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Abstract

This paper considers a representative firm taking investment decisions in a high-tech environment

where different generations of products are invented over time. First, we develop a real options investment

model in which, according to standard practice, the sales price and the unit production cost both satisfy

a geometric Brownian motion (GBM) process. However, from real life data of the LCD industry it

follows that output prices behave according to a crystal cycle that does not match a GBM . We proceed

by conducting a thorough econometric analysis, leading to the conclusion that a vector autoregressive

model (V AR) provides the best fit. Integrating this model with the real options machinery, we find that

(i) at the moment of investment the increased production capacity goes along with increasing production

cost and decreasing price, (ii) a management effect is present in the sense that a price drop is followed by

a cost decrease due to management pushing harder on cost decreasing programs, and (iii) investing can

be optimal while at the same time a GBM yields a negative net present value (NPV). We also find that

investment decisions taken in practice are better supported by our V AR model than by the standard

real options model based on GBM .
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and Nonlinear Dynamics in Montréal (May 2007) for their constructive comments.

1



1 Introduction

Due to the very advanced technology involved, investments in high-tech industries usually require significant

irreversible investments. In a special report on Samsung Electronics in The Economist (January 15th, 2005,

p. 60) it is stated that

”Capital spending is more than $5 billion. The company is building the world’s most advanced factory

for making giant liquid crystal displays (LCDs), and between now and 2010 intends to spend around $24

billion on new chipmaking facilities, despite falling chip prices.”

This paper analyzes investment decisions of firms in high-tech industries. Typical examples of high-tech

industries are industries for electronic (consumer) products such as dvd players, LCD television sets, personal

computers, MP3 players, photo cameras, mobile phones, and personal digital assistants. Prices for personal

computers dropped very fast during the last decades. Delaying a purchase decision with one year thus implies

that the same or even a better personal computer will be available for less money. The same holds for other

products, as confirmed in the article on Samsung Electronics (The Economist, January 15th, 2005, p. 60)

”While electronic gadgets such as digital cameras, mobile phones and flat-screen televisions remain as

popular as ever, prices are falling.”

Another feature of this kind of industries is that high-tech products become obsolete more quickly, i.e.

the economic lifetime of these products becomes shorter as time passes. As an example think of the quick

increase in the number of megapixels in a digital photo camera. Every new generation of this product has

more megapixels, which reduces demand for previous generations. From the production side it is known that

there is considerable learning in the production process, implying that production costs are decreasing over

time. We conclude that high-tech firms face sharply decreasing prices, rapid product changes, and decreasing

production costs.

In addition, a lot of high-tech industries face a phenomenon called the crystal cycle (see also Mathews

(2005)). During periods of high demand, firms invest heavily in expensive new plants. This drives prices and

profits down, where the former increases quantities. As demand grows the process repeats itself. Mathews

(2005) shows that in the period 1990 to 2003 there have been five of such crystal cycles in the LCD industry.

The crystal cycle phenomenon is nicely illustrated in an article on the LCD industry in The Economist (July

24th, 2004, p. 53):

”But with record spending this year on new and more efficient LCD production plants, a surplus of

capacity could emerge next year... ”There is no doubt that pricing pressure will intensify as new factories

come on line,” says Katsuhiko Machida. the president of Japan’s Sharp. But price cuts could help to boost

demand further... Increased demand and more efficient plants could mean that profit margins start to recover

in 2006-but that could tempt firms to invest in still more LCD plants...”

Real options theory is the appropriate tool to analyze investment decisions under uncertainty (see, e.g.,

Dixit and Pindyck (1994), Smit and Trigeorgis (2004)). In most real options models uncertainty is incor-

porated via a geometric Brownian motion (GBM) process (see, e.g., Schwartz and Zozaya-Gorostiza (2003)

and Cortazar et al. (1998)). Departing from this theory, this paper analyzes the investment decisions of

high-tech firms. After that we confront this theoretical framework with real life data. We find that, mainly

due to the crystal cycle, the price development in the LCD market does not follow a GBM. For this reason

we conduct a thorough econometric analysis, from which we conclude that a vector autoregressive (V AR)
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process provides the best fit for the development of prices and costs in the LCD market. Incorporating

such a V AR process in our model leads to a framework that, unfortunately, is not analytically tractable.

Therefore we employ simulation to analyze the high-tech investment decisions.

From analyzing the data we conclude that at the time of an investment, the resulting capacity increase

goes along with decreasing output price and increasing production cost. The decreasing output price is a

result of the fact that the firm needs to attract additional customers in order to keep on using a considerable

part of the increased capacity. Production costs are higher because learning is prominently present in this

industry and operating a new generation LCD production facility in an efficient manner requires its own

exclusive experience. Hence, installation of a new generation LCD production facility implies that a firm

almost has to start all over with learning. This in turn implies that unit costs are high just after the firm

starts producing with the new capital stock. In other words, although unit costs are decreasing in the long

run, they jump up at every point of time that new capacity is taken into operation.

We also find that a decrease in prices is most of the time followed by a cost decrease. This can be seen as

a management effect, where the management is pushing harder on cost decreasing programs when prices fall.

See for example the following citation in The Economist’s article on Samsung Electronics (The Economist,

January 15th, 2005, p. 62):

”The prices of flat-screen televisions are also coming down as competition grows and capacity increases.

A 32-inch LCD TV that would have sold for around $3800 in America in 2003, now fetches about $2400.

Although lower prices expand the market, they also put pressure on producers to slash manufacturing costs

in order to protect profit margins.”

A main difference with GBM is that under V AR a decision to invest is based on the past development of

prices and costs, so that the decision whether or not to invest can depend on the place of the current price in

the crystal cycle. While analyzing investment decisions in five different generations of LCD plants, we find

that this difference in approach leads to a different investment decision for three generations of LCD plants:

under GBM it is not optimal to invest, while under V AR investing turns out to be optimal. Confronting our

findings with the investment decisions taken in practice by a big international firm, we conclude that only

two out of five decisions are supported by the GBM approach. In three cases the GBM model would have

advised not to invest, while in practice the firm did invest. For V AR the score is five out of five. Another

remarkable feature is that for some investment decisions it holds that they are approved by V AR, while at

the same time the NPV is negative when calculated within the GBM model.

This paper is organized as follows. Besides this introduction there are four sections. Section 2 employs

the standard real options approach, thus uncertainty modeled according to GBM , to analyze a high-tech

investment decision. In Section 3 we confront this standard real options approach with real life data. Section

4 presents the V AR framework, while the last section concludes.

2 The Investment Model with Geometric Brownian Motion

Consider a firm that can undertake an irreversible investment by paying a sunk cost I (> 0) . After the

investment the firm can produce Q units of the product per time period. The price of the product at time t

equals P (t) . Let P (t) follow a GBM :

dP (t) = αP P (t) dt + σP P (t) dωP (t) , (1)

P (0) = P0, (2)
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where αP is a constant representing the trend, σP is a constant related to the uncertainty part of the GBM

equation, while dωP (t) is the increment of a Wiener process implying that it is independently and normally

distributed with mean 0 and variance dt. The discount rate is r (> 0) .

The unit production cost is equal to C (t) , which also behaves according to a GBM :

dC (t) = αCC (t) dt + σCC (t) dωC (t) , (3)

C (0) = C0, (4)

where the constants αC and σC have an analogous interpretation as above, and the Wiener process dωC (t)

is also independently and normally distributed with mean 0 and variance dt. Denoting the correlation

coefficient between the two Wiener processes by ρ, we have that E [dωP dωC ] = ρdt.

The profit flow of the firm after the investment is denoted by π (P (t) , C (t)) and is equal to

π (P (t) , C (t)) = Q (P (t) − C (t)) . (5)

The expected present value that the firm obtains after it invests, can then be expressed as

V (P (t) , C (t)) = E




∞∫

s=t

π (P (s) , C (s)) exp (−rs) ds


 . (6)

From now on we omit the time dependence of the variables as long as there is no confusion possible.

Concerning this value of the firm after the investment, the following proposition can be established (the

proof is given in Appendix A.1).

Proposition 1 Define the markup ratio as

τ =
P

C
. (7)

Then the value of the firm after the investment equals

V (P, C) = Cν (τ ) = CQ

(
τ

r − αP

− 1

r − αC

)
. (8)

As long as the firm has not invested yet, it holds an option to invest. The value of the option to invest

is denoted by F (P, C) and is determined in the following proposition. The proof of the proposition can be

found in Appendix A.2.

Proposition 2 The value of the option to invest equals

F (P, C) = Cφ (τ) , (9)

in which

φ (τ ) = B1τ
β

1 , (10)

while β1 (> 1) is the positive root of

1

2

(
σ2

P − 2ρσCσP + σ2
C

)
β (β − 1) + (αP − αC)β − (r − αC) = 0. (11)
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Since both the value of the firm after the investment and the value of the option to invest are linear in C

and further depend only on the price-cost ratio τ, analogous to Dixit and Pindyck (1994, Section 6.5), the

optimal investment decision is completely governed by τ. This implies that a threshold value τ∗ exists so

that, whenever the price-cost ratio exceeds τ∗, it is optimal for the firm to invest immediately. Otherwise,

it is optimal for the firm to wait with investment.

As is standard in real options theory (cf. Dixit and Pindyck (1994)), the threshold value τ∗ can be found

by employing the value matching and smooth pasting conditions, which can be obtained from (8) and (9):

Cφ (τ∗) = Cν (τ∗) − I, (12)

∂Cφ (τ )

∂τ

∣∣∣∣
τ=τ∗

=
∂Cν (τ)

∂τ

∣∣∣∣
τ=τ∗

. (13)

Substitution of (10) and the right-hand side of (8) in (12) and (13) gives

CB1τ
∗β

1 = CQ

(
τ∗

r − αP

− 1

r − αC

)
− I, (14)

β1CB1τ
∗β

1
−1 =

CQ

r − αP

. (15)

It follows that

τ∗ =
β1

β1 − 1

(
r − αP

r − αC

+
(r − αP ) I

CQ

)
. (16)

3 LCD Industry

This section applies the model of the previous section to the LCD industry. In particular, we investigate five

investment decisions of a company that is active in the LCD industry. As we argued in the Introduction,

in such an industry the typical long run features are decreasing production costs and even more strongly

decreasing prices.

Section 3.1 shortly discusses the industry. After that we describe the production process of such a company

in Section 3.2. The data is presented and used for estimating the parameters in Section 3.3. In Section 3.4

we employ the econometric estimations to analyze the five investment decisions.

3.1 Industry

We focus on the industry of TFT-LCD1 panel production. The companies that are active in this industry sell

their products, i.e. LCD panels, to other companies (or other divisions of the same company). These other

companies integrate the LCD panels into products like for example mobile phones, notebooks, monitors, and

television sets.

Japanese firms (NEC, Sharp, Toshiba) started the LCD industry in the late 1980s. In the early 1990s

South Korean firms (Samsung and Goldstar Inc., where the latter is the predecessor of LG.Philips LCD

(LPL)) entered the market, followed by Taiwanese companies in the late 1990s (AU Optronics (AUO), Chi

Mei Optoelectronics (CMO), Chunghwa Picture Tubes (CPT), Quanta Display Inc. (QDI), where the latter

merged with AUO in the fall of 2006). Table 1 gives the ranking of LCD panel producers in November 2006.

1 TFT is the abbreviation for Thin Film Transistor. TFT-LCD screens are a subset of all LCD screens. Other types of

LCD screens are DSTN (Dualscan Super Twisted Nematics) and STN (Super Twisted Nematic) screens, for example. In the

remainder of the paper we write LCD instead of TFT-LCD when there is no confusion possible.
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Rank Notebook Monitor TV Total

1 LPL Samsung LPL LPL

2 AUO AUO AUO Samsung

3 Samsung LPL Samsung AUO

4 CMO CMO CMO CMO

5 CPT CPT Sharp CPT

Table 1: LCD panel shipment ranking (unit basis) in November 2006. Source: WitsView.

3.2 Production Process

The most important characteristic of an LCD production facility is the size of the mother glass. The size of

the mother glass, or substrate, determines the so-called generation of the production facility. For example,

the 4th generation has a substrate size of 68 cm by 88 cm and was first operated by LG.Philips LCD in 2000.

In 2005 Sharp announced that it plans to build an 8th generation LCD plant with a substrate size of 220 cm

by 240 cm. As the LCD panels are cut out of the substrate, the substrate on the one hand determines which

panel sizes can be produced and on the other hand how efficient each possible panel size can be produced.

In this sense, every investment in a new generation implies a process and a product innovation. We have

a process innovation, because a larger glass area provides a more efficient solution of the cutting problem,

and thus cheaper costs in the production process. Product innovation arises, because the larger area of the

substrate makes it possible to produce larger screens.

The substrate size that a company selects, heavily depends on the expectations that the company has

about the prevailing standard sizes in the market. For example, Samsung and Sony are using a 7th generation

plant with a substrate size of 187 cm by 220 cm, because they expect that 40 inch and 46 inch television

screens will become the standard sizes. At the same time, LG.Philips LCD and Chi Mei Optoelectronics are

aiming at 42 inch and 47 inch television sets with their 7th generation production facility of 195 cm by 225

cm.

3.3 Data and Estimations

The dataset is from one of the top 5 players in the LCD industry. For 32 quarters (from 1999Q12 up to and

including 2006Q4) we have the average price and the average cost per squared meter LCD in the specific

quarter. Moreover, during this time period the company made five investments in new production facilities,

the details of which are presented in Table 2. Each new investment is in a new generation of the production

facility. The substrate area, i.e. the size of glass in squared meters, increases with each new generation. To

handle bigger substrates, larger machines, larger cleanrooms, and larger investments are required, as can be

seen in Table 2.

In Figure 1 the dataset and the five investment moments are presented. This figure shows that after

each moment of investment the price decreases (larger supply) and costs increase, where it should be taken

into account that due to the time-to-build feature these phenomena can be observed some time after an

investment is undertaken. The cost increase arises because of the presence of learning in the production

process. The LCD industry experiences a so-called ramp up time (time needed to start a production line),

2 We denote by 1999Q1 the first quarter of 1999.
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Generation Width Height Area Monthly capacity Investment cost Decision

(in cm) (in cm) (in m2) (in 103 substrates) (times 106)

G4 68 88 0.598 60 1237 1999Q4

G5a 100 120 1.20 60 1635 2000Q2

G5b 110 125 1.38 60 1448 2002Q2

G6 150 185 2.78 90 3295 2003Q2

G7 195 225 4.39 90 5257 2004Q4

Table 2: Characteristics of the five investments.

with a strongly increasing yield (amount of good products relative to the total amount of products) in the

first quarters after the start of production. This makes that costs are at their highest level just after starting

the production process with new capital goods. Then, as time passes, costs decrease because of learning.

Due to the fact that the time-to-build increases for each new generation, the time lag between the investment

decision and the moment of the price decrease and cost increase becomes larger over the years. For example,

for the 4th generation the time lag was approximately 2 quarters (1999Q4 to 2000Q2) while for the 6th

generation it was 5 quarters (2003Q2 to 2004Q3).

1999Q1 2000Q1 2001Q1 2002Q1 2003Q1 2004Q1 2005Q1 2006Q1

2000

4000

6000

8000

10000

12000

Price

Cost

Figure 1: Quarterly average cost and average price per squared meter LCD over the period 1999Q1-2006Q4.

Furthermore, the five investment moments are marked: 1999Q4 (G4), 2000Q2 (G5a), 2002Q2 (G5b), 2003Q2

(G6), and 2004Q4 (G7).

Most of the time the real options literature employs a GBM process to introduce uncertainty in the

investment model, as we have done in the previous section. Using Ito’s lemma we can rewrite equation (3)
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into

d lnC (t) =

(
αC − 1

2
σ2

C

)
dt + σCdωC (t) . (17)

To work with the dataset, we discretize (17):

lnCt − lnCt−1 =

(
αC − 1

2
σ2

C

)
+ σCεt, (18)

where εt is assumed to be independently and normally distributed with mean zero and variance 1. Define

logarithmic cost and price changes, and corresponding averages as κt ≡ lnCt − lnCt−1, λt ≡ lnPt − lnPt−1,

κ = 1
T

T∑

t=1

κt and λ = 1
T

T∑

t=1

λt, where T denotes the number of observations. For our dataset we have

that T = 31 (note that 32 observations lead to 31 cost (price) differences), and from these observations the

following parameter estimations are derived:

σ̂C =

√√√√ 1

T − 1

T∑

t=1

(κt − κ)
2

= 0.0728, (19)

α̂C = κ +
1

2
σ̂C

2
= −0.0479, (20)

σ̂P =

√√√√ 1

T − 1

T∑

t=1

(
λt − λ

)2
= 0.121, (21)

α̂P = λ +
1

2
σ̂P

2
= −0.0533, (22)

σ̂PC =
1

T − 1

T∑

t=1

(κt − κ)
(
λt − λ

)
= 0.00140, (23)

ρ̂ =
σ̂PC

σ̂P σ̂C

= 0.158. (24)

As said before, the trend for both prices and costs is negative, while we also see that price uncertainty is

more than 50 % larger than cost uncertainty.

3.4 Analysis

Combining the estimations (19)-(24) and the theoretical results of the previous section, we analyze the five

investments in new production facilities. From equation (16) we can deduct that the firm should invest

whenever the current price P exceeds P ∗ (C) , with C the current cost and

P ∗ (C) =
β1

β1 − 1

(
C

r − αP

r − αC

+
(r − αP ) I

Q

)
. (25)

Additionally, we know that the expected NPV of the investment is positive whenever the current price P

exceeds PNPV (C) (cf. Dixit and Pindyck (1994)), where

PNPV (C) =

(
C

r − αP

r − αC

+
(r − αP ) I

Q

)
. (26)

Figure 2 compares these outcomes with the decisions that have been taken in practice. To do so, in this

figure the functions (25) and (26) are depicted. Furthermore, we present a curve that connects the realized

price and cost values around the quarter that the investment was undertaken. In each figure there are seven
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dots, each of which depicts the price and unit cost at a given quarter. In the middle quarter, i.e. the fourth

one, the investment has been undertaken. From these figures we conclude that the investment decision in

the 4th generation (panel (a) of Figure 2) is in line with the decision that our real options model prescribes.

The first investment decision in the 5th generation should have been taken earlier, but this difference can

occur because in practice it can take time to implement such an investment decision (panel (b) of Figure 2).

However, the second investment in the 5th generation (panel (c) of Figure 2) and the investments in the 6th

(panel (d) of Figure 2) and 7th generations (panel (e) of Figure 2) would not have been undertaken if our

real options model was followed. Note that our real options model even predicts a negative NPV for the 6th

and 7th generation investments.

We conclude that only two of the five investment decisions are taken optimally, seen from the perspective

of our GBM real options model. This implies that either the firm was three times wrong in undertaking the

investment, or that the data does not follow a GBM process which would imply the invalidity of our model.

In the next section it is argued that in any case the latter is true.

4 The V AR Approach

Section 4.1 broadly describes the consecutive steps of the econometric analysis and its conclusions. The

details of this analysis are presented in Appendix B. The main result, the estimated V AR model, is employed

in Section 4.2 to analyze the same five investment decisions as in the previous section.

4.1 Econometric Analysis

In the previous section we fitted the discretization of the GBM , as presented in (18) for logarithmic costs

and a similar equation for prices, on our dataset. Now we verify whether the resulting processes match

with the data. To do so we conduct a systematic time series analysis, while using STATA/SE 9.2 for our

calculations and Mathematica 5.2 to create the figures.

For a model with differences of logarithmic costs and prices as dependent variables to be stationary, the

logarithmic costs and prices must have exactly one unit root each. In other words, if this is not the case

the model in differences is not stationary and, consequently, a GBM process does not fit the data. The first

step of our analysis is to test whether the logarithmic costs and prices actually have this property (see the

online Appendix, which is referred to in Appendix B.1). After this extensive unit root analysis, we are able

to conclude that both logarithmic costs and logarithmic prices have exactly one unit root. In other words,

we can construct a stationary model for differences of logarithmic costs and prices.

The second step is to conduct a univariate time series analysis for the differences in logarithmic costs and

logarithmic prices (see Appendix B.2). We compute the autocorrelation (AC) and partial autocorrelation

(PAC) functions and find that there are no significant ACs and PACs for logarithmic cost changes. This

implies that logarithmic costs indeed can be described by a GBM . However, for logarithmic prices the first

two PACs changes are significant, which means that logarithmic prices follow an autoregressive model of

order 2 (AR (2)) instead of a GBM .

Thirdly, we investigate cointegration between logarithmic costs and logarithmic prices and ex-ante causal-

ity between these variables (see Appendix B.3). Applying Granger’s causality test gives the following two

results: (1) both null hypotheses that there is no causality from logarithmic prices to logarithmic costs and

the reverse are strongly rejected when taking two or more lags into consideration and (2) the null hypothesis

that there is no causality from logarithmic costs to logarithmic prices is rejected with one lag, but the reverse

9
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Figure 2: Investment regions for the 4th (G4), the first 5th (G5a), the second 5th (G5b), the sixth (G6),

and the 7th generation (G7) investments.
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hypothesis is not rejected. On the basis of our analysis we can conclude that a tendency of causality from

lagged prices to current costs can slightly, but not clearly, be observed. In fact, we may observe a high

degree of feedback between costs and prices. Hence, we have to construct a multivariate structural vector

autoregressive (SV AR) model.

The fourth step is the multivariate time series analysis (see Appendix B.4). We start with an unrestricted

SV AR (2) model3:

(
1 d12

d21 1

)(
κt

λt

)
=

(
a1

a2

)
+

(
b11 b12

b21 b22

)(
κt−1

λt−1

)
+

(
c11 c12

c21 c22

)(
κt−2

λt−2

)
+

(
εκt

ελt

)
, (27)

where εκt and ελt are identical and independently distributed variables with mean 0 and covariance matrix

equal to (
σ2

κ σκλ

σκλ σ2
λ

)
. (28)

In STATA we can only estimate equation (27) if we pose a restriction either on d12 or d21. Therefore, we fit

(27) for two cases. In the first case we impose d21 = 0 and in the second case we have d12 = 0. We employ

the general-to-specific approach, which implies that we introduce more zero constraints when coefficients

are not significant. The contemporaneous values of logarithmic cost differences (d21) and logarithmic price

differences (d12) disappear quickly. Ultimately we arrive at the following V AR (2) model:

(
κ̂t

λ̂t

)
=




0

−0.0807
(0.0176)


+




0 0.369
(0.0791)

−0.648
(0.198)

0.672
(0.133)



(

κt−1

λt−1

)
+




0.575
(0.125)

0

0 −0.360
(0.133)



(

κt−2

λt−2

)
. (29)

The covariance matrix of the residuals in this model is given by

(
σ̂

2
κ σ̂κλ

σ̂κλ σ̂
2
λ

)
=

(
0.00334 0.000264

0.000264 0.00543

)
. (30)

From equations (27) and (29) we can conclude the following. In the case of GBM the parameters bij and cij

(i, j ∈ {1, 2}) are zero, implying that under GBM Pt only depends on Pt−1. However, now we obtain that

for the LCD industry we need the values of Pt−1, Pt−2 and Pt−3 to come up with the best possible estimate

for the current price. This seems to point to the existence of a crystal cycle, where it is not enough to know

just Pt−1 in order to determine Pt. Instead the values of Pt−1, Pt−2 and Pt−3 are needed to determine the

”location” of Pt in the cycle.

A second interesting feature is the rampup effect of large capacities (b21 < 0). While ramping up a

new plant a firm temporarily faces increasing production costs and lower prices. The latter holds, because

increased capacity leads to more production and to sell the extra production, prices have to be lowered.

Furthermore, right after the moment of the investment, new capital goods will be used in the production

process. It requires experience to produce efficiently with a new generation of the production technology.

Therefore, in the beginning production costs will be high, while they will decrease over time due to the

process of learning. Furthermore, we see a management effect (b12 > 0), i.e. a price drop is followed by a

cost decrease due to management pushing harder on cost decreasing programs. Finally, after comparing (30)

with (19) and (21) we conclude that under V AR the variance is lower than under GBM . This is because

the V AR model explains more of the underlying price and cost processes.

3Note that the order 2 is a result of the univariate time series analysis.
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In the last step (see Appendix B.5) we study ex-post causality based on the estimated V AR model (29).

We find that there is a a very strong ex-post causality in both directions. In other words, we observe a very

strong feedback between costs and prices.

4.2 Simulations

We apply Monte Carlo simulation to the V AR model of equation (29) to estimate the expected NPV and

the expected option value of the five capacity investments that were discussed in the previous section. After

having determined this, we employ the investment criterion known from the real options theory (cf. Dixit

and Pindyck (1994)) to take the optimal investment decision. This criterion says that it is optimal to invest

whenever the NPV equals the value of the option to invest (value matching). Note that option values are

always positive, which implies that a positive NPV is a necessary condition for an investment to be optimally

undertaken.

Like we did in Figure 2, for each investment decision we consider the seven consecutive quarters around the

time the investment was undertaken in practice. For each quarter we determine the NPV of the investment

given that it was undertaken right at that quarter. We use the realized prices (costs) of that quarter

and the previous quarter as a starting point for the simulation (remember that λt occurs in (29), where

λt ≡ lnPt − lnPt−1, while for the costs an analogous story holds). In each simulation run we simulated the

prices and the costs 100 quarters into the future.

Employing dynamic programming we determine the value of the option to invest. Starting at the end of

the simulation path and working backwards in time, for each simulated quarter the value of investing and

not investing, i.e. waiting with investing at least until the next quarter and acting optimally in choosing

the investment time from thereon, is calculated. In this way we find for each simulation path the optimal

investment strategy and the option value. The expected NPV and the expected value of the option are

determined by taking the average over 1 million simulation paths.

In the Figures 3-7 the results of the simulations of the five investment decisions are presented in the bar

charts on the right-hand side. Furthermore, for reasons of comparison we present the results for the GBM

model on the left-hand side. Applying the real options investment decision rule we know that, whenever the

NPV bar is lower than the option value (OV) bar, it is better to keep the investment option alive by waiting.

In such a case it is thus better to refrain from investing. However, when these bars are of equal height, it is

optimal to invest.

While comparing the figures for the five investment decisions, we draw the conclusion that the V AR

and the GBM models lead to the same investment decision for the investments in the 4th and the first

5th generation. However, we see different recommendations for the investments in the second 5th, the 6th

and the 7th generation plant: whereas the GBM model suggests not to invest, the V AR model gives a

positive advise. The V AR approach in fact supports the investments in the second 5th, the 6th and the 7th

generation that were undertaken in practice. It is interesting to notice that in some cases it is optimal to

invest when applying the V AR model, while in fact at the same time the NPV is negative under GBM (see,

e.g., Figure 5).

5 Conclusion

This paper considers investments in high-tech industries, which are characterized by rapid innovations,

decreasing prices, price uncertainty, and cost learning curves. The appropriate tool to analyze investment

12
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Figure 3: Net present value (NPV) and option value (OV) for the 4th generation investment with GBM

and V AR. Investment is optimal in quarters 1999Q3, 1999Q4, 2000Q1, and 2000Q3 according to the V AR

model.
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Figure 4: Net present value (NPV) and option value (OV) for the first 5th generation investment with GBM

and V AR. Investment is optimal in quarters 1999Q3, 1999Q4, and 2000Q1 according to the V AR model.
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Figure 5: Net present value (NPV) and option value (OV) for the second 5th generation investment with

GBM and V AR. Investing is optimal in quarters 2002Q3 and 2002Q4 according to the V AR model.
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Figure 6: Net present value (NPV) and option value (OV) for the 6th generation investment with GBM

and V AR. Investing is optimal in quarter 2002Q4 according to the V AR model.
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Figure 7: Net present value (NPV) and option value (OV) for the 7th generation investment with GBM and

V AR. Investing is optimal in quarters 2004Q2, 2004Q3, 2004Q4, and 2005Q1 according to the V AR model.

decisions is real options theory. For this reason we start out applying a standard real options approach where

prices and costs follow a geometric Brownian motion process (GBM). We confronted our findings with some

recent data taken from the LCD (liquid crystal display) industry, which consists not only of price and cost

developments, but also of five investments that were undertaken in practice. In this industry investment

costs are huge due to the very advanced technology involved. For this reason it is important to choose

the right investments and to undertake these investments at the right time. We found that out of the five

investments undertaken in practice, the standard real options approach concluded that only two of them

were optimal.

However, we also found that the price development in this industry does not behave according to a GBM

process. The reason is that prices follow a so-called crystal cycle, which implies that to estimate the price in

the next period, it is not enough to base this estimate only on the current price, as is the case under GBM .

We found that a vector autoregressive model (V AR) provides a better fit, because such an approach makes

it possible to let the price estimate depend on prices in the three previous periods.

The logical next step was to study the LCD industry investment decisions, while imposing that prices and

costs follow a V AR model. However, after integrating the V AR model and the real options machinery it

was not possible to find analytical solutions. Instead, we applied simulation and found that GBM and V AR

lead to the same recommendations in two out of five cases in the sense that these two investment decisions

taken in practice are supported by both methods. The other three investment decisions taken in practice

are only supported by the V AR approach and not by GBM . Hence, the V AR approach fully supports the

practical investment decisions.

Another conclusion of this paper is that real options theory should not rely too much on geometric

Brownian motion. It seems to be worthwhile to extend this theory by integrating it with other dynamic

stochastic processes.

What is missing in the framework of this paper is on the one hand the presence of competition and on

the other hand time-to-build. High-tech industries like the LCD industry are oligopolistic industries where

a few large firms are the major players. Then investments certainly have strategic aspects, where under

specific circumstances it pays to preempt competitors in choosing the optimal investment timing. There

are some recent contributions in real options theory (e.g. Grenadier (2000), Huisman (2001), Pawlina and
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Kort (2006)) that may provide the tools to extend the present framework to allow for competitive behavior.

Building a new LCD plant takes years, and therefore it would be more realistic to include time-to-build in

the framework. Majd and Pindyck (1987) and Bar-Ilan and Strange (1996) can be the starting points for

this extension.

A Proofs

A.1 Proof of Proposition 1

The Bellman equation that V must satisfy is given by

rV (P, C) = π (P, C) + lim
dt↓0

1

dt
E [dV (P, C)] . (31)

Expanding E [dV (P, C)] with Ito’s lemma gives

E [dV (P, C)] = αCC
∂V (P, C)

∂C
dt + αP P

∂V (P, C)

∂P
dt

+
1

2
σ2

CC2 ∂2V (P, C)

∂C2
dt + ρσCσP PC

∂2V (P, C)

∂P∂C
dt +

1

2
σ2

P P 2 ∂2V (P, C)

∂P 2
dt. (32)

After substitution of (5) and (32) into (31) it holds that

rV (P, C) = Q (P − C) + αCC
∂V (P, C)

∂C
+ αP P

∂V (P, C)

∂P

+ ρσCσP PC
∂2V (P, C)

∂P∂C
+

1

2
σ2

CC2 ∂2V (P, C)

∂C2
+

1

2
σ2

P P 2 ∂2V (P, C)

∂P 2
. (33)

From (5) and (6) we obtain that the value of the firm is homogeneous of degree 1 in (P, C). Therefore,

the optimal investment decision is only dependent on the markup ratio τ = P
C

. It holds that

V (P, C) = Cν

(
P

C

)
= Cν (τ ) , (34)

where ν (τ ) is now the function to be determined (see Dixit and Pindyck (1994, p. 210) for a similar

argument). Differentiating (34) gives

∂V (P, C)

∂C
= ν (τ ) − τ

∂ν (τ )

∂τ
, (35)

∂V (P, C)

∂P
=

∂ν (τ )

∂τ
, (36)

∂2V (P, C)

∂P∂C
= − τ

C

∂2ν (τ )

∂τ2
, (37)

∂2V (P, C)

∂C2
=

τ2

C

∂2ν (τ )

∂τ2
, (38)

∂2V (P, C)

∂P 2
=

1

C

∂2ν (τ )

∂τ2
. (39)

Substitution of equations (35)-(39) into equation (33) ultimately leads to

(r − αC) ν (τ) = Q (τ − 1) + (αP − αC) τ
∂ν (τ )

∂τ
+

1

2

(
σ2

P − 2ρσCσP + σ2
C

)
τ2 ∂2ν (τ )

∂τ2
. (40)

The general solution of (40) is

ν (τ) = A1τ
β

1 + A2τ
β

2 + Q

(
τ

r − αP

− 1

r − αC

)
, (41)
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where β1 and β2 are the roots of the following quadratic equation:

1

2

(
σ2

P − 2ρσCσP + σ2
C

)
β2 +

(
αP − αC − 1

2

(
σ2

P − 2ρσCσP + σ2
C

))
β − (r − αC) = 0. (42)

Analogous to Dixit and Pindyck (1994), we can prove that β1 > 1 and β2 < 0. Since ν (0) = 0 and

lim
τ→∞

ν (τ ) = Q
(

τ
r−αP

− 1
r−αC

)
, it must hold that A1 = 0 and A2 = 0. This implies that

ν (τ ) = Q

(
τ

r − αP

− 1

r − αC

)
. (43)

A.2 Proof of Proposition 2

F (P, C) must satisfy the following Bellman equation:

rF (P, C) = lim
dt↓0

1

dt
E [dF (P, C)] . (44)

Applying Ito’s lemma to E [dF (P, C)] and substitution of the result in (44) gives the following differential

equation:

rF (P, C) = αCC
∂V (P, C)

∂C
+ αP P

∂V (P, C)

∂P

+ ρσCσP PC
∂2V (P, C)

∂P∂C
+

1

2
σ2

CC2 ∂2V (P, C)

∂C2
+

1

2
σ2

P P 2 ∂2V (P, C)

∂P 2
. (45)

To solve this differential equation, we employ the same arguments as in the proof of Proposition 1. We thus

notice that the value of the option to invest is only dependent on the ratio τ = P
C

and the value of the option

to invest is homogeneous of degree 1 in (P, C), so that

F (P, C) = Cφ

(
P

C

)
= Cφ (τ ) , (46)

where φ (τ) is the function to be determined. Differentiating (46) gives

∂F (P, C)

∂C
= φ (τ ) − τ

∂φ (τ)

∂τ
, (47)

∂F (P, C)

∂P
=

∂φ (τ )

∂τ
, (48)

∂2F (P, C)

∂P∂C
= − τ

C

∂2φ (τ )

∂τ2
, (49)

∂2F (P, C)

∂C2
=

τ2

C

∂2φ (τ )

∂τ2
, (50)

∂2F (P, C)

∂P 2
=

1

C

∂2φ (τ )

∂τ2
. (51)

Substitution of equations (47)-(51) into equation (45), dividing by C and rewriting leads to

(r − αC)φ (τ ) = (αP − αC)
∂φ (τ)

∂τ
+

1

2

(
σ2

P − 2ρσCσP + σ2
C

)
τ2 ∂2φ (τ )

∂τ2
. (52)

The general solution of equation (52) is equal to

φ (τ ) = B1τ
β

1 + B2τ
β

2 , (53)

where β1 and β2 are the positive and negative roots of equation (42). The option to invest will be worthless

if the price equals zero, i.e. φ (0) = 0. Therefore, it must hold that B2 = 0.
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B Econometrics

This appendix describes the econometric analysis in detail. The first step is to verify whether logarithmic

costs and logarithmic prices have exactly one unit root each (Appendix B.1). This is a prerequisite for mod-

elling costs and prices by a GBM . The second step is to conduct univariate time series analysis (Appendix

B.2). Thirdly, we investigate cointegration between costs and prices and ex-ante causality (Appendix B.3).

The fourth step is the multivariate time series analysis provided that there is no clear ex-ante causality

(Appendix B.4), while in the last step (Appendix B.5) we study ex-post causality.

B.1 Unit Roots

An extensive unit root analysis is provided in the online appendix. The conclusion is that both logarithmic

costs and logarithmic prices contain one unit root.

B.2 Time series estimates of logarithmic cost and price changes

From the unit root analysis we can conclude that we can determine univariate time series properties from the

correlogram of differences in logarithmic costs and prices. The first step is to inspect the autocorrelations

(ACs) and partial autocorrelations (PACs) of the differences in logarithmic costs and prices in case they

are modeled according to a (discrete-time) GBM (cf. 18). We directly observe from the correlograms for

the sample period 1999Q1-2006Q4 in Figures 8 and 9 that neither AC nor PAC is statistically significant

at the 1% or 5% level for logarithmic cost differences, but that the first two PACs for the logarithmic price

differences are statistically significantly different from zero. This is a result of the fact that the standard

error of any (P)AC is 1√
T

(see e.g. Plasmans (2006, pp. 70-71)), which yields in our case that 1√
31

= 0.180.
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Figure 8: ACs and PACs for the differences in logarithmic costs.

We conclude that logarithmic costs behave according to a GBM , while logarithmic prices are (at first

instance) better described by an autoregressive model of order 2 (AR(2)). The results of the corresponding

estimations are depicted in Table 3.

In the model for logarithmic prices the two estimated AR parameters and the intercept are statistically

significant at the 1% level. Now, the resulting residuals

ε̂t ≡ λt + 0.0572− 0.668λt−1 + 0.489λt−2, (54)
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Figure 9: ACs and PACs for the differences in logarithmic prices.

estimation

α̂ κt λt

α̂0 −0.0505∗∗
(0.0131)

−0.0572∗∗
(0.0200)

α̂1 - 0.668∗∗
(0.165)

α̂2 - −0.489∗∗
(0.158)

R2 0.00 0.408

AIC −73.5 −53.5

BIC −72.0 −49.4

Table 3: Estimation of a discrete GBM for differences in logarithmic costs (κt) and an AR(2) for differences

in logarithmic prices (λt).
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must be analyzed to check their (remaining) autocorrelation behavior (diagnostic checking). Figure 10

presents the correlogram for the residuals, and we conclude that none of the residual ACs and PACs are

statistically significant.4 This confirms that the AR(2) is the appropriate time series representation for the

differences in logarithmic prices and a discrete-time GBM for prices is definitely rejected.
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Figure 10: ACs and PACs for the residuals of the AR(2) estimation for the differences in logarithmic prices.

B.3 Cointegration and causality between logarithmic costs and prices

Departing from the univariate time series properties of logarithmic costs and prices derived in the previous

sections, we now analyze the short- and long-term time-dependency or the cointegration between these two

variables. Once cointegration between logarithmic costs and prices can be established, causality should

be analyzed. We have already verified that there is a unit root in both logarithmic cost and price series.

Moreover, a simple linear regression shows that there is a clear relationship between logarithmic costs and

prices

ln Ĉt = 0.752
(0.0475)

lnPt + 1.87
(0.396)

with R2 = 0.893. (55)

According to Engle and Granger (1987) there is cointegration between logarithmic costs and logarithmic

prices, if the residuals ε̂t from the regression in (55) are stationary. Applying a Dickey-Fuller (DF ) test to

these regression residuals, we find a DF test statistic of −1.96, which lies in between the 1% and 5% critical

values (−2.65 < −1.96 < −1.95). Hence, these residuals are integrated at the 1% level but not at the 5%

level. However, we need to be sure that we included a sufficient number of lags in ∆ε̂t = ϑ1ε̂t−1 + ηt,
5

to make the error term ηt white noise. Therefore, it is advisable to perform a range of ADF tests, in the

sense that we add additional lags ∆ε̂t−i (i = 1, 2, 3, ...) to the right hand side of this error correction model

(ECM) equation. Adding up to 4 lags in a sequential way results each time in a t statistic for ϑ̂1, which

for each number of additional lags is the corresponding (A)DF (test) statistic in Table 4. We observe that

for ECMs with one and two lags the nonstationarity hypothesis of the residuals is rejected at 1% so that,

although neither of the original (lags of) costs and prices is stationary, there is a linear combination of them

4Note that for these residuals we have that T = 29, so that 2√
T

= 0.371.
5This error correction model (ECM) regression is also called the ADF regression if there is at least one lag of ∆ε̂t (and DF

regression if there are no lags).
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that is stationary. It can be concluded that logarithmic costs and prices are cointegrated with a long-term

or cointegrating relationship (55).6

Additional lags Number of observations (A)DF statistic 1% critical value 5% critical value

0 31 −1.96 −2.65 −1.95

1 30 −2.74 −2.65 −1.95

2 29 −2.95 −2.65 −1.95

3 28 −1.87 −2.66 −1.95

4 27 −1.64 −2.66 −1.95

Table 4: (A)DF test statistics based on various first order ECMs for the residuals from (55).

Since a single cointegrating relation between logarithmic costs and logarithmic prices is found, we can

investigate the (long-term) causality between these two variables by applying a Granger (1969) causality

test. Describing the conditional probability density function of a stochastic variable yt given its previous

value and the previous occurrence of another variable by f(yt| yt−1, xt−1), we have Granger noncausality in

the sense that x does not cause y if f(yt| yt−1, xt−1) = f(yt| yt−1). Hence, x causes y at period t if the past

of x provides additional information for the forecast of yt, compared to considering the past of y alone.

There are various specific versions of a Granger causality test:

• Sims (1972): If (xt, yt) is a 2-dimensional time series, then Sims’s version of Granger’s causality test

is based on the regression of yt on previous and future values of xt:

yt =
−m∑
i=n

γ−ixt−i + υt. (56)

A test that y does not cause x is a conventional F test, in the case of a sufficiently large number T of

observations, for the null hypothesis γ1 = γ2 = ... = γm = 0 with m and T −m−n degrees of freedom.

There may still be serial correlation in the error term υt.

• Geweke et al. (1983): it is assumed that υt can be approximated by an AR (p) process:

yt =
p∑

j=1

φ−jyt−j +
−m∑

i=n+p

γ−ixt−i + ut, (57)

i.e. a regression of y on p past values of y, m future values of x and (n + p) past values of x with the

null hypothesis that y does not cause x, or γ1 = γ2 = ... = γm = 0. This can be tested by a traditional

6It should be noted that, although the OLS residuals from (55) have obviously zero mean when considered over the whole

sample, estimating an ECM equation involves a loss of p + 1 observations when there are p = 0, 1, 2, 3 or 4 (additional) lags, so

that a constant term ϑ0 in the ECM equation would trivially differ from zero and testing nonstationarity with drift should be

made (with lower critical values) in a finite sample. However, given the about 30 observations in our case, this constant is found

to be of very small size and not statistically significant at all, i.e. having values with standard errors between brackets below as

follows: −0.00449
(0.0185)

without lags, 0.00107
(0.0169)

for one lag, 0.00487
(0.0171)

for two lags, 0.00241
(0.0178)

for three lags, and 0.00363
(0.0190)

for four lags. The

(A)DF statistics became higher than in Table 4 (−1.92, −2.69, −2.90, −1.84, and −1.61 for 0, 1, . . . , 4 lags, respectively) with

lower critical values so that the null of nonstationarity was nowhere rejected, even at 5%. Given the completely insignificant

very small constants, however, we decided not to consider the occurrence of such a constant term in the ECM regression.
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F test, in the case of a sufficiently large number T of observations, with m and T −m−n− 2p degrees

of freedom.

However, Monte Carlo simulations in Geweke et al. (1983) and Geweke (1984) with specification (57)

suggest that the simple and most straightforward F test, which is based on the unrestricted model

yt = α0 +
p∑

j=1

αjyt−j +
m∑

i=1

βixt−i + ut,

should be employed by testing under the null that β1 = β2 = . . . = βm = 0. Following Hamilton (1994,

pp. 304-305), the STATA software sets m = p. The corresponding test results are presented in Table 5,

where the F statistics have p = 1, 2, 3, 4 and T −2p−1 = 28, 25, 22, 19 degrees of freedom. From this table

it becomes clear that both null hypotheses that logarithmic prices do not cause logarithmic costs and the

reverse are rejected when taking two or more lags into consideration. The null hypothesis that logarithmic

costs do not cause logarithmic prices is not rejected with one lag, while the reverse hypothesis is rejected.

We conclude that a tendency of causality from lagged prices to current costs can slightly, but not clearly, be

observed (ex-ante). In fact, we may observe a high degree of feedback between costs and prices. Hence, we

have to construct a multivariate structural vector autoregressive (SV AR) model.7

Null Hypothesis # lags # obs. F statistic Excess probability

lnP does not Granger-cause ln C 1 31 14.8 0.0006

lnC does not Granger-cause ln P 1 31 0.00 0.9548

lnP does not Granger-cause ln C 2 30 11.5 0.0003

lnC does not Granger-cause ln P 2 30 7.31 0.0032

lnP does not Granger-cause ln C 3 29 9.40 0.0003

lnC does not Granger-cause ln P 3 29 3.71 0.0267

lnP does not Granger-cause ln C 4 28 14.0 0.0000

lnC does not Granger-cause ln P 4 28 3.41 0.0290

Table 5: Granger tests for ex-ante causality.

B.4 Deriving an SV AR model in logarithmic cost and price differences

From the cointegration and causality results we derive that a relationship between logarithmic cost and price

differences is likely to exist. In particular, according to the univariate time series analysis, the differences κt

of the logarithmic costs and λt of the logarithmic prices are assumed to follow an SV AR(2) model of the

following form:

(
1 d12

d21 1

)(
κt

λt

)
=

(
a1

a2

)
+

(
b11 b12

b21 b22

)(
κt−1

λt−1

)
+

(
c11 c12

c21 c22

)(
κt−2

λt−2

)
+

(
εκt

ελt

)
, (58)

7The model is SV AR since contemporaneous effects of logarithmic costs and logarithmic prices on each other will be

considered a priori.
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φ̂ first case second case final model

â1 −0.00712
(0.0188)

−0.00712
(0.0188)

0

â2 −0.103∗∗
(0.0239)

−0.103∗∗
(0.0239)

−0.0807∗∗
(0.0176)

b̂11 −0.178
(0.162)

−0.178
(0.162)

0

b̂12 0.396∗∗
(0.128)

0.396∗∗
(0.128)

0.369∗∗
(0.0791)

b̂21 −0.758∗∗
(0.206)

−0.758∗∗
(0.206)

−0.648∗∗
(0.198)

b̂22 −0.547∗∗
(0.163)

−0.547∗∗
(0.163)

0.672∗∗
(0.133)

ĉ11 −0.558∗∗
(0.193)

−0.558∗∗
(0.193)

0.575∗∗
(0.125)

ĉ12 −0.0118
(0.120)

−0.0118
(0.120)

0

ĉ21 −0.319
(0.246)

−0.319
(0.246)

0

ĉ22 −0.254
(0.153)

−0.254
(0.153)

−0.360∗
(0.133)

d̂12 −0.0455
(0.146)

0 0

d̂21 0 −0.0737
(0.236)

0

R2
κ 0.422 0.422 0.390

R2
λ 0.596 0.596 0.572

AIC -149 -149 -140

BIC -145 -145 -132

Table 6: Estimation of SV AR(2) for differences in logarithmic costs and prices.

where εκt and ελt are identically and independently distributed (i.i.d.) variables with mean 0 and variance-

covariance matrix (
σ2

κ σκλ

σκλ σ2
λ

)
. (59)

It is not possible to fit the model presented by equation (58) directly in STATA.8 Instead, we analyze to

cases. In the first case d21 is set equal to 0 and the model is fitted, and in the second case the model is fitted

under the condition that d12 is equal to 0. We employ the general-to-specific approach, where we introduce

more zero constraints when coefficients are not significant. In the first case the following coefficients are

consecutively set equal to zero: c12, d12, a1, b11, and c21. In the second case this sequence is c12, d21, a1,

b11, and c21. We conclude that there are no contemporaneous effects in our final model. In Table 6 the first

regressions of each case and the final regression are presented.

Substitution of the estimated parameters in equation (58) leads to

8Neither is this possible in EViews nor in SAS.
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Wald statistic

Null Hypothesis χ2
1 Excess Probability

lnC does not Granger-cause ln P 21.8 0.0000

lnP does not Granger-cause ln C 10.7 0.0001

Table 7: Granger tests for ex-post causality.

(
κ̂t

λ̂t

)
=


 0

−0.0807
(0.0176)


+




0 0.369
(0.0791)

−0.648
(0.198)

0.672
(0.133)



(

κt−1

λt−1

)
+




0.575
(0.125)

0

0 −0.360
(0.133)



(

κt−2

λt−2

)
. (60)

The variance-covariance matrix of the residuals is given by

(
σ̂

2
κ σ̂κλ

σ̂κλ σ̂
2
λ

)
=

(
0.00334 0.000264

0.000264 0.00543

)
. (61)

B.5 Ex-post causality

The V AR model can be used to test the null whether lagged values of a variable, say x, have explanatory

power in a regression of a variable y on lagged values of y and x. Testing for such Granger-causality can

also be executed through a Wald test, which boils down to test zero constraints for the coefficients of an

estimated V AR(p) model.

In general, we consider testing Cβ = c against Cβ 6= c, where C is an (m× (k2p + q)) matrix of rank m,

k is the dimension of the V AR(p) process (k is the number of equations in the V AR model; 2 in our case),

and c is an m vector (also containing zero restrictions in our case). Assuming that
√

T
(
β̂ − β

)
d→ N(0,V),

with V the asymptotic variance-covariance matrix, we get (see e.g. Plasmans (2006, p. 39))

√
T
(
Cβ̂ − Cβ

)
d→ N(0,CVC

′), (62)

and hence

T
(
Cβ̂ − c

)′ [
CVC

′]−1
(
Cβ̂ − c

)
d→ χ2

m, (63)

which involves the Wald test statistic W (the expression on the left hand side of (63) with an estimate of V)

having a limiting chi-squared distribution with m degrees of freedom. Usually, the null hypothesis is that a

certain subvector of β, say β0, equals zero so that the Wald test statistic in (63) becomes W0 = c′0V̂
−1
0 c0,

where V̂0 (c0) denotes the corresponding submatrix (subvector) of V̂ (c).

Table 7 presents the STATA results of this Wald (ex-post causality) test applied to the estimated V AR(2)

model in (60), where m is the number of ex-post restrictions that can be imposed on each equation of (60),

i.e. not considering the coefficients already set to zero ex-ante. Hence, we have m = 1 ex-post zero constraint

to be tested in each equation of (60).

We conclude that there is a clear ex-post causality between logarithmic costs and logarithmic prices in

both directions as both null hypotheses of no-causality are strongly rejected.
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