unique equilibrium payoff on the class of all games, while the bidding
mechanism works on a class of zero-monotonic games. The point is that in our non-cooperative
game, players always divide the value v(N), that is, if an offer made by proposer α is rejected
at t=3, the proposer obtains v(α) and the remaining players divide the value vα(N\α) =
v(N) − v(α) among them. Thus, the sum of the payoffs over all players is v(N). On the
other hand, in the bidding mechanism, the amount of the value that players obtain changes
if someone rejects an offer, for example, if an offer made by proposer α is rejected at t=3,
the proposer obtains v(α) and the remaining players divide the value v(N\α) among them.
Generally, v(α) + v(N\α) ̸= v(N).

In situation in which players discuss how to allocate the outcome generated by cooperation
before they decide to cooperate or not, the setting in the bidding mechanism is appropriate. On
the other hand, in the situation in which players discuss how to allocate the outcome that has
already been generated by cooperation, the setting in our non-cooperative game is appropriate.

When we consider the game in which cooperation among players generates a positive effect,
the position of the proposer differs in our non-cooperative game and the bidding mechanism.
In our non-cooperative game, once chosen as a proposer, he obtains the value of his stand
alone coalition in any SPE since then. Whereas, in the bidding mechanism, once chosen as a
proposer, he obtains the value of the grand coalition minus the value of coalition including all
players except him in any SPE since then. In our non-cooperative game, being chosen as a
proposer is undesirable and the interpretation of the bidding in SPEs is compensation of being
chosen as a proposer, while in the bidding mechanism, being chosen as a proposer is desirable
and the interpretation of the bidding in SPEs is expenditure of being chosen as a proposer.

Our result can be generalized to the Owen value of cooperative games with coalition struc-
tures (Owen (1977)). Vidal-Puga and Bergantiños (2003) generalized the bidding mechanism
to implement the Owen value as an equilibrium payoff. However, their result works only on the
class of strictly superadditive games. Appropriate generalization of our non-cooperative game
can implement the Owen value on the class of all games.

Acknowledgment: The authors thank Rodica Branzei for her helpful comments.
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