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Cooperation Under Interval

Uncertainty

S.Z. Alparslan-Gök ∗ S. Miquel † S. Tijs‡

Abstract

In this paper, the classical theory of two-person cooperative games

is extended to two-person cooperative games with interval uncertainty.

The core, balancedness, superadditivity and related topics are studied.

Solutions called ψα-values are introduced and characterizations are

given.

Keywords: Cooperative game theory, Interval uncertainty, Core, Value,
Balancedness

Classification: JEL code C71

1 Introduction

Classical cooperative game theory deals with coalitions who coordinate their
actions and pool their winnings. One of the problems is how to divide the
rewards or costs among the members of the formed coalition. Generally, the
situations here are considered from a deterministic point of view. For further
information about classical cooperative game theory the reader is referred
to the books by Branzei et al. (2005) and Tijs (2003). However, in most
economical situations potential rewards or costs are not known precisely, but
often it is possible to estimate intervals to which they belong. In Yager and
Kreinovich (2000) an algorithm for fair division under interval uncertainty is
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presented using the work on interval analysis by Moore (1979). Cooperative
games arising from bankruptcy situations with interval uncertainty, called
(cooperative) interval games, were introduced and analyzed by Branzei et
al. (2003) and Branzei et al. (2004). In a classical bankruptcy situation
a certain amount of money (estate) has to be divided among some people
(claimants) who have individual claims on the estate, and the total claim is
weakly larger than the estate (cf. Aumann and Maschler (1985), Curiel et
al. (1987), O’Neill (1982)). When the estate and/or the claims may belong
to intervals of real numbers we have bankruptcy situations under interval
uncertainty. In Carpente et al. (2005) a method is proposed to associate a
coalitional interval game to each strategic game. Throughout the above lit-
erature we can find motivations, from different points of view, for the study
of interval games. Here, a cooperative interval game is defined as an ordered
pair < N,w > where N is the set of players, and w is the characteristic
function which assigns to each coalition S a closed interval w(S) in R. We
introduce the notion of the core set of a cooperative interval game and various
notions of balancedness. Then we focus on two-person (cooperative) interval
games and extend to these games well-known results for classical two-person
cooperative games. Moreover, we define and analyze specific solution con-
cepts on the class of two-person interval games, such as the mini-core set
and the ψα-values. The mini-core set is determined by considering the upper
bound of the worths of the one-player coalitions in the two-person case. If
a mini-core allocation is proposed, then no one-player coalition has any in-
centive to split off from the grand coalition for each selection of the interval
games.
The paper is organized as follows. In Section 2 we recall basic definitions
and results on balancedness for classical cooperative games. In Section 3 we
introduce some definitions for n-person cooperative games under interval un-
certainty and focus on balancedness. Section 4 deals with two-person interval
games and their solutions: balancedness, the mini-core set and its relation
with the core set, the ψα-values and their axiomatic characterizations. We
conclude in Section 5 with some remarks on further research.
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2 Preliminaries on classical games in coali-

tional form

We give in the following some definitions and a theorem concerning classical
games in coalitional form. For an extensive description of classical games in
coalitional form see Tijs (2003) and Branzei et al. (2005).
A cooperative n-person game in coalitional form is an ordered pair < N, v >,
where N = {1, 2, ..., n} (the set of players) and v : 2N → R is a map, as-
signing to each coalition S ∈ 2N a real number, such that v(∅) = 0. This
function v is called the characteristic function of the game, v(S) is called the
worth (or value) of coalition S. Often we identify a game < N, v > with its
characteristic function v.
The set GN of coalitional games with player setN forms with the usual opera-
tors of addition and scalar multiplication of functions a (2|N |−1)-dimensional
linear space; a basis of this space is supplied by the unanimity games uT (or
< N, uT >), T ∈ 2N \ {∅}, which are defined by

uT (S) =

{

1 if T ⊂ S

0 otherwise.

One can easily check that for each v ∈ GN we have v =
∑

T∈2N\∅ cTuT with

cT =
∑

S:S⊂T (−1)|T |−|S|v(S).
A payoff vector x ∈ Rn is called an imputation for the game < N, v > if

(i) x is individually rational, i.e., xi ≥ v({i}) for all i ∈ N ,

(ii) x is efficient (Pareto optimal), i.e.,
∑n

i=1 xi = v(N).

The set of imputations of < N, v > is denoted by I(v). Note that I(v) = ∅
if and only if v(N) <

∑

i∈N v({i}).
The core of a game (cf. Gillies (1953)) is a central set-valued solution concept
in game theory.
The core of a game < N, v > is the set

C(v) =

{

x ∈ I(v)|
∑

i∈S

xi ≥ v(S) for all S ∈ 2N \ {∅}

}

.

If x ∈ C(v), then no coalition S 6= N has any incentive to split off if x is the
proposed reward allocation in N , because the total amount

∑

i∈S xi allocated
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to S is not smaller than the amount v(S) which the players can obtain by
forming the subcoalition.
For a two-person game < N, v >, I(v) = C(v).
A map λ : 2N \{∅} → R+ is called a balanced map if

∑

S∈2N\{∅} λ(S)eS = eN .

Here eS is the characteristic vector for coaliton S with

eS
i =

{

1 if i ∈ S

0 if i ∈ N \ S.

A collection B of coalitions is called a balanced collection if there is a balanced
map λ such that

B =
{

S ∈ 2N \ {∅} |λ(S) > 0
}

.

An n-person game < N, v > is called a balanced game if for each balanced
map λ : 2N \ {∅} → R+ we have

∑

S λ(S)v(S) ≤ v(N).
The importance of this notion becomes clear in the following theorem proved
by Bondareva (1963) and Shapley (1967). This theorem characterizes games
with a non-empty core.

Theorem 2.1. Let < N, v > be an n-person game. Then the following two
assertions are equivalent:

(i) C(v) 6= ∅,

(ii) < N, v > is a balanced game.

Let π(N) be the set of all permutations σ : N → N .
The set P σ(i) = {r ∈ N |σ−1(r) < σ−1(i)} consists of all predecessors of i

with respect to the permutation σ.
Let v ∈ GN and σ ∈ π(N). The marginal vector mσ(v) ∈ Rn with respect
to σ and v has as i-th coordinate mσ

i (v) = v(P σ(i)∪{i})− v(P σ(i)) for each
i ∈ N .
The Shapley value (cf. Shapley (1967)) is one of the most interesting one-
point solution concepts in classical cooperative game theory. The Shapley
value associates to each n-person game one (payoff) vector in Rn.
The Shapley value Φ(v) of a game v ∈ GN is the average of the marginal
vectors of the game, i.e.

Φ(v) =
1

n!

∑

σ∈π(N)

mσ(v).
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Marginal vectors of a two-person game < N, v > are

m(12)(v) = (v({1}), v({1, 2}) − v({1})),

and
m(21)(v) = (v({1, 2}) − v({1}), v({2})).

For a two person game < N, v > we have

Φi(v) = v({i}) +
v({1, 2}) − v({1}) − v({2})

2
, i = {1, 2} .

Note that for a two-person game < N, v >, the Shapley value is the standard
solution which is in the middle of the core and the marginal vectors are the
extreme points of the core whose average gives the Shapley value.
A game < N, v > is superadditive if v(S ∪T ) ≥ v(S)+ v(T ) for all S, T ∈ 2N

with S ∩ T = ∅. In a superadditive game it is advantageous for the players
to cooperate.
A two-person cooperative game < N, v > is superadditive if and only if
v({1}) + v({2}) ≤ v({1, 2}) holds. Note that a two-person cooperative game
< N, v > is superadditive if and only if the game is balanced.

3 Cooperative games under interval uncer-

tainty

In the following we will develop a theory of cooperation under interval un-
certainty, inspired by the classical cooperative game theory (cf. Branzei et
al. (2005) and Tijs (2003)).
A cooperative n-person interval game in coalitional form is an ordered pair
< N,w > where N := {1, 2, . . . , n} is the set of players, and w : 2N → I(R)
is the characteristic function which assigns to each coalition S ∈ 2N a closed
interval w(S) ∈ I(R) where I(R) is the set of all closed intervals in R such
that w(∅) = [0, 0].
For each S ∈ 2N , the worth set (or worth interval) of the coalition S in the in-
terval game, w(S), is a closed interval which will be denoted by [w(S), w(S)],
where w(S) is the lower bound and w(S) is the upper bound of w(S).
Note that if all the worth intervals are degenerate intervals, i.e., w(S) = w(S),
then the interval game < N,w > corresponds to the classical cooperative
game < N, v > where v(S) = w(S).
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Let < N,w > be an interval game; then v : 2N → R is called a selection of
w if v(S) ∈ w(S) for each S ∈ 2N . We denote the set of selections of w by
Sel(w).
The imputation set of an interval game < N,w > is defined by

I(w) = ∪{I(v)|v ∈ Sel(w)}.

The core set of an interval game < N,w > is defined by

C(w) = ∪{C(v)|v ∈ Sel(w)}.

C(w) 6= ∅ if and only if there exists a v ∈ Sel(w) with C(v) 6= ∅.
The family of all interval games with player set N is denoted by IGN .
If all the worth intervals of an interval game w ∈ IGN are degenerate inter-
vals, then I(w) = I(w) = I(w) and C(w) = C(w) = C(w).
Note that v(S) ∈ w(S) is a real number, but w(S) = [w(S), w(S)] is a de-
generate interval which is a set consisting of one point.
An interval game < N,w > is strongly balanced if for each balanced map
λ it holds that

∑

λ(S)w(S) ≤ w(N). The family of all strongly balanced
interval games with player set N is denoted by BIGN .

Proposition 3.1. Let < N,w > be an interval game. Then, the following
three statements are equivalent:

(i) For each v ∈ Sel(w) the game < N, v > is balanced.

(ii) For each v ∈ Sel(w), C(v) 6= ∅.

(iii) The interval game < N,w > is strongly balanced.

Proof. (i) ⇔ (ii) follows from Theorem 2.1.
(i) ⇔ (iii) follows using the inequalities w(N) ≤ v(N) ≤ w(N) and
∑

λ(S)w(S) ≤
∑

λ(S)v(S) ≤
∑

λ(S)w(S) for each balanced map λ.

It follows from Proposition 3.1 that for a strongly balanced game <

N,w >, C(w) 6= ∅ since for all v ∈ Sel(w), C(v) 6= ∅.
We call an interval game < N,w > strongly unbalanced, if there exists a
balanced map λ such that

∑

λ(S)w(S) > w(N). Then, C(v) = ∅ for all
v ∈ Sel(w), which implies that C(w) = ∅.
If all the worth intervals of an interval game < N,w > are degenerate in-
tervals then strongly balancedness corresponds to balancedness and strongly
unbalancedness corresponds to unbalancedness in classical cooperative game
< N, v >.
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4 On two-person cooperative games under in-

terval uncertainty

4.1 Balancedness and related topics

We simply use w(1), w(2) and w(1, 2) instead of w({1}), w({2}) and w({1, 2}).
Let < N,w > be a two-person interval game. Then, we define:

(i) the pre-imputation set

I∗(w) :=
{

x ∈ R2|x1 + x2 ∈ w(1, 2)
}

,

(ii) the imputation set

I(w) :=
{

x ∈ R2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1, 2)
}

,

(iii) the mini-core set

MC(w) :=
{

x ∈ R2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1, 2)
}

,

(iv) the core set

C(w) :=
{

x ∈ R2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1, 2)
}

.

Notice that for two-person interval games the imputation set and the core
set are equal. Moreover, if an interval game is strongly balanced then its
mini-core set is nonempty and it is a subset of the core set of the game.
The next example is intended to give insight into the core set and mini-core
set of a two person (strongly balanced) game < N,w >.

Example 4.1. Let N = {1, 2}, w ∈ IG{1,2} such that

w(∅) = [0, 0], w(1) = [1, 3], w(2) = [2, 5], w(1, 2) = [10, 12].

In Figure 1, the mini-core set and the core set are depicted.
This is a strongly balanced game since w(1)+w(2) = 3+5 ≤ w(1, 2) = 10.

7



.

x2

x11 3

2

5

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

10 12

10

12

@
@

@

@
@

@

@
@

@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@@

	
mini-core set

	
core set

.

Figure 1: The mini-core set and the core set of a strongly balanced game

Now, we describe the core set and the mini-core set of a two-person in-
terval game in terms of its selections.
Let

s1 ∈ w(1) = [w(1), w(1)], s2 ∈ w(2) = [w(2), w(2)], t ∈ w(1, 2) = [w(1, 2), w(1, 2)]

and denote by ws1,s2,t the selection of w corresponding to s1, s2 and t. Then,

C(w) = ∪
{

C(ws1,s2,t)|(s1, s2, t) ∈ w(1) × w(2) × w(1, 2)
}

.

Furthermore,

MC(w) = ∪
{

C(ws1,s2,t)|s1 ∈ [w(1), w(1)], s2 ∈ [w(2), w(2)], t ∈ w(1, 2)
}

.

So,
MC(w) ⊂ ∪

{

C(ws1,s2,t)|s1 ∈ w(1), s2 ∈ w(2), t ∈ w(1, 2)
}

.

The mini-core set MC(w) is interesting because for each s1, s2 and t all points
in MC(w) with x1 +x2 = t are also in C(ws1,s2,t). Note that all points in the
mini-core set of w are individually rational points for each selection ws1,s2,t,
and each selection ws1,s2,t can be written as a linear combination of unanimity
games in the following way

ws1,s2,t = s1u{1} + s2u{2} + (t− s1 − s2)u{1,2}.

Let A and B be two intervals. We say that A is left to B, denoted by A≺B,
if for each a ∈ A and for each b ∈ B, a ≤ b.
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A two-person interval game < N,w > is called superadditive, if

w(1) + w(2)≺w(1, 2)

where w(1) + w(2) = {s1 + s2|s1 ∈ w(1), s2 ∈ w(2)} and t ∈ w(1, 2).
If w ∈ IG{1,2} is a superadditive game, then for each s1, s2 and t we have s1 +
s2 ≤ t. So, each selection ws1,s2,t of w is balanced. We conclude that if w(1)+
w(2) ≤ w(1, 2) is satisfied, then each selection ws1,s2,t of w is superadditive.
Hence, a two-person interval game < N,w > is superadditive if and only if
< N,w > is strongly balanced.

4.2 ψα-values and their axiomatization

In this subsection optimism vectors will play a role.
Let α = (α1, α2) ∈ [0, 1] × [0, 1], which we call the optimism vector, and
w ∈ IG{1,2}. We define:

sα1

1 (w) := α1w(1) + (1 − α1)w(1), sα2

2 (w) := α2w(2) + (1 − α2)w(2).

We are interested in maps κ : [a, b] → R2 where [a, b] is a closed interval in
R with properties:

(i) for each a ≤ x1 ≤ x2 ≤ b, κ1(x1) ≤ κ1(x2), κ2(x1) ≤ κ2(x2);

(ii) for each x ∈ [a, b], κ1(x) + κ2(x) = x.

In the following, we call such maps monotonic curves, and we denote by
K(R2) the set of all monotonic curves in R2.
A map F : IG{1,2} → K(R2) assigning to each interval game w a unique
curve F (w) : [w(1, 2), w(1, 2)] → R2 for t ∈ [w(1, 2), w(1, 2)], i ∈ {1, 2}, in
K(R2) is called a solution.
We say that F : IG{1,2} → K(R2) has the property of

(i) efficiency (EFF), if for all w ∈ IG{1,2}, t ∈ [w(1, 2), w(1, 2)];
∑

i∈N F (w)(t)i =
t.

(ii) α-symmetry (α-SYM), if for all w ∈ IG{1,2}, t ∈ [w(1, 2), w(1, 2)], with
sα1

1 (w) = sα2

2 (w), we have F (w)(t)1 = F (w)(t)2.

(iii) covariance with respect to translations (COV), if for all

w ∈ IG{1,2}, t ∈ [w(1, 2), w(1, 2)] and a = (a1, a2) ∈ R2,

we have F (w + â)(a1 + a2 + t) = F (w)(t) + a.
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Here, â ∈ IG{1,2} is defined by

â({1}) = [a1, a1], â({2}) = [a2, a2], â({1, 2}) = [a1 + a2, a1 + a2],

and w + â ∈ IG{1,2} is defined by

(w + â)(s) = w(s) + â(s) for s ∈ {{1} , {2} , {1, 2}} .

For each w ∈ IG{1,2} and t ∈ [w(1, 2), w(1, 2)] we define the map
ψα : IG{1,2} → K(R2) such that

ψα(w)(t) := (sα1

1 (w) + β, sα2

2 (w) + β),

where β = 1
2
(t− sα1

1 (w) − sα2

2 (w)).
The next example illustrates the solution ψα with α = (0, 0) and its relations
with the mini-core set.

Example 4.2. Consider a bankruptcy situation with two claimants with de-
mands d1 = 70 and d2 = 90 and (uncertain) estate E = [100, 120].
Then, the characteristic function of the interval game is as follows:

w(∅) = [0, 0], w(1) = [(E − d2)+, (E − d2)+] = [10, 30]

w(2) = [(E − d1)+, (E − d1)+] = [30, 50], w(1, 2) = [100, 120].

This is a strongly balanced game, since w(1)+w(2) = 30+50 ≤ w(1, 2) = 100,

ψ(0,0)(w)(t) = (10 + β, 30 + β) with β =
1

2
(t− 40) and t ∈ [100, 120].

Figure 2 illustrates that for all t ∈ [100, 120], ψ(0,0)(w)(t) ∈ MC(w(0,0,t)); L
in this figure denotes the set {ψ(0,0)(w)(t)|t ∈ [100, 120]}.

Next, we give an axiomatic characterization of the ψα-value for α ∈ [0, 1]×
[0, 1].

Proposition 4.1. The ψα-value satisfies the properties EFF, α-SYM and
COV.

Proof. (i) For all w ∈ IG{1,2} and t ∈ [w(1, 2), w(1, 2)], the solution ψα

satisfies the efficiency (EFF) property since

ψα(w)(t)1 + ψα(w)(t)2 = sα1

1 (w) + sα2

2 (w) + 2β = t.
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Figure 2: The mini-core set and the ψ(0,0)-values of the game < N,w >

(ii) For all w ∈ IG{1,2} and t ∈ [w(1, 2), w(1, 2)], the solution ψα satisfies
the α-symmetry (α-SYM) property since sα1

1 (w) = sα2

2 (w) implies
ψα(w)(t)1 = sα1

1 (w) + β = sα2

2 (w) + β = ψα(w)(t)2.

(iii) Take w ∈ IG{1,2}, t ∈ [w(1, 2), w(1, 2)] and a ∈ R2. The solution ψα

satisfies the covariance with respect to translations (COV) property
since

ψα(w + â)(a1 + a2 + t) = (sα1

1 (w + â) + β̂, sα2

2 (w + â) + β̂)

Then,

ψα(w + â)(a1 + a2 + t) = (sα1

1 + β, sα2

2 + β) + (a1, a2) = ψα(w)(t) + a.

Note that

β = β̂ =
1

2
(t̂− sα1

1 (w + â) − sα2

2 (w + â))

where t̂ = a1 + a2 + t.

Theorem 4.1. The ψα-value is the unique solution satisfying EFF, α-SYM
and COV properties.

Proof. Suppose the solution F : IG{1,2} → K(R2) satisfies the three proper-
ties above. We show that F = ψα.
Take w ∈ IG{1,2} and let a = (sα1

1 (w), sα2

2 (w)). Then, sα(w − â) = (0, 0).
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By α-SYM and EFF, for each t̃ = t − a1 − a2 with t ∈ [w(1, 2), w(1, 2)] we
have F (w − â)(t̃) = (1

2
t̃, 1

2
t̃) = ψα(w − â)(t̃). Hence, F (w − â) = ψα(w − â).

By COV of F and ψα we obtain F (w)(t) = F (w− â)(t̃)+a = ψα(w− â)(t̃)+
a = ψα(w)(t) for each w ∈ IG{1,2} and t ∈ [w(1, 2), w(1, 2)]. From Proposi-
tion 4.1 it follows that ψα satisfies EFF, α-SYM and COV.
So, ψα is the only solution with these three properties.

The marginal curves for a two-person game < N,w > are defined by
mσ,α(w) : [w(1, 2), w(1, 2)] → R2, where

m(1,2),α(w)(t) = (sα1

1 (w), t− sα1

1 (w)), m(2,1),α(w)(t) = (t− sα2

2 (w), sα2

2 (w)).

Note that each point of the marginal curvem(1,2),α(w) : [w(1, 2), w(1, 2)] →
R2 corresponds to a marginal vector of a selection of w, since for all α ∈
[0, 1]×[0, 1] and for all t ∈ [w(1, 2), w(1, 2)] we have m(1,2),α(w)(t) = m(1,2)(v),
where v : 2{1,2} → R is the characteristic function of the game with

v(∅) = 0, v(1) = sα1

1 (w)(t), v(2) = sα2

2 (w)(t) and v(1, 2) = t.

Similarly, m(2,1),α(w)(t) = m(2,1)(v) for all α ∈ [0, 1] × [0, 1] and for all
t ∈ [w(1, 2), w(1, 2)].
In case w(S) is for each S ∈ 2N a degenerate interval, we have mσ,α(w)(t) =
mσ(v) for all α ∈ [0, 1] × [0, 1] and for all t ∈ [w(1, 2), w(1, 2)] with

v(∅) = 0, v(1) = w(1), v(2) = w(2) and v(1, 2) = w(1, 2).

Let us consider the Shapley-like solutions (Shapley (1953)) of the form
ϕα : IG{1,2} → K(R2) defined by

ϕα(w) =
1

2
(m(1,2),α(w) +m(2,1),α(w))

for each w ∈ IG{1,2} and for each α ∈ [0, 1] × [0, 1].
Then, for each t ∈ [w(1, 2), w(1, 2)] it holds that ϕα(w)(t) = ψα(w)(t).
So, ϕα coincides with ψα.
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5 Concluding remarks

It would be interesting to extend our results to n-person games under interval
uncertainty and to study cooperation under interval uncertainty in different
Operations Research Game situations (cf. Borm et al. (2001)) such as flow
game situations where the capacities are intervals, minimum cost spanning
tree situations where the costs of the edges are intervals, airport game sit-
uations where the costs of the pieces of runways are intervals, etc. Also
environmental problems such as carbon dioxide emission reduction and fish
quota (cf. Weber et al. (2007)) could be approached in an interval uncer-
tainty manner, and then cooperative games with interval uncertainty might
be useful.
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