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Improving upon the Marginal Empirical Distribution Functions

When the Copula is Known

Johan Segers∗, Ramon van den Akker†, and Bas J.M. Werker‡

Université catholique de Louvain and Tilburg University

Abstract

At the heart of the copula methodology in statistics is the idea of sepa-
rating marginal distributions from the dependence structure. However,
as shown in this paper, this separation is not to be taken for granted:
in the model where the copula is known and the marginal distributions
are completely unknown, the empirical distribution functions are semi-
parametrically efficient if and only if the copula is the independence
copula. Incorporating the knowledge of the copula into a nonparamet-
ric likelihood yields an estimation procedure which by simulations is
shown to outperform the empirical distribution functions, the amount
of improvement depending on the copula. Although the known-copula
model is arguably artificial, it provides an instructive stepping stone
to the more general model of a parametrically specified copula and
arbitrary margins.

Keywords: independence copula, nonparametric maximum likelihood
estimator, score function, semiparametric efficiency, tangent space

JEL: C14

1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution
function H with absolutely continuous marginal distribution functions F
and G and copula C. Recall that C is the unique bivariate distribution
function with uniform margins on (0, 1) such that H(x, y) = C(F (x), G(y))
for all x, y ∈ R (Sklar, 1959; Nelsen, 1999).

The problem we consider is efficient estimation of the marginal distribu-
tion functions F and G given that the copula C is known. Admittedly, this
assumption is artificial since it can never be fulfilled in practice. However,
the solution of this problem is thought to be an important step towards the
solution of the more realistic problem of estimating the bivariate distribu-
tion H given that its copula C belongs to a parametric family and without
further knowledge of the margins except for (absolute) continuity. Indeed,
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in Klaassen and Wellner (1997), which is the first paper to consider efficient
estimation of the marginals in a copula model, the following is written:

“It would be very interesting to know information bounds and efficient
estimators for estimation of the marginal distribution functions F and
G in the bivariate normal copula model treated here, or in other copula
models.” — Klaassen and Wellner (1997, p. 72)

For instance, if (Cθ | θ ∈ Θ) is a well-behaved family of copulas and if
an efficient estimator of θ is available, then the so-called plug-in principle
produces an efficient estimator of (F,G) (Klaassen and Putter, 2005). Fur-
thermore, the contribution of this paper can be considered as a complement
to Bickel et al. (1991) and Peng and Schick (2002, 2004, 2005), in which
efficient estimation of some aspect of the bivariate distribution function is
considered if complete information on one or both marginals is available.

Since the whole philosophy behind the use of copulas is to disentangle
the analysis of the marginal distributions from the one of the dependence
structure, one may be tempted to believe that knowledge of the copula
cannot in any way contribute to knowledge of the marginals. That is, even
if the copula would be completely known, one cannot improve upon the
marginal empirical distribution functions. The following example shows this
conception to be false in a dramatic way.

Example 1.1. Let the copula C be the distribution function corresponding
to the uniform distribution on the union of the squares (0, 1/2)×(0, 1/2) and
(1/2, 1) × (1/2, 1). A scatterplot of a sample from a continuous distribution
with this copula consists of the union of two clouds of points, one in the
bottom left of the plot and the other one in the top right. The bottom-left
cloud corresponds to points to the south-west of the pair of medians and
the other cloud to points to the north-east of the pair of medians. With
probability tending to one, it is possible to correctly partition the data
into these two clouds. For each coordinate, the median of the corresponding
marginal distribution must lie between the maximal value of that coordinate
in the bottom left cloud and the minimal value of that coordinate in the
upper right cloud. Hence, if the marginal density functions are positive and
continuous in the medians, it is possible to estimate those medians at the
rate Op(1/n), in contrast to the usual nonparametric rate Op(1/

√
n).

A related problem concerns the lack of efficiency of the omnibus proce-
dure for the estimation of the copula parameter θ. Recall that this procedure
consists of maximizing the copula likelihood after the unknown marginal
distribution functions have been estimated by their empirical counterparts
(Oakes, 1994; Genest et al., 1995; Shih and Louis, 1995; Tsukahara, 2005).
Although in Klaassen and Wellner (1997) and Genest and Werker (2002),
the omnibus estimator was proved to be efficient for the normal copula fam-
ily, this efficiency property was shown in Genest and Werker (2002) to be
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“an exception rather than the norm”. For fully parametric models, simi-
lar conclusions about the loss in efficiency arising from separating marginal
from dependence aspects were formulated in Joe (2005).

Recall that if no model information is available whatsoever, the empirical
distribution of the data can be seen as the maximizer of a nonparametric
likelihood, this likelihood being simply the joint probability of observing
what has been observed. Therefore, we propose to estimate the marginal
distributions by maximizing a nonparametric likelihood as well, the likeli-
hood being constructed to take into account the knowledge that the copula
is C. This leads to the definition of the nonparametric maximum likeli-
hood estimator as the solution of a nonlinear, high-dimensional optimization
problem with equality and inequality constraints (Section 2). To reduce the
complexity of the estimator, we propose a number of simplifications which
eventually lead to a system of linear equations, the solution of which can
be seen as an approximation of the nonparametric maximum likelihood es-
timator (Section 3). This linearized estimator is represented as an update
of the marginal empirical distribution functions, the update itself being the
solution to a system of estimating equations in functional form.

A comparison of the finite-sample performances of the nonparametric
maximum likelihood estimator and the marginal empirical distributions in
Section 4 shows that the update of the empirical distributions constitutes a
modest though nonnegligeable improvement. The amount of improvement
depends on the copula. For example, for the Frank copula we document
efficiency increases of up to 40% of our nonparametric maximum likelihood
estimator over marginal empirical distribution functions. These findings
are confirmed in Section 5 where the following is shown: under standard
smoothness assumptions, the marginal empirical distribution functions are
semiparametrically efficient in the known-copula model if and only if the
copula is the independence copula. Here, the meaning of semiparametric
efficiency is intended as in Bickel et al. (1998).

It should be noted that in Chen et al. (2006), a sieve maximum likeli-
hood estimation procedure is proposed for real-valued functionals of the full
parameter (θ, F,G). By general properties of sieve estimators (Shen, 1997),
this procedure is shown to be semiparametrically efficient. However, imple-
menting the procedure is difficult as the final output depends on the choice of
the sieve, which ideally should be constructed in function of the shape of the
unknown distribution. Furthermore, it is unclear what primitive restrictions
the assumptions in Chen et al. (2006) impose upon the copula.

This paper is based on Chapter 5 of Van den Akker (2007), in which
asymptotic normality and semiparametric efficiency is proved for an estima-
tor which can be thought of as a large-sample version of the one considered
here; see Remark 3.2 below. For our estimator, the issue of its asymptotic
behavior remains open.
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2 Nonparametric maximum likelihood estimator

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution
with continuous marginal distributions and known copula C. Assume that C
is absolutely continuous with positive and twice continuously differentiable
density c. Denote the log copula density by ` = log c and its first and
second-order partial derivatives by ˙̀

i and ῭
ij for i, j ∈ {1, 2}. Throughout

Xi:n (Yi:n) denotes the i-th order statistic among X1, . . . ,Xn (Y1, . . . , Yn).
Since the (unknown) joint distribution H is known to have copula C, it

seems natural to impose that the estimated joint distribution has copula C
as well. This leads to the idea to consider estimators (F ∗

n , G∗
n) that maximize

the nonparametric or empirical loglikelihood

En(F,G) =

n
∑

i=1

log PF,G{(Xi, Yi)}, (2.1)

over F,G ∈ F , the set of all distribution functions on R; here PF,G =
P

C
F,G denotes the probability distribution on R

2 with marginal distribution
functions F and G and copula C. For the moment, ignore the question of
existence of a maximum. The next proposition shows that any maximizer
concentrates on the data.

Proposition 2.1. If (F ∗
n , G∗

n) maximizes En, then F ∗
n and G∗

n are concen-
trated on {X1, . . . ,Xn} and {Y1, . . . , Yn}, respectively.

Proof. Let (F 1
n , G1

n) be a maximizer of En. Define the distribution function
F ∗

n , concentrated on {X1, . . . ,Xn}, by

F ∗
n(Xi:n) =

{

F 1
n(Xi:n) if i ∈ {1, . . . , n − 1},

1 if i = n.

Define G∗
n in a similar way. It is sufficient to show that for all i, j ∈

{1, . . . , n},
PF ∗

n
,G∗

n
{(Xi:n, Yj:n)} ≥ PF 1

n
,G1

n
{(Xi:n, Yj:n)},

with equality for all i, j only if F 1
n and G1

n are already concentrated on
the data. For convenience, denote X0:n = Y0:n = −∞. Then, for i, j ∈
{1, . . . , n − 1},

PF ∗
n

,G∗
n
{(Xi:n, Yj:n)}

= C (F ∗
n(Xi:n), G∗

n(Yj:n)) − C (F ∗
n(Xi−1:n), G∗

n(Yj:n))

− C (F ∗
n(Xi:n), G∗

n(Yj−1:n)) + C (F ∗
n(Xi−1:n), G∗

n(Yj−1:n))

= C
(

F 1
n(Xi:n), G1

n(Yj:n)
)

− C
(

F 1
n(Xi−1:n), G1

n(Yj:n)
)

− C
(

F 1
n(Xi:n), G1

n(Yj−1:n)
)

+ C
(

F 1
n(Xi−1:n), G1

n(Yj−1:n)
)

= PF 1
n
,G1

n
((Xi−1:n,Xi:n] × (Yj−1:n, Yj:n])

≥ PF 1
n
,G1

n
{(Xi:n, Yj:n)},
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the last inequality being an equality if and only if PF 1
n
,G1

n
does not assign

any mass to the set ((Xi−1:n,Xi:n] × (Yj−1:n, Yj:n])\{(Xi:n, Yj:n)}. Similarly,
we find for i = n and j ∈ {1, . . . , n − 1},

PF ∗
n

,G∗
n
{(Xn:n, Yj:n)} = PF 1

n
,G1

n
((Xn−1:n,∞) × (Yj−1:n, Yj:n])

≥ PF 1
n
,G1

n
{(Xn,n, Yj:n)},

the last inequality being an equality if and only if PF 1
n
,G1

n
does not assign

any mass to the set ((Xn−1:n,∞) × (Yj−1:n, Yj:n]) \ {(Xn:n, Yj:n)}. Similar
inequalities hold for the cases i ∈ {1, . . . , n − 1}, j = n, and i = j = n.

Any maximizer of the empirical loglikelihood En(F,G) in (2.1) is thus
necessarily of the form

F ∗
n(x) =

n
∑

i=1

pi,nI(Xi ≤ x), G∗
n(y) =

n
∑

i=1

qi,nI(Yi ≤ y),

with pi,n and qi,n the probability masses assigned by F ∗
n and G∗

n to the
atoms {Xi} and {Yi}, respectively (provided there are no ties in the data).
Thinking of empirical loglikelihood En as a function of pn = (p1,n, . . . , pn,n)′

and qn = (q1,n, . . . , qn,n)′, the nonparametric maximum likelihood estimator
is defined as the solution to the following optimization problem:

max
p

n
,q

n

En(pn,qn)

such that pi,n ≥ 0, qi,n ≥ 0, (i ∈ {1, . . . , n})
∑n

i=1 pi,n = 1,
∑n

i=1 qi,n = 1.

(2.2)

This constitutes a highly non-linear constrained optimization problem in 2n
variables. In order to reduce its complexity we suggest two approximations.

3 Linearization and representation

As a first simplification of the optimization problem (2.2), we approxi-
mate the probabilities PF ∗

n
,G∗

n
{(Xi, Yi)} in (2.1) by pi,nqi,nc(F ∗

n(Xi), G
∗
n(Yi)),

where c is the copula density. In this way, the objective function En is re-
placed by

Ln(pn,qn) =
n

∑

i=1

log pi,n +
n

∑

i=1

log qi,n +
n

∑

i=1

` (F ∗
n(Xi), G

∗
n(Yi)) , (3.1)

with ` = log c.
In order to get a computationally feasible estimator, we suggest a second

simplification: forget about the nonnegativity constraints on pi,n and qi,n

and replace the objective function Ln by its quadratic expansion around
pi,n = qi,n = 1/n. The motivation for this approximation is that we think
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of the estimators F ∗
n and G∗

n as being “close to” the empirical distribution
functions

Fn(x) =
1

n

n
∑

i=1

I(Xi ≤ x) and Gn(y) =
1

n

n
∑

i=1

I(Yi ≤ y),

respectively. The quadratic expansion is more conveniently described in
terms of the variables ai,n and bi,n for i ∈ {1, . . . , n} defined implicitly by

pi,n =
1

n
(1 + ai,n) and qi,n =

1

n
(1 + bi,n).

In view of the equality constraints
∑n

i=1 pi,n = 1 and
∑n

i=1 qi,n = 1, these
new variables must satisfy the equality constraints

∑n
i=1 ai,n =

∑n
i=1 bi,n =

0. For the sake of computational simplicity, the inequality constraints ai,n ≥
−1 and bi,n ≥ −1 will be ignored.

Think of Ln as a function of the 2n variables (a′
n, b′n)′ and denote the

n × 1 vectors of first-order partial derivatives by

L̇n,a =

(

∂Ln

∂a1,n

, . . . ,
∂Ln

∂an,n

)′

,

L̇n,b =

(

∂Ln

∂b1,n

, . . . ,
∂Ln

∂bn,n

)′

,

all partial derivatives being calculated in an = 0 and bn = 0. Similarly,
denote the n × n matrices of second-order partial derivatives by

L̈n,aa =

(

∂2Ln

∂ai,n∂aj,n

)n

i,j=1

, L̈n,ab =

(

∂2Ln

∂ai,n∂bj,n

)n

i,j=1

,

L̈n,ba =

(

∂2Ln

∂bi,n∂aj,n

)n

i,j=1

, L̈n,bb =

(

∂2Ln

∂bi,n∂bj,n

)n

i,j=1

,

again with all partial derivatives being calculated in an = 0 and bn = 0.
Then up to constant terms, the quadratic expansion of the objective function
Ln around an = 0 and bn = 0 is equal to

Qn(an, bn) = a′
nL̇n,a + b′nL̇n,b

+
1

2

(

a′
nL̈n,aaan + a′

nL̈n,abbn + b′nL̈n,baan + b′nL̈n,bbbn

)

.

Our linearized estimator is now defined as the solution of the following op-
timization problem:

max
an,bn

Qn(an, bn)

such that
∑n

i=1 ai,n = 0,
∑n

i=1 bi,n = 0.

(3.2)
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By the method of Lagrange multipliers, the solution to (3.2) can be found by
solving the following linear system of 2n + 2 equations in 2n + 2 unknowns:

L̇n,a + L̈n,aaan + L̈n,abbn + κ1 = 0,

L̇n,b + L̈n,baan + L̈n,bbbn + λ1 = 0,
1′an = 0,
1′bn = 0.

(3.3)

Here, κ and λ are the Lagrange multipliers arising from the equality con-
straints on an and bn, respectively, and 0 and 1 denote n×1 vectors of zeros
and ones, respectively. Convenient matrix expressions for the above system
are derived in the appendix.

Although (3.3) constitutes a representation of the linearized nonpara-
metric maximum likelihood estimator that is convenient for computational
purposes, it provides little insight in the nature of the estimator. The re-
mainder of this section is devoted to a representation of the estimator as
the solution to a system of estimating equations defined in an appropriate
function space.

In order to describe these equations, we need some more notation. To the
solutions an and bn to (3.3), there correspond functions an, bn : (0, 1] → R

defined by

an(u) = ai,n if Fn(Xi) − 1
n

< u ≤ Fn(Xi),

bn(v) = bi,n if Gn(Xi) − 1
n

< v ≤ Gn(Yi).

Further, for u, v ∈ [0, 1], put

An(u) =

∫ u

0
an(z) dz and Bn(v) =

∫ v

0
bn(z) dz.

The (right-continuous with left-hand limits) empirical copula is defined by

Cn(u, v) =
1

n

n
∑

i=1

I{Fn(Xi) ≤ u, Gn(Yi) ≤ v}

for u, v ∈ [0, 1]2. Note that
∫

f dCn = n−1
∑n

i=1 f(Fn(Xi), Gn(Yi)) for f :
[0, 1]2 → R. For h1, h2 : [0, 1] → R, define new functions by

Ψ1,n(h1, h2)(u)

= −h1(u) +

∫

(x ∧ u − xu){h1(x)῭11(x, y) + h2(y)῭12(x, y)}dCn(x, y),

Ψ2,n(h1, h2)(v)

= −h2(v) +

∫

(y ∧ v − yv){h2(y)῭22(x, y) + h1(x)῭12(x, y)}dCn(x, y),

for u, v ∈ [0, 1], the integrals extending over the unit square. The following
result is proved in the appendix.
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Proposition 3.1. For an and bn solving (3.3), the corresponding estimators
F ∗

n and G∗
n can be written as

F ∗
n(x) = Fn(x) + An(Fn(x)),

G∗
n(y) = Gn(y) + Bn(Gn(y)),

(3.4)

for x, y ∈ [0, 1], the functions An and Bn solving for all u, v ∈ [0, 1] the
equations

Ψ1,n(An, Bn)(u) = −
∫

(x ∧ u − xu) ˙̀
1(x, y) dCn(x, y),

Ψ2,n(An, Bn)(v) = −
∫

(y ∧ v − yv) ˙̀
2(x, y) dCn(x, y).

(3.5)

Remark 3.2. If on the right-hand sides of (3.5), the empirical copula Cn

is replaced by the true copula C, then, under Conditions 5.1–5.2 below, the
integrals on the right-hand side are zero. Based on results on the empirical
copula process

√
n(Cn −C), we conjecture that the right-hand sides of (3.5)

multiplied by
√

n converge jointly to a pair of Gaussian process on [0, 1].
If, in addition, the operator sequence Ψn = (Ψ1,n,Ψ2,n) converges in an
appropriate way to a limiting operator Ψ = (Ψ1,Ψ2) (just replace Cn by
C in the definitions of Ψi,n), an operator which moreover is continuously
invertible, then the sequence of processes

√
n(An, Bn) must converge to a

Gaussian process as well. This approach is the subject of a future paper;
for more details, we refer to Van den Akker (2007, Chapter 5).

4 Comparison with marginal empirical distribution functions

This section compares the finite-sample performances of the linearized non-
parametric maximum likelihood estimator and the marginal empirical dis-
tribution function as estimators for the marginal distribution functions in
the model where the copula of a bivariate distribution is known and the
marginal distributions are arbitrary.

4.1 Set-up of the experiments

We generated samples from the bivariate Gaussian, Plackett, and Frank cop-
ula families; see Table 1 for an overview of the precise settings. We refer to
Nelsen (1999), in particular for the parametrization, for details and refer-
ences on these copula families. For each sample, we estimated the marginal
distribution of the first component, F (u) = u, by the empirical distribution
function and by the linearized nonparametric maximum likelihood estima-
tor. Only uniform marginals need to be considered as the results for other
margins are just a “transformation of the axes” (this since An and Bn only
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Table 1: Settings for the simulation experiments.

Figure 1 Gaussian copula at ρ ∈ {±0.2,±0.5,±0.8}
M = 10000 samples of size n = 100

Figure 2 Gaussian copula at ρ = 0.75 (top) and ρ = 0.90 (bottom)
M = 10000 samples of size n = 100 (left)
M = 5000 samples of size n = 1000 (right)

Figure 3 Plackett copula at θ ∈ {2, 5} ∪ {1/2, 1/5}
M = 10000 samples of size n = 100

Figure 4 Plackett copula at θ ∈ {10, 20} ∪ {1/10, 1/20}
M = 10000 samples of size n = 100

Figure 5 Frank copula at a = − log θ ∈ {±1,±2,±3}
M = 5000 samples of size n = 500

Figure 6 Frank copula at a = − log θ ∈ {±5,±10,±20}
M = 5000 samples of size n = 100

depend on the ranks of the observations). In each experiment and for each u
in a grid of values on [0, 1], we estimated the normalized mean squared error
E[n{F̂n(u)−u}2] by its empirical counterpart over the M samples. Note that
in case of the empirical distribution function, the normalized mean squared
error is equal to u(1 − u).

4.2 Results

The figures are organized at the back. For the Gaussian copula (Figures 1–
2), the nonparametric likelihood estimator was always at least as good as the
empirical distribution function. The difference in efficiency becomes larger
for ρ farther away from zero. Figure 2 shows that for large ρ, the improve-
ment in efficiency is much more pronounced for n = 1000 than for n = 100;
a tentative explanation is that for these values of ρ, the sample size needs
to be rather larger in order for the various approximations (linearization;
omission of inequality constraints) to be effective.

For the Plackett copula (Figures 3–4), the results indicate a large po-
tential of efficiency gain by incorporating knowledge of the copula. The
increase in efficiency becomes larger when the odds-ratio parameter θ moves
farther away from one, i.e., from independence. The results for θ and 1/θ
are virtually the same; this is to be expected, for if the distribution of (U, V )
is the Plackett copula with parameter θ, then the distribution of (1− U, V )
is the Plackett copula with parameter 1/θ.

For the Frank copula (Figures 5–6), the results are quite favorable for
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the nonparametric maximum likelihood estimator. Within the range −20 ≤
a ≤ 20 covered by the simulations, the relative efficiency of the nonpara-
metric maximum likelihood estimator with respect to the empirical distri-
bution function was found to be increasing in |a|, with a maximum of about
0.25/0.15 = 5/3 for |a| = 20 and in u = 0.5. In this setting, the nonpara-
metric maximum likelihood estimator achieves the same accuracy as the
empirical distribution function with only about 60% of the observations.

5 Asymptotic inefficiency of the marginal empirical distribution func-

tions

The previous section shows that the linearized nonparametric maximum
likelihood estimator (3.3) of the marginal distribution improves upon the
empirical distribution function, the size of the improvement depending on
the underlying copula. Intuitively it is clear that no improvement will be
possible under the independence copula C(u, v) = uv. Theorem 5.4 below
shows that the converse is true as well: the marginal empirical distribution
functions are efficient only under the independence copula.

In order to prove this result rigorously, we derive the tangent space for
our copula model. For details on this concept and asymptotic efficiency we
refer to Bickel et al. (1998) and Van der Vaart (2000, Chapter 25). First we
describe the regularity assumptions on the copula C we need.

Condition 5.1. C is absolutely continuous with respect to Lebesgue mea-
sure. There is a version of its density, c, which is strictly positive on (0, 1)2

and which is two times continuously differentiable on (0, 1)2.

As before, denote the partial derivatives of the log density ` = log c by
˙̀
i and ῭

ij for i, j ∈ {1, 2}. For x, y ∈ (0, 1), also define

I11(x) =

∫ 1

0

˙̀2
1(x, y)c(x, y) dy and I22(y) =

∫ 1

0

˙̀2
2(x, y)c(x, y) dx.

Condition 5.2. For some constant M > 0 and for all i ∈ {1, 2} and u ∈
(0, 1),

Iii(u) ≤ M

u2(1 − u)2
.

Moreover, for i ∈ {1, 2} and ui ∈ (0, 1),

∫ 1

0

˙̀
i(u1, u2)c(u1, u2) du3−i = 0,

∫ 1

0

῭
ii(u1, u2)c(u1, u2) du3−i = −Iii(ui).
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Note that the second part of Condition 5.2 is similar to the standard
smoothness conditions in parametric models: scores have mean zero, and
the Fisher-equality holds: the expectation of the outerproduct of the scores
equals minus the expectation of the derivative of the score. The first part
of Condition 5.2 puts a condition for copulas that are “exploding” on the
boundary of the unit square. The conditions are standard in the semipara-
metric literature on copulas; see Section 4.7 of Bickel et al. (1998).

Recall that PF,G = P
C
F,G is the probability distribution on R

2 with
marginal distribution functions F and G and copula C; expectations with
respect to PF,G are denoted by EF,G. Let Fac be the set of absolutely con-
tinuous distribution functions. The model of interest is the known-copula
model P(C) = (PF,G | F,G ∈ Fac).

Fix F0, G0 ∈ Fac. We describe how to construct a tangent space for
our model P(C) at P0 = PF0,G0

. Let k : R → R be defined by k(z) =
2/{1 + exp(−2z)}. Let v,w ∈ L0

2(Un[0, 1]), the subset of elements a from

L2(Un[0, 1]) that satisfy
∫ 1
0 a(u)du = 0. Define densities, for t ∈ R, by

f v
t (x) = cv

f (t)k(tv(F0(x)))f0(x),

gw
t (y) = cw

g (t)k(tw(G0(y)))g0(y),
(5.1)

where cv
f (t) and cw

g (t) are normalizing constants ensuring that f v
t and gw

t are
indeed densities. [It is a matter of routine to check that 0 < k ≤ 2, 0 < k′ ≤
4, 0 < k′/k ≤ 2 and k(0) = k′(0) = 1, that cv

f (0) = cw
g (0) = 1, and that t 7→

cv
f (t) and t 7→ cw

g (t) are continuously differentiable with (cv
f )′(0) = (cw

g )′(0) =
0.] The densities f v

t and gw
t induce distribution functions F v

t , Gw
t ∈ Fac, and

the paths t 7→ F v
t , t 7→ Gw

t pass F0 and G0 at t = 0.
Next we introduce the score operators ˙̀

F and ˙̀
G, which are mappings

from L0
2(Un[0, 1]) into L2(PUn[0,1],Un[0,1]), by

˙̀
F v(x, y) = v(x) + ˙̀

1(x, y)

∫ x

0
v(z)dz,

˙̀
Gw(x, y) = w(y) + ˙̀

2(x, y)

∫ y

0
w(z)dz;

see Bickel et al. (1998, Proposition 4.7.5). The following proposition yields
a tangent space at P0.

Lemma 5.3. Let C satisfy Conditions 5.1–5.2. For v,w ∈ L0
2(Un[0, 1]), the

path t 7→ PF v

t
,Gw

t
in P(C), as induced by (5.1), has the following score at

t = 0:
˙̀v,w
F0,G0

(x, y) = ˙̀
F v(F0(x), G0(y)) + ˙̀

Gw(F0(x), G0(y));

that is, writing pt(x, y) = pF v

t
,Gw

t
(x, y), as t → 0,

∫∫

R2

(

√

pt(x, y) −
√

p0(x, y)

t
− 1

2
˙̀v,w
F0,G0

(x, y)
√

p0(x, y)

)2

dxdy → 0.
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This yields the following tangent space at P0:

T0 = T (P0 | P(C)) =
{

˙̀v,w
F0,G0

| v,w ∈ L0
2(Un[0, 1])

}

,

which is a closed linear subspace of L2(P0).

Proof. The part on the score (essentially) follows from Bickel et al. (1998,
Proposition 4.7.4), while the closedness is a consequence of Theorem A.4.2.B
and (an easy generalization of) Proposition 4.7.6 in Bickel et al. (1998).

Our parameter of interest is described by the mapping ν : P(C) →
`∞(R) × `∞(R) defined by ν(PF,G) = (F,G). Fix F0, G0 ∈ Fac. We need
the pathwise derivative of ν along the paths that generate the tangent space
T0. For a path t 7→ PF v

t
,Gw

t
as in (5.1), it is an easy exercise to show that in

`∞(R) × `∞(R) and as t → 0,

t−1{ν(PF v

t
,Gw

t
) − ν(P0)} → ν ′

P0
( ˙̀v,w

F0,G0
)

=
(

ν1′

P0
( ˙̀v,w

F0,G0
), ν2′

P0
( ˙̀v,w

F0,G0
)
)

,

where, for x, y ∈ R,

ν1′

P0
( ˙̀v,w

F0,G0
)(x) =

∫ F0(x)

0
v(z) dz,

ν2′

P0
( ˙̀v,w

F0,G0
)(y) =

∫ G0(y)

0
w(z) dz.

For x, y ∈ R there exist, by the Riesz representation theorem, unique ele-
ments ν1∗

x,P0
and ν2∗

y,P0
in T0 such that, for all v,w ∈ L0

2(Un[0, 1]),

ν ′
1,P0

( ˙̀v,w
F0,G0

)(x) = EF0,G0
ν1∗

x,P0

˙̀v,w
F0,G0

(X,Y ),

ν ′
2,P0

( ˙̀v,w
F0,G0

)(y) = EF0,G0
ν2∗

y,P0

˙̀v,w
F0,G0

(X,Y ).

These elements are called efficient influence functions and they are given by

ν1∗
x,P0

= Π(1{X ≤ x} − F0(x) | T0),

ν2∗
y,P0

= Π(1{Y ≤ y} − G0(y) | T0),

where Π denotes the projection operator. Unfortunately it seems to be im-
possible to obtain explicit expressions for these projections. One reason for
this complication is that the tangent space is the sum of two non-orthogonal
spaces.

These efficient influence functions characterize efficient estimators through
the infinite-dimensional version of the famous Hájek-Le Cam convolution
theorem; see, for example, Van der Vaart (1991, Theorem 2.1) or Bickel et al.
(1998, Theorem 5.2.1). Using this theorem, the next proposition shows that,
amongst the copulas satisfying Conditions 5.1–5.2, the independence copula
is the only one for which (Fn, Gn) constitutes an efficient estimator of (F,G).
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Theorem 5.4. Let the copula C satisfy Conditions 5.1–5.2. Then (Fn, Gn)
is an efficient estimator of (F,G) in the model P(C) if and only if C(u, v) =
uv.

Proof. Let F0, G0 ∈ Fac. Using Bickel et al. (1998, Corollary 5.2.1) and the
“transformation of axes” structure of the tangent space, it is easy to see that
(Fn, Gn) is efficient at P0 if and only if (Fn, Gn) is efficient at PUn[0,1],Un[0,1].
Therefore we only consider uniform margins in the sequel of the proof. Since
no confusion can arise we drop subscripts related to the margins.

Sufficiency. If C(u, v) = uv, it is easy to check that ν1∗
α = 1{X ≤ α}−α

and ν2∗
β = 1{Y ≤ β} − β for all α, β ∈ [0, 1]. Efficiency now follows directly

from Bickel et al. (1998, Corollary 5.2.1).
Necessity. Since Fn is an efficient estimator of F , for all α ∈ [0, 1],

the influence function of Fn(α), which is x 7→ 1{x ≤ α} − α, belongs to the
tangent space T (PUn[0,1],Un[0,1] | P(C)), i.e. there exists aα, bα ∈ L0

2(Un[0, 1])
such that

1{X ≤ α} − α = ˙̀
F aα(X,Y ) + ˙̀

Gbα(X,Y ) a.s. (5.2)

By partial integration, for a, b ∈ L0
2(Un[0, 1]),

E[ ˙̀F a(X,Y ) + ˙̀
Gb(X,Y ) | X] = a(X),

E[ ˙̀F a(X,Y ) + ˙̀
Gb(X,Y ) | Y ] = b(Y ),

whence

aα(x) = 1{x ≤ α} − α,

bα(y) =

∫ α

0
c(z, y) dz − α.

In combination with (5.2), the above equations yield, for all x, y, α ∈ (0, 1),

− ˙̀
1(x, y)(x ∧ α− xα) =

∫ α

0
c(z, y) dz − α + ˙̀

2(x, y){C(α, y) − αy}; (5.3)

since all functions involved are continuous the “a.s.” disappears. In case
x < α differentiating both sides of (5.3) with respect to x yields

− (1 − α){x῭
11(x, y) + ˙̀

1(x, y)} = ῭
12(x, y){C(α, y) − αy}, (5.4)

and in case x > α we have

− α{(1 − x)῭11(x, y) − ˙̀
1(x, y)} = ῭

12(x, y){C(α, y) − αy}. (5.5)

Fix x, y ∈ (0, 1). Since all objects involved are continuous, we obtain, by
letting α ↓ x in (5.4) and α ↑ x in (5.5),

(1 − x){x῭
11(x, y) + ˙̀

1(x, y)} = x{(1 − x)῭11(x, y) − ˙̀
1(x, y)}.

Trivially, this yields ˙̀
1(x, y) = 0. Hence c1(x, y) = 0. So x 7→ c(x, y) is

constant. This yields c(x, y) = 1.
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Remark 5.5. From the proof we see that actually a stronger result holds: if
the copula is known to be C, then Fn (Gn) is an efficient estimator of F (G)
only if C is the independence copula. In other words, we only need efficiency
of one marginal empirical distribution function to be able to conclude that
the copula must be the independence copula.
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A Derivation and representation of the new estimator

In this appendix we prove the computationally more convenient characteri-
zation of the nonparametric maximum likelihood estimator (3.3) and provide
the proof of Proposition 3.1.

Matrix formulation of (3.3). The system (3.3) can be written as









L̈n,aa L̈n,ab 1 0

L̈n,ba L̈n,bb 0 1

1′ 0′ 0 0
0′ 1′ 0 0

















an

bn

κ
λ









= −









L̇n,a

L̇n,b

0
0









. (A.1)

The entries in (A.1) involving Ln can be computed as follows. The first-order
partial derivatives are given by

∂Ln

∂ai,n

= 1 +
1

n

n
∑

k=1

˙̀
1(Fn(Xk), Gn(Yk))I(Xi ≤ Xk),

∂Ln

∂bi,n

= 1 +
1

n

n
∑

k=1

˙̀
2(Fn(Xk), Gn(Yk))I(Yi ≤ Yk),

for i ∈ {1, . . . , n}. If the log copula density ` is unbounded on some part of
the boundary of the unit square, the empirical distribution functions Fn and
Gn can be replaced by the rescaled versions F̃n(x) = (n + 1)−1

∑n
l=1 I(Xl ≤

x) and G̃n(y) = (n + 1)−1
∑n

l=1 I(Yl ≤ y). The second-order partial deriva-
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tives of Ln are

∂2Ln

∂ai,n∂aj,n

= −δij +
1

n2

n
∑

k=1

῭
11(Fn(Xk), Gn(Xk))I(Xi ≤ Xk)I(Xj ≤ Xk),

∂2Ln

∂ai,n∂bj,n

= +
1

n2

n
∑

k=1

῭
12(Fn(Xk), Gn(Xk))I(Xi ≤ Xk)I(Yj ≤ Yk),

∂2Ln

∂bi,n∂aj,n

= +
1

n2

n
∑

k=1

῭
21(Fn(Xk), Gn(Xk))I(Yi ≤ Yk)I(Xj ≤ Xk),

∂2Ln

∂bi,n∂bj,n

= −δij +
1

n2

n
∑

k=1

῭
22(Fn(Xk), Gn(Xk))I(Yi ≤ Yk)I(Yj ≤ Yk),

for i, j ∈ {1, . . . , n}. These identities can be written down more succinctly
in matrix notation as follows. Define the n × n matrices

An =
1

n

(

I(Xi ≤ Xj)
)n

i,j=1
and Bn =

1

n

(

I(Yi ≤ Yj)
)n

i,j=1
.

For r ∈ {1, 2}, put the n × 1 vectors of first-order partial derivatives

˙̀
n,r =

(

˙̀
r(Fn(X1), Gn(Y1)), . . . , ˙̀

r(Fn(Xn), Gn(Yn))
)′

and for r, s ∈ {1, 2}, put the n×n diagonal matrices of second-order partial
derivatives

῭
n,rs =







῭
rs(Fn(X1), Gn(Y1)) 0

. . .

0 ῭
rs(Fn(Xn), Gn(Yn))






.

Using these notations, we can write the blocks in (A.1) involving Ln as

(

L̇n,a

L̇n,b

)

=

(

An
˙̀
n,1 + 1

Bn
˙̀
n,2 + 1

)

, (A.2)

(

L̈n,aa L̈n,ab

L̈n,ba L̈n,bb

)

=

(

An
῭
n,11A

′
n An

῭
n,12B

′
n

Bn
῭
n,21A

′
n Bn

῭
n,22B

′
n

)

− I2n. (A.3)

It is the representation of the estimator in (A.1), (A.2) and (A.3) that has
been used in the simulation study in Section 4.

Proof of Proposition 3.1. Since the function an is constant on intervals of
the form ((r − 1)/n, r/n], we have An(k/n) = n−1

∑k
r=1 an(r/n) for all

k ∈ {1, . . . , n}. Now an(r/n) = ai,n if and only if Fn(Xi) = r/n, that is, the
rank of Xi among X1, . . . ,Xn is r. Therefore,

An(k/n) =
1

n

n
∑

i=1

ai,nI{Fn(Xi) ≤ k/n}
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for all k ∈ {1, . . . , n}. Since Fn(Xi) ≤ Fn(Xj) if and only if Xi ≤ Xj , we
get

An(Fn(Xj)) =
1

n

n
∑

i=1

ai,nI(Xi ≤ Xj) = F ∗
n(Xj) − Fn(Xj) (A.4)

for all j ∈ {1, . . . , n}. Since F ∗
n and Fn are distribution functions supported

by {X1, . . . ,Xn}, we conclude that An(Fn(x)) = F ∗
n(x)−Fn(x) for all x ∈ R.

Similarly Bn(Gn(y)) = G∗
n(y) − Gn(y) for all y ∈ R.

Write ˙̀
n,1(k) = ˙̀

1(Fn(Xk), Gn(Xk)) etc. The first n equations in (3.3)
read

0 = 1 +
1

n

n
∑

k=1

˙̀
n,1(k)I(Xi ≤ Xk)

− ai,n +

n
∑

j=1

1

n2

n
∑

k=1

῭
n,11(k)I(Xi ≤ Xk)I(Xj ≤ Xk)aj,n

+
n

∑

j=1

1

n2

n
∑

k=1

῭
n,12(k)I(Xi ≤ Xk)I(Yj ≤ Yk)bj,n + κ

for i ∈ {1, . . . , n}. In view of n−1
∑n

j=1 aj,nI(Xj ≤ Xk) = An(Fn(Xk)) and

n−1
∑n

j=1 bj,nI(Yj ≤ Yk) = Bn(Gn(Yk)), see (A.4), we obtain

0 = 1 +
1

n

n
∑

k=1

˙̀
n,1(k)I(Xi ≤ Xk) − ai,n

+
1

n

n
∑

k=1

I(Xi ≤ Xk){῭
n,11(k)An(Fn(Xk)) + ῭

n,12(k)Bn(Gn(Yk))} + κ.

Sum these equations over i ∈ {1, . . . , n} and use the constraint
∑

i ai,n = 0
to solve for the Lagrange multiplier κ:

κ = −1 − 1

n

n
∑

k=1

˙̀
n,1(k)Fn(Xk)

− 1

n

n
∑

k=1

Fn(Xk){῭
n,11(k)An(Fn(Xk)) + ῭

n,12(k)Bn(Gn(Yk))}.

Substitute this expression back into the original equations: for all i ∈
{1, . . . , n},

0 =
1

n

n
∑

k=1

˙̀
n,1(k){I(Xi ≤ Xk) − Fn(Xk)} − ai,n

+
1

n

n
∑

k=1

{I(Xi ≤ Xk) − Fn(Xk)}

× {῭
n,11(k)An(Fn(Xk)) + ῭

n,12(k)Bn(Gn(Yk))}.
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Now I(Xi ≤ Xk) = I{Fn(Xi) ≤ Fn(Xk)} while ai,n = an(Fn(Xi)). There-
fore, we can rewrite the previous equation in terms of integrals with respect
to Cn: for all i ∈ {1, . . . , n},

0 =

∫

˙̀
1(x, y)[I{Fn(Xi) ≤ x} − x] dCn(x, y) − an(Fn(Xi))

+

∫

[I{Fn(Xi) ≤ x} − x]{῭
11(x, y)An(x) + ῭

12Bn(y)}dCn(x, y).

If the previous equation holds for some i ∈ {1, . . . , n}, then it also holds for
all z such that Fn(Xi) − 1/n < z ≤ Fn(Xi). Therefore, for all z ∈ (0, 1],

0 =

∫

˙̀
1(x, y){I(z ≤ x) − x}dCn(x, y) − an(z)

+

∫

{I(z ≤ x) − x}{῭
11(x, y)An(x) + ῭

12Bn(y)}dCn(x, y).

For u ∈ (0, 1], integrate the previous identity over z ∈ (0, u], apply Fubini’s
theorem and use the fact that

∫ u

0 {I(z ≤ x) − x}dz = x ∧ u − xu to arrive
at the first equation of (3.5). For u = 0, both sides of the first equation of
(3.5) are automatically zero.

The proof of the second equation in (3.5) is entirely similar.
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Figure 1: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 10000 samples of size n = 100 from the bivariate Gaus-
sian copula with correlation parameter ρ ∈ {±0.2,±0.8,±0.5} together with
the function u 7→ u(1 − u). Here F̂n is the empirical distribution function
(dashed) or the nonparametric maximum likelihood estimator if the copula
is known (solid).



20 J. Segers, R. van den Akker and B.J.M. Werker

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Gaussian copula, ρ = 0.75 (n = 100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Gaussian copula, ρ = 0.75 (n = 1000)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Gaussian copula, ρ = 0.9 (n = 100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Gaussian copula, ρ = 0.9 (n = 1000)

Figure 2: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 10000 samples of size n = 100 (left) or M = 5000 samples
of size n = 1000 (right) from the bivariate Gaussian copula with correlation
parameter ρ = 0.75 (top) and ρ = 0.90 (bottom) together with the function
u 7→ u(1−u). Here F̂n is the empirical distribution function (dashed) or the
nonparametric maximum likelihood estimator if the copula is known (solid).
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Figure 3: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 10000 samples of size n = 100 from the bivariate Plack-
ett copula with odds-ratio parameter θ ∈ {2, 5} ∪ {1/2, 1/5} together with
the function u 7→ u(1 − u). Here F̂n is the empirical distribution function
(dashed) or the nonparametric maximum likelihood estimator if the copula
is known (solid).
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Figure 4: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 10000 samples of size n = 100 from the bivariate Plackett
copula with odds-ratio parameter θ ∈ {10, 20} ∪ {1/10, 1/20} together with
the function u 7→ u(1 − u). Here F̂n is the empirical distribution function
(dashed) or the nonparametric maximum likelihood estimator if the copula
is known (solid).



Inefficiency of marginal empirical distribution functions 23

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = −1

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = −2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

M
S

E

u(1 − u)
empirical
NPMLE

Frank copula, a = −3

Figure 5: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 5000 samples of size n = 500 from the bivariate Frank
copula with parameter a = − log θ ∈ {±1,±2,±3} together with the function
u 7→ u(1−u). Here F̂n is the empirical distribution function (dashed) or the
nonparametric maximum likelihood estimator if the copula is known (solid).
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Figure 6: Estimates of the normalized mean squared error E[n{F̂n(u)−u}2]
based on M = 5000 samples of size n = 100 from the bivariate Frank copula
with parameter a = − log θ ∈ {±5,±10,±20} together with the function
u 7→ u(1−u). Here F̂n is the empirical distribution function (dashed) or the
nonparametric maximum likelihood estimator if the copula is known (solid).
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